
CSE 373 Summer 2020LEC 21: Sorting II

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 2 1

Sorting II

BEFORE WE START

pollev.com/uwcse373

Which of the following is true about Insertion sort and
Selection sort?

a) Both algorithms run in n2 (quadratic) time on an
already-sorted array

b) Insertion sort benefits from using a Linked List
instead of an underlying array

c) Insertion sort is always faster than selection sort
d) We swap elements in the same order for both

algorithms

CSE 373 Summer 2020LEC 21: Sorting II

Announcements
• EX4 due Monday 8/17

- Focuses on MSTs and sorting
- You’ll need today’s lecture for problem 1

• P4 due in 1 week: Wednesday 8/19
- Don’t get caught in the maze of time management in week 9!

• TA-led Industry Panel Q&A: Friday 4:30 – 5:30!
- Come chat with a panel of your amazing TAs! Learn about their

backgrounds/experiences and ask about careers in technology, finding
internships, or preparing for interviews.

• Exam II next Friday! Logistics & topics list released on website
- This Friday is the last day of content for the exam
- Additional review materials published next Monday

CSE 373 Summer 2020LEC 21: Sorting II

Learning Objectives

1. Implement Heap Sort, describe its runtime, and implement the in-
place variant

2. Implement Merge Sort, and derive its runtimes

3. Trace through Quick Sort, derive its runtimes, and trace through the
in-place variant

4. Evaluate the best algorithm to use based on properties of input
data (already sorted, multiple fields, etc.)

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 21: Sorting II

Lecture Outline
• Sorting

- Review Definitions, Insertion, Selection
- Heap Sort
- Merge Sort
- Quick Sort

CSE 373 Summer 2020LEC 21: Sorting II

Review Sorting: Definitions
A sort is stable if the relative order
of equivalent keys is maintained after
sorting

Anita
2010

Basia
2018

Caris
2019

Duska
2020

Duska
2015

Anita
2016

Anita
2010

Anita
2016

Basia
2018

Caris
2019

Duska
2020

Duska
2015

Stable sort using name as key

An in-place sort modifies the input array
directly, as opposed to building up an
auxiliary data structure

3 5 4 8 2

Anita
2016

Anita
2010

Basia
2018

Caris
2019

Duska
2015

Duska
2020

Unstable sort using name as key

Input

4 8 2

3 5

Not in-place sort building up in auxiliary array

In-Place sort building up result in partition of same array

CSE 373 Summer 2020LEC 21: Sorting II

Review Sorting: Ordering Relations
• An ordering relation < for keys a, b, and c has the

following properties:
- Law of Trichotomy: Exactly one of a < b, a = b, b < a is true
- Law of Transitivity: If a < b, and b < c, then a < c

• Determined by the data type AND the application!

• Increasing: Could sort using
int definition of <

• Decreasing: Could sort using
int definition of >

• Netflix library: Could sort by title (or
star rating)

• IMDB actor credits: Could sort by year
• Could sort by some combo of both!

• File system: Could sort by image size, last
modified

• Design: Could sort by average color of pixels
• Google Search Index: Could sort by subject

Ints Movies Image Data

2, 6, 4, 5, 8, 9
Coco
2017

Inside Out
2015

Tangled
2010, ,

, ,

CSE 373 Summer 2020LEC 21: Sorting II

Review Sorting Strategy 1: Iterative Improvement
• Invariants/Iterative improvement

- Step-by-step make one more part of the input your desired output.

• We’ll write iterative algorithms to satisfy the following invariant:
• After 𝑘 iterations of the loop, the first 𝑘 elements of the array will be

sorted.

