cse 373 Sorting II

BEFORE WE START

Which of the following is true about Insertion sort and Selection sort?

- a) Both algorithms run in n² (quadratic) time on an already-sorted array
- b) Insertion sort benefits from using a Linked List instead of an underlying array
- c) Insertion sort is always faster than selection sort
- d) We swap elements in the same order for both algorithms

pollev.com/uwcse373

Instructor Aaron Johnston

- TAs Timothy Akintilo Brian Chan Joyce Elauria Eric Fan Farrell Fileas
- Melissa Hovik Leona Kazi Keanu Vestil Siddharth Vaidyanathan Howard Xiao

Announcements

- EX4 due *Monday* 8/17
 - Focuses on MSTs and sorting
 - You'll need today's lecture for problem 1
- P4 due in 1 week: Wednesday 8/19
 - Don't get caught in the maze of time management in week 9!
- TA-led Industry Panel Q&A: Friday 4:30 5:30!
 - Come chat with a panel of your amazing TAs! Learn about their backgrounds/experiences and ask about careers in technology, finding internships, or preparing for interviews.
- Exam II next Friday! Logistics & topics list released on website
 - This Friday is the last day of content for the exam
 - Additional review materials published next Monday

Learning Objectives

After this lecture, you should be able to...

- 1. Implement Heap Sort, describe its runtime, and implement the inplace variant
- 2. Implement Merge Sort, and derive its runtimes
- 3. Trace through Quick Sort, derive its runtimes, and trace through the in-place variant
- 4. Evaluate the best algorithm to use based on properties of input data (already sorted, multiple fields, etc.)

Lecture Outline

- Sorting
 - Review Definitions, Insertion, Selection

- Heap Sort
- Merge Sort
- Quick Sort

Review Sorting: Definitions

A sort is **stable** if the relative order of *equivalent* keys is maintained after sorting

Input

Anita	Basia	Caris	Duska	Duska	Anita
2010	2018	2019	2020	2015	2016

Stable sort using name as key

Anita	Anita	Basia	Caris	Duska	Duska
2010	2016	2018	2019	2020	2015

Unstable sort using name as key

Anita	Anita	Basia	Caris	Duska	Duska
2016	2010	2018	2019	2015	2020

An **in-place** sort modifies the input array directly, as opposed to building up an auxiliary data structure

In-Place sort building up result in partition of same array

3 5	4	8	2
-----	---	---	---

Not in-place sort building up in auxiliary array

	4	8	2
--	---	---	---

Review Sorting: Ordering Relations

- An ordering relation < for keys a, b, and c has the following properties:
 - Law of Trichotomy: Exactly one of a < b, a = b, b < a is true
 - Law of Transitivity: If a < b, and b < c, then a < c
- Determined by the data type AND the application!

 Decreasing: Could sort using int definition of >

- IMDB actor credits: Could sort by year
- Could sort by some combo of both!

- **Design**: Could sort by average color of pixels
- Google Search Index: Could sort by subject

Review Sorting Strategy 1: Iterative Improvement

• Invariants/Iterative improvement

INVARIANT

- Step-by-step make one more part of the input your desired output.
- We'll write iterative algorithms to satisfy the following invariant:
- After k iterations of the loop, the first k elements of the array will be sorted.

Iterative Improvement After k iterations of the loop, the first k elements of the array will be sorted

Review Selection vs. Insertion Sort

```
void selectionSort(list) {
   for each current in list:
      target = findNextMin(current)
      swap(target, current)
}
```

"Look through unsorted to **select** the smallest item to replace the current item"

Then swap the two elements

Worst case runtime? $\Theta(n^2)$ Best case runtime? $\Theta(n^2)$ In-practice runtime? $\Theta(n^2)$ Stable? No In-place? Yes Minimizes writing to an array (doesn't have to shift everything)

```
void insertionSort(list) {
   for each current in list:
      target = findSpot(current)
      shift(target, current)
}
```

"Look through sorted to **insert** the current item in the spot where it belongs"

Then shift everything over to make space

Worst case runtime? $\Theta(n^2)$ Best case runtime? $\Theta(n)$ In-practice runtime? $\Theta(n^2)$ Stable? Yes In-place? Yes

Almost always preferred: Stable & can take advantage of an already-sorted list. (LinkedList means no shifting ⁽ⁱ⁾, though doesn't change asymptotic runtime)

Lecture Outline

- Sorting
 - Review Definitions, Insertion, Selection
 - Heap Sort
 - Merge Sort
 - Quick Sort

Sorting Strategy 2: Impose Structure

- Consider what contributes to Selection sort runtime of $\Theta(n^2)$
 - Unavoidable n iterations to consider each element
 - Finding next minimum element to swap requires a $\Theta(n)$ linear scan! Could we do better?

