CSE 373

Yeladlale Nl

Which of the following is true about Insertion sort and
Selection sort?

a)

Both algorithms run in n? (quadratic) time on an
already-sorted array

Insertion sort benefits from using a Linked List
instead of an underlying array

Insertion sort is always faster than selection sort

We swap elements in the same order for both
algorithms

pollev.com/uwcse373

Aaron Johnston

Timothy Akintilo Melissa Hovik

Brian Chan Leona Kazi

Joyce Elauria Keanu Vestil

Eric Fan Siddharth Vaidyanathan
Farrell Fileas Howard Xiao

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II

Announcements

* EX4 due Monday 8/17

- Focuses on MSTs and sorting
- You’ll need today’s lecture for problem 1

* P4 due in 1 week: Wednesday 8/19

- Don’t get caught in the maze of time management in week 9!

* TA-led Industry Panel Q&A: Friday 4:30 — 5:30!

- Come chat with a panel of your amazing TAs! Learn about their
backgrounds/experiences and ask about careers in technology, finding
internships, or preparing for interviews.

* Exam Il next Friday! Logistics & topics list released on website
- This Friday is the last day of content for the exam
- Additional review materials published next Monday

CSE 373 S

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE373S

Learning Objectives
After this lecture, you should be able to...

1. Implement Heap Sort, describe its runtime, and implement the in-
place variant

2. Implement Merge Sort, and derive its runtimes

3. Trace through Quick Sort, derive its runtimes, and trace through the
in-place variant

4. Evaluate the best algorithm to use based on properties of input
data (already sorted, multiple fields, etc.)

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Lecture Outline

- Heap Sort
- Merge Sort
- Quick Sort

YA/ UNIVERSITY of WASHINGTON

LEC 21: Sorting Il CSE 373 Summer 2020

Sorting: Definitions

A sort is stable if the relative order

of equivalent keys is maintained after
sorting

An in-place sort modifies the input array

directly, as opposed to building up an
auxiliary data structure

Input

Anita | Basia | Caris Duska Duska | Anita

In-Place sort building up result in partition of same array
2010 | 2018 | 2019 2020 2015 | 2016

3 5 4 8 2

\ 4

Stable sort using name as key

Anita Anita Basia | Caris | Duska | Duska Not in-place sort building up in auxiliary array

2010 2016 2018 | 2019 | 2020 2015 4 8 2
Unstable sort using name as key 3 5

Anita Anita Basia | Caris | Duska | Duska

2016 2010 2018 | 2019 | 2015 2020

YA/ UNIVERSITY of WASHINGTON

LEC 21: Sorting Il

CSE 373 Summer 2020

Sorting: Ordering Relations

* An ordering relation < for keys a, b, and c has the
following properties:

- Law of Trichotomy: Exactly one ofa<b,a=b, b<ais true
- Law of Transitivity: Ifa<b, and b <c,thena<c

* Determined by the data type AND the application!

Ints

2, 6, 4, 5, 8, 9

* Increasing: Could sort using
int definition of <

* Decreasing: Could sort using
int definition of >

Movies

Netflix library: Could sort by title (or
star rating)

IMDB actor credits: Could sort by year
Could sort by some combo of both!

Image Data

* File system: Could sort by image size, last
modified

* Design: Could sort by average color of pixels

* Google Search Index: Could sort by subject

YA UNIVERSITY of WASHINGTON LEC 21: Sorting I CSE373S

Sorting Strategy 1: lterative Improvement

* [nvariants/Iterative improvement
- Step-by-step make one more part of the input your desired output.

* We'll write iterative algorithms to satisfy the following invariant:

» After k iterations of the loop, the first k elements of the array will be
sorted.

Iterative Improvement
After k iterations of the loop, the first k
elements of the array will be sorted

-
2
=
o<
<
>
2

YA/ UNIVERSITY of WASHINGTON

Selection vs.

void selectionSort(list) {
for each current in list:
target = findNextMin(current)
swap(target, current)

}

“Look through unsorted to select the smallest
item to replace the current item”

* Then swap the two elements

LEC 21: Sorting Il CSE 373 Summer 2020

Insertion Sort

void insertionSort(list) {
for each current in list:
target = findSpot(current)
shift(target, current)