Iterative Improvement
After k iterations of the loop, the first k
elements of the array will be sorted

IN
VA

R
IA

N
T

CSE 373 Summer 2020LEC 21: Sorting II

Review Selection vs. Insertion Sort
void selectionSort(list) {

for each current in list:
target = findNextMin(current)
swap(target, current)

}

void insertionSort(list) {
for each current in list:

target = findSpot(current)
shift(target, current)

}

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

“Look through sorted to insert the current item
in the spot where it belongs”
• Then shift everything over to make space

“Look through unsorted to select the smallest
item to replace the current item”
• Then swap the two elements

Worst case runtime? Θ(𝑛2)
Best case runtime? Θ(𝑛2)
In-practice runtime? Θ(𝑛2)
Stable? No
In-place? Yes

Worst case runtime? Θ(𝑛2)
Best case runtime? Θ(𝑛)
In-practice runtime? Θ(𝑛2)
Stable? Yes
In-place? Yes

Minimizes writing to an
array (doesn’t have to shift
everything)

Almost always preferred: Stable
& can take advantage of an
already-sorted list.
(LinkedList means no shifting J,
though doesn’t change
asymptotic runtime)

CSE 373 Summer 2020LEC 21: Sorting II

Lecture Outline
• Sorting

- Review Definitions, Insertion, Selection
- Heap Sort
- Merge Sort
- Quick Sort

CSE 373 Summer 2020LEC 21: Sorting II

void selectionSort(list) {
for each current in list:

target = findNextMin(current)
swap(target, current)

}
int findNextMin(current) {

min = current
for each item in unsorted items:

if (item < min):
min = current

return min
}

Sorting Strategy 2: Impose Structure
• Consider what contributes to

Selection sort runtime of Θ 𝑛!
- Unavoidable n iterations to

consider each element
- Finding next minimum element

to swap requires a Θ 𝑛 linear
scan! Could we do better?

• If only we knew a way to structure our data to make it fast to find the
smallest item remaining in our dataset...

Θ 𝑛 iterations
Θ 𝑛

MIN PRIORITY QUEUE ADT

CSE 373 Summer 2020LEC 21: Sorting II

Heap Sort
1. Run Floyd’s buildHeap on your data
2. Call removeMin n times to pull out every element

void heapSort(list) {
E[] heap = buildHeap(list)
E[] output = new E[n]
for (i = 0; i < n; i++):

output[i] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Θ(𝑛 log 𝑛)

If we get clever…

CSE 373 Summer 2020LEC 21: Sorting II

In-Place Heap Sort

0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

removeMin()

CSE 373 Summer 2020LEC 21: Sorting II

In Place Heap Sort

void inPlaceHeapSort(list) {
buildHeap(list) // alters original array
for (n : list)

list[n – i - 1] = removeMin(heap part of list)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Yes

Θ(𝑛 log 𝑛)

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed! Lots of fixes:
- Run reverse afterwards (𝑂(𝑛))
- Use a max heap
- Reverse compare function to emulate max heap

CSE 373 Summer 2020LEC 21: Sorting II

Lecture Outline
• Sorting

- Review Definitions, Insertion, Selection
- Heap Sort
- Merge Sort
- Quick Sort

CSE 373 Summer 2020LEC 21: Sorting II

Sorting Strategy 3: Divide and Conquer
General recipe:
1. Divide your work into smaller pieces recursively

2. Conquer the recursive subproblems
- In many algorithms, conquering a subproblem requires no

extra work beyond recursively dividing and combining it!

3. Combine the results of your recursive calls

divideAndConquer(input) {
if (small enough to solve):

conquer, solve, return results
else:

divide input into a smaller pieces
recurse on smaller pieces
combine results and return

}

CSE 373 Summer 2020LEC 21: Sorting II

Merge Sort
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22
0 1 2 3

55 1 7 6

0 1 2 3

2 8 22 91

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

8

0

2

0

91

0

22

0

55

0

1

0 1 2 3

1 6 7 55

0

7

0

6

…

…

Conquer

Simply divide in
half each time

No extra
conquer work
needed!

The actual
sorting happens
here!

CSE 373 Summer 2020LEC 21: Sorting II

Merge Sort: Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22
0 1 2 3

55 1 7 6

0 1

8 2

0 1

91 22

0 1

55 1
0 1

7 6

0

8

0

2

0

91

0

22

0

55

0

1

0

7

0

6

Recursive Case: split
the array in half and
recurse on both
halves

Base Case: when
array hits size 1,
stop dividing. In
Merge Sort, no
additional work to
conquer: everything
gets sorted in
combine step!