• If only we knew a way to *structure* our *data* to make it fast to find the smallest item remaining in our dataset...

MIN PRIORITY QUEUE ADT

Heap Sort

- 1. Run Floyd's buildHeap on your data
- 2. Call removeMin n times to pull out every element

```
void heapSort(list) {
    E[] heap = buildHeap(list)
    E[] output = new E[n]
    for (i = 0; i < n; i++):
        output[i] = removeMin(heap)
}</pre>
```

Worst case runtime?Θ(n log n)Best case runtime?Θ(n)In-practice runtime?Θ(n log n)Stable?NoIn-place?If we get clever...

W UNIVERSITY of WASHINGTON

In-Place Heap Sort

In Place Heap Sort


```
void inPlaceHeapSort(list) {
    buildHeap(list) // alters original array
    for (n : list)
        list[n - i - 1] = removeMin(heap part of list)
}
```

Complication: final array is reversed! Lots of fixes:

- Run reverse afterwards (O(n))
- Use a max heap
- Reverse compare function to emulate max heap

Worst case runtime?	$\Theta(n\log n)$
Best case runtime?	$\Theta(n)$
In-practice runtime?	$\Theta(n\log n)$
Stable?	No
In-place?	Yes

Lecture Outline

- Sorting
 - Review Definitions, Insertion, Selection
 - Heap Sort
 - Merge Sort
 - Quick Sort

Sorting Strategy 3: Divide and Conquer

General recipe:

- 1. Divide your work into smaller pieces recursively
- 2. Conquer the recursive subproblems
 - In many algorithms, conquering a subproblem requires no extra work beyond recursively dividing and combining it!
- 3. Combine the results of your recursive calls

Merge Sort

Merge Sort: Divide Step

Recursive Case: split the array in half and recurse on both halves

Base Case: when array hits size 1, stop dividing. In Merge Sort, no additional work to conquer: everything gets sorted in combine step!

Sort the pieces through the magic of recursion

Merge Sort: Combine Step

Combining two *sorted* arrays:

- 1. Initialize **pointers** to start of both arrays
- 2. Repeat until all elements are added:
 - 1. Add whichever is smaller to the result array
 - 2. Move that pointer forward one spot

Works because we only move the smaller pointer – then "reconsider" the larger against a new value, and because the arrays are sorted we never have to backtrack!

Merge Sort

Worst case runtime?
$$T(n) = \begin{cases} 1 & \text{if } n \leq 1 \\ 2T\binom{n}{2} + n & \text{otherwise} \end{cases}$$
Best case runtime?Same $=\Theta(n \log n)$

No

In Practice runtime? Same

Stable? Yes

In-place?

Constant size Input

Don't forget your old friends, the 3 recursive patterns!

Lecture Outline

- Sorting
 - Review Definitions, Insertion, Selection
 - Heap Sort
 - Merge Sort
 - Quick Sort

Divide and Conquer

- There's more than one way to divide!
- Mergesort:
 - Split into two arrays.
 - Elements that just happened to be on the left and that happened to be on the right.
- Quicksort:
 - Split into two arrays.
 - Roughly, elements that are "small" and elements that are "large"
 - How to define "small" and "large"? Choose a "pivot" value in the array that will partition the two arrays!

Quick Sort (v1)

Choose a "pivot" element, partition array relative to it!

Again, no extra conquer step needed!

Simply concatenate the now-sorted arrays!

Quick Sort (v1): Divide Step

Recursive Case:

- Choose a "pivot" element
- Partition: linear scan through array, add smaller elements to one array and larger elements to another
- Recursively partition

Base Case:

When array hits size 1, stop dividing.