}

“Look through sorted to insert the current item
in the spot where it belongs”

e Then shift everything over to make space

Worst case runtime? 0 (n?) Minimizes writing to an Worst case runtime? ©(n?) Almost always preferred: Stable
Best case runtime? ©(n?) array (doesn’t have to shift Best case runtime? O(n) & can take advantage of an
In-practice runtime? 0(n?) everything) In-practice runtime? ©(n?) already-sorted list.
Stable? No Stable? Yes (LinkedList means no shifting ©,
In-place? Yes In-place? Yes though doesn’t change
asymptotic runtime)
2 3 5 6 7 8 4 10 2 8
. _J - 4
Y ~N

Sorted Items

Unsorted Items

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Lecture Outline

Definitions, Insertion, Selection

- Merge Sort
- Quick Sort

YA UNIVERSITY of WASHINGTON LEC 21: Sorting II

CSE 373 Summer 2020

Sorting Strategy 2: Impose Structure

* Consider what contributes to
Selection sort runtime of ®(n?)

- Unavoidable n iterations to
consider each element

- Finding next minimum element
to swap requires a O(n) linear
scan! Could we do better?

O(n) iterations =
O(n) =

void selectionSort(list) {
=P for each current in list:
) target = findNextMin(current)

swap(target, current)

}

int findNextMin(current) {

min = current

for each item in unsorted items:

if (item < min):
min = current
return min

}

* If only we knew a way to structure our data to make it fast to find the

MIN PRIORITY QUEUE ADT

smallest item remaining in our dataset...

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II

Heap Sort

1. Run Floyd’s buildHeap on your data
2. Call removeMin n times to pull out every element

Worst case runtime?

void heapSort(list) { Best case runtime?
E[] heap = buildHeap(list)
E[] output = new E[n]
for (1 = 0; 1 < n; i++):
output[i] = removeMin(heap)

¥ Stable?

In-practice runtime?

In-place?

CSE 373 Summer 2020

O(nlogn)
o(n)
O(nlogn)
No

If we get clever...

YA UNIVERSITY of WASHINGTON CSE 373 Summer 2020

In-Place Heap Sort emovening

LEC 21: Sorting Il

1 4 2 14 15 18 16 17 20 22
_
Y ’?
Heap Sorted ltems
22 4 2 14 15 18 16 17 20 1
N\ I - A J
percolateDown(22) Heap Sorted Items

2

4

16

14

15

18

22

17

20

N

J

Y
Heap

Sorted Items

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

In Place Heap Sort

15 17 16 18 20 22 14 4 2 1

Y Y
Heap Sorted Items

void inPlaceHeapSort(list) { i
buildHeap(list) Worst case runtime? O(nlogn)
for (n : list)
list[n - 1 - 1] = removeMin(heap part of list) Best case runtime? O(n)
}

In-practice runtime? @(nlogn)

Complication: final array is reversed! Lots of fixes:

- Run reverse afterwards (0(n))

- Use a max heap

- Reverse compare function to emulate max heap

Stable? No

In-place? Yes

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Lecture Outline

Definitions, Insertion, Selection
- Heap Sort

- Quick Sort

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Sorting Strategy 3: Divide and Conquer

General recipe: \
1. Divide your work into smaller pieces recursively

2. the recursive subproblems

- In many algorithms, conquering a subproblem requires no
extra work beyond recursively dividing and combining it!

3. Combine the results of your recursive calls

divideAndConquer(input) {
if (small enough to solve):
conquer, solve, return results
else:
divide input into a smaller pieces
recurse on smaller pieces
combine results and return

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Merge Sort

Divide
Simply divide in 8 2 91 22 55 1 7 6
half each time

8 2 91 22 55 1 7 6

No extra
conquer work 8 2 91 22 55 1 7 6
needed!

Combine
The actual 2 8 22 91 1 6 7 55

sorting happens \/
here!

YA/ UNIVERSITY of WASHINGTON

LEC 21: Sorting Il

Merge Sort: Divide Step

Recursive Case: split
the array in half and
recurse on both
halves

Base Case: when
array hits size 1,
stop dividing. In
Merge Sort, no
additional work to
conquer: everything
gets sorted in
combine step!

CSE 373 Summer 2020

Divide
91 22 55 6
8 91 22 55 6
8 91 22 55 6
/\ N / N\
8 91 22 55 6

Sort the pieces through the magic of recursion

YA/ UNIVERSITY of WASHINGTON

Combining two sorted arrays:
Initialize pointers to start of both arrays
2. Repeat until all elements are added:
1. Add whichever is smaller to the result array
2. Move that pointer forward one spot

1.