Sort the pieces through the magic of recursionmagic

CSE 373 Summer 2020LEC 21: Sorting II

Merge Sort: Combine Step

0 1 2 3

2 8 22 91

0 1 2 3

1 6 7 55

Combine

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combining two sorted arrays:
1. Initialize pointers to start of both arrays
2. Repeat until all elements are added:

1. Add whichever is smaller to the result array
2. Move that pointer forward one spot

Works because we only move the smaller pointer – then ”reconsider” the larger against a new value, and
because the arrays are sorted we never have to backtrack!

CSE 373 Summer 2020LEC 21: Sorting II

Merge Sort

mergeSort(list) {
if (list.length == 1):

return list
else:

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

Worst case runtime?

Best case runtime?

In Practice runtime?

Stable?

In-place?

Yes

No

=Θ(𝑛 log 𝑛)

Same

Same

0 1 2 3

55 1 7 6

0 1

55 1
0 1

7 6

0

55

0

1

0

7

0

6

0 1 2 3

1 6 7 55

0 1

1 55
0 1

6 7

n

2 log n

𝑇 𝑛 = +
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

2 Constant size Input
Don’t forget your old friends,
the 3 recursive patterns! CO R R ECT ED

A FT ER LECT UR E

CSE 373 Summer 2020LEC 21: Sorting II

Lecture Outline
• Sorting

- Review Definitions, Insertion, Selection
- Heap Sort
- Merge Sort
- Quick Sort

CSE 373 Summer 2020LEC 21: Sorting II

Divide and Conquer
• There’s more than one way to divide!
• Mergesort:

- Split into two arrays.
- Elements that just happened to be on the left and that happened to be on the

right.

• Quicksort:
- Split into two arrays.
- Roughly, elements that are “small” and elements that are “large”
- How to define “small” and “large”? Choose a “pivot” value in the array that

will partition the two arrays!

CSE 373 Summer 2020LEC 21: Sorting II

0

8

Quick Sort (v1)
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6
0 1 2

91 22 55

0 1 2 3

2 8 22 91

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

8

0

2

0

91

0

22

0

55

0

1

0 1 2 3

1 6 7 55

0

7

0

6

…

…

Conquer

Choose a “pivot”
element, partition
array relative to it!

Again, no extra
conquer step
needed!

Simply concatenate
the now-sorted
arrays!

P I VOT

CSE 373 Summer 2020LEC 21: Sorting II

0

8

Quick Sort (v1): Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6
0 1 2

91 22 55

Recursive Case:
• Choose a “pivot”

element
• Partition: linear scan

through array, add
smaller elements to
one array and larger
elements to another

• Recursively partition

P I VOT

Base Case:
• When array hits size

1, stop dividing.

0 1

7 6

0

1

0

2

P I VOT P I VOT

0 1

22 55

0

91

P I VOT P I VOT

0

6

0

7

0

22

0

55

CSE 373 Summer 2020LEC 21: Sorting II

0

8

Quick Sort (v1): Combine Step
Combine

Simply concatenate the
arrays that were
created earlier!
Partition step already
left them in order J

0

1

0

2

0

91

0

6

0

7

0

22

0

55

0 1

6 7

0 1

22 55

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

0 1 2 3

1 2 6 7

0 1 2

22 55 91

CSE 373 Summer 2020LEC 21: Sorting II

Quick Sort (v1)
quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerHalf = quickSort(getSmaller(pivot, list))
largerHalf = quickSort(getBigger(pivot, list))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Can be done!

Just trust me: Θ(𝑛 log 𝑛)
(absurd amount of math to get here)

0 1 2 3

2 1 7 6

0 1

7 6

0

1

0

2

P I VOT

P I VOT

0

6

0

7
𝑇 𝑛 = 8 1 if 𝑛 ≤ 1

𝑇 𝑛 − 1 + 𝑛 otherwise

𝑇 𝑛 = +
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

0 1 2 3

1 2 6 7

0 1

6 7

= Θ(𝑛!)

= Θ(𝑛 log 𝑛)

Worst case: Pivot only chops off one value
Best case: Pivot divides each array in half

CSE 373 Summer 2020LEC 21: Sorting II

Can we do better?
• How to avoid hitting the worst case?