Quick Sort (v1): Combine Step

Worst case: Pivot only chops off one value

Best case: Pivot divides each array in half

Quick Sort (v1)

In-place? Can be done!

Can we do better?

- How to avoid hitting the worst case?
 - It all comes down to the pivot. If the pivot divides each array in half, we get better behavior
- Here are four options for finding a pivot. What are the tradeoffs?
 - Just take the first element
 - Take the median of the first, last, and middle element
 - Take the median of the full array
 - Pick a random element

Strategies for Choosing a Pivot

- Just take the first element
 - Very fast!
 - But has worst case: for example, sorted lists have $\Omega(n^2)$ behavior
- Take the median of the first, last, and middle element
 - Makes pivot slightly more content-aware, at least won't select very smallest/largest
 - Worst case is still $\Omega(n^2)$, but on real-world data tends to perform well!
- Take the median of the full array
 - Can actually find the median in O(n) time (google QuickSelect). It's complicated.
 - O(n log n) even in the worst case... but the constant factors are awful. No one does quicksort this way.
- Pick a random element
 - Get $O(n \log n)$ runtime with probability at least $1 1/n^2$
 - No simple worst-case input (e.g. sorted, reverse sorted)

Most commonly used

Quick Sort (v2: In-Place)

In-place?

Yes

5

8

4

7

Quick Sort (v2: In-Place)

```
quickSort(list) {
    if (list.length == 1):
        return list
    else:
        pivot = choosePivot(list)
        smallerHalf = quickSort(getSmaller(pivot, list))
        largerHalf = quickSort(getBigger(pivot, list))
        return smallerHalf + pivot + largerHalf
}
```

Worst case runtime?
$$T(n) = \begin{cases} 1 & \text{if } n \leq 1 \\ T(n-1)+n & \text{otherwise} \end{cases} = \Theta(n^2)$$
Best case runtime? $T(n) = \begin{cases} 1 & \text{if } n \leq 1 \\ 2T\left(\frac{n}{2}\right)+n & \text{otherwise} \end{cases} = \Theta(n \log n)$ In-practice runtime?Just trust me: $\Theta(n \log n)$
(absurd amount of math to get here)Stable?No

Sorting: Summary

	Best-Case	Worst-Case	Space	Stable
Selection Sort	Θ(n²)	Θ(n²)	Θ(1)	No
Insertion Sort	Θ(n)	Θ(n²)	Θ(1)	Yes
Heap Sort	Θ(n)	Θ(nlogn)	Θ(n)	No
In-Place Heap Sort	Θ(n)	Θ(nlogn)	Θ(1)	No
Merge Sort	Θ(nlogn)	Θ(nlogn)	<mark>Θ(nlogn)</mark> Θ(n)* optimized	Yes
Quick Sort	Θ(nlogn)	Θ(n²)	Θ(n)	No
In-place Quick Sort	Θ(nlogn)	Θ(n²)	Θ(1)	No

What does Java do?

- Actually uses a combination of *3 different sorts*:
 - If objects: use Merge Sort (stable!)
 - If primitives: use Dual Pivot Quick Sort
 - If "reasonably short" array of primitives: use Insertion Sort
 - Researchers say 48 elements

Key Takeaway: No single sorting algorithm is "the best"!

- Different sorts have different properties in different situations
- The "best sort" is one that is wellsuited to your data

But Don't Take it From Me...

Here are some excellent visualizations for the sorting algorithms we've talked about!

Comparing Sorting Algorithms

- Different Types of Input Data: <u>https://www.toptal.com/developers/sorting-algorithms</u>
- More Thorough Walkthrough: <u>https://visualgo.net/en/sorting?slide=1</u>

Comparing Sorting Algorithms

- Insertion Sort: <u>https://www.youtube.com/watch?v=ROalU379I3U</u>
- Selection Sort: <u>https://www.youtube.com/watch?v=Ns4TPTC8whw</u>
- Heap Sort: <u>https://www.youtube.com/watch?v=Xw2D9aJRBY4</u>
- Merge Sort: <u>https://www.youtube.com/watch?v=XaqR3G_NVoo</u>
- Quick Sort: <u>https://www.youtube.com/watch?v=ywWBy6J5gz8</u>