Works because we only move the smaller pointer — then "reconsider” the larger against a new value, and

Combine

22

91

LEC 21: Sorting Il

Merge Sort: Combine Step

55

22

55

91

because the arrays are sorted we never have to backtrack!

CSE 373 Summer 2020

YA/ UNIVERSITY of WASHINGTON

Merge Sort

LEC 21: Sorting Il

mergeSort(list) {
if (list.length ==
return list
else:

):

smallerHalf = mergeSort(new [2, ..
largerHalf = mergeSort(new [mid +
return merge(smallerHalf, largerHalf)

., mid])
D

J

Worst case runtime?
Best case runtime?
In Practice runtime?

Stable?

In-place?

1

ifn<1

- n
r(m) 2T (5) + n otherwise

Same

Same

Yes

No

=0(nlogn)

e Constant size Input

CSE 373 Summer 2020

55

55

55

55

Don’t forget your old friends,
the 3 recursive patterns!

*

CORRECTED
AFTER LECTURE

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Lecture Outline

Definitions, Insertion, Selection
- Heap Sort
- Merge Sort

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Divide and Conquer

* There’s more than one way to divide!

* Mergesort:

- Split into two arrays.
- Elements that just happened to be on the left and that happened to be on the

right.

* Quicksort:
- Split into two arrays.
- Roughly, elements that are “small” and elements that are “large”
- How to define “small” and “large”? Choose a “pivot” value in the array that
will partition the two arrays!

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Quick Sort (v1)

Choose a “pivot”
element, partition
array relative to it!

Again, no extra
conquer step
needed!

Simply concatenate
the now-sorted
arrays!

91

22

55

91

22

55

91

22

55

Combine

22

91

55

SN,

22

55

91

YA/ UNIVERSITY of WASHINGTON

Quick Sort (v1): Divide Step

Recursive Case:

Choose a “pivot”
element

Partition: linear scan
through array, add
smaller elements to
one array and larger
elements to another
Recursively partition

Base Case:

When array hits size
1, stop dividing.

LEC 21: Sorting Il

CSE 373 Summer 2020

91 22 55 1 6
()
6 8 91 22 55
[
7 6 55 91
6 22 55

YA/ UNIVERSITY of WASHINGTON

Quick Sort (v1): Combine Step

Simply concatenate the
arrays that were
created earlier!
Partition step already
left them in order ©

LEC 21: Sorting Il

CSE 373 Summer 2020

Combine
6 22 55
1 6 22 55 91
1 7 22 55 91
6 22 55 91

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Worst case: Pivot only chops off one value

Qu iCk Sort (vl) Best case: Pivot divides each array in half

quickSort(list) { 1 / 6
if (list.length == 1):
return list > IV Q
else: !
pivot = choosePivot(list) 1 2 7 6
smallerHalf = quickSort(getSmaller(pivot, list))
largerHalf = quickSort(getBigger(pivot, list))
return smallerHalf + pivot + largerHalf
}
1 ifn<1 ° !
Irn
Worst case runtime? T(n) = . = O(n?
(n) {T(n — 1) + n otherwise (n%)
Best case runtime? T(n) = n : = 0(nlogn
(n) 2T (E) + n otherwise (nlogn) /
In-practice runtime? Just trust me: @(nlogn) = < ‘
(absurd amount of math to get here) 1 2 6 7

Stable? No

In-place? Can be done!

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Can we do better?

* How to avoid hitting the worst case?

- It all comes down to the pivot. If the pivot divides each array in half, we get
better behavior

* Here are four options for finding a pivot. What are the tradeoffs?
Just take the first element

Take the median of the first, last, and middle element

Take the median of the full array

Pick a random element

YA/ UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Strategies for Choosing a Pivot

Just take the first element
- Very fast!
- But has worst case: for example, sorted lists have Q(n?) behavior

) i . Most commonly used
Take the median of the first, last, and middle element

- Worst case is still (n?), but on real-world data tends to perform well! >

Take the median of the full array
- Can actually find the median in O(n) time (google QuickSelect). It’s complicated.

- O(nlog n) even in the worst case... but the constant factors are awful. No one does
quicksort this way.

* Pick a random element

- Get O(nlogn) runtime with probability at least 1 — 1/n?
- No simple worst-case input (e.g. sorted, reverse sorted)

YA UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Quick Sort (v2: In-Place)

PIVOT?

Divide @dNAAN;

Select a pivot