- It all comes down to the pivot. If the pivot divides each array in half, we get
better behavior

• Here are four options for finding a pivot. What are the tradeoffs?
- Just take the first element
- Take the median of the first, last, and middle element
- Take the median of the full array
- Pick a random element

CSE 373 Summer 2020LEC 21: Sorting II

Strategies for Choosing a Pivot
• Just take the first element

- Very fast!
- But has worst case: for example, sorted lists have Ω 𝑛% behavior

• Take the median of the first, last, and middle element
- Makes pivot slightly more content-aware, at least won’t select very smallest/largest
- Worst case is still Ω(𝑛%), but on real-world data tends to perform well!

• Take the median of the full array
- Can actually find the median in 𝑂(𝑛) time (google QuickSelect). It’s complicated.
- 𝑂(𝑛 𝑙𝑜𝑔 𝑛) even in the worst case… but the constant factors are awful. No one does

quicksort this way.
• Pick a random element

- Get 𝑂(𝑛 log 𝑛) runtime with probability at least 1 − 1/𝑛%
- No simple worst-case input (e.g. sorted, reverse sorted)

Most commonly used

CSE 373 Summer 2020LEC 21: Sorting II

Quick Sort (v2: In-Place)
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8

P I VOT ? P I VOT ? P I VOT ?P I VOT !

Select a pivot

Move pivot out
of the way

Bring low and high
pointers together,
swapping elements
if needed

Meeting point is
where pivot
belongs; swap in.
Now recurse on
smaller portions of
same array!

Divide

CSE 373 Summer 2020LEC 21: Sorting II

Quick Sort (v2: In-Place)
quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerHalf = quickSort(getSmaller(pivot, list))
largerHalf = quickSort(getBigger(pivot, list))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Yes

Just trust me: Θ(𝑛 log 𝑛)
(absurd amount of math to get here)

𝑇 𝑛 = 8 1 if 𝑛 ≤ 1
𝑇 𝑛 − 1 + 𝑛 otherwise

𝑇 𝑛 = +
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

= Θ(𝑛!)

= Θ(𝑛 log 𝑛)

0 1 2 3 4 5

0 3 6 9 7 8

CSE 373 Summer 2020LEC 21: Sorting II

Sorting: Summary
Best-Case Worst-Case Space Stable

Selection Sort Θ(n2) Θ(n2) Θ(1) No

Insertion Sort Θ(n) Θ(n2) Θ(1) Yes

Heap Sort Θ(n) Θ(nlogn) Θ(n) No

In-Place Heap Sort Θ(n) Θ(nlogn) Θ(1) No

Merge Sort Θ(nlogn) Θ(nlogn) Θ(nlogn)
Θ(n)* optimized

Yes

Quick Sort Θ(nlogn) Θ(n2) Θ(n) No

In-place Quick Sort Θ(nlogn) Θ(n2) Θ(1) No

What does Java do?
• Actually uses a combination of 3

different sorts:
• If objects: use Merge Sort

(stable!)
• If primitives: use Dual Pivot

Quick Sort
• If “reasonably short” array of

primitives: use Insertion Sort
• Researchers say 48 elements

Key Takeaway: No single sorting
algorithm is “the best”!
• Different sorts have different

properties in different situations
• The “best sort” is one that is well-

suited to your data

CSE 373 Summer 2020LEC 21: Sorting II

DANCE EDITION

But Don’t Take it From Me…

• Insertion Sort:
https://www.youtube.com/watch?v=ROalU379l3U

• Selection Sort:
https://www.youtube.com/watch?v=Ns4TPTC8whw

• Heap Sort:
https://www.youtube.com/watch?v=Xw2D9aJRBY4

• Merge Sort:
https://www.youtube.com/watch?v=XaqR3G_NVoo

• Quick Sort:
https://www.youtube.com/watch?v=ywWBy6J5gz8

Here are some excellent visualizations for the sorting algorithms we’ve talked about!

Comparing Sorting Algorithms

• Different Types of Input Data:
https://www.toptal.com/developers/sorting-algorithms

• More Thorough Walkthrough:
https://visualgo.net/en/sorting?slide=1

Comparing Sorting Algorithms

https://www.youtube.com/watch?v=ROalU379l3U
https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=Xw2D9aJRBY4
https://www.youtube.com/watch?v=XaqR3G_NVoo
https://www.youtube.com/watch?v=ywWBy6J5gz8
https://www.toptal.com/developers/sorting-algorithms
https://visualgo.net/en/sorting?slide=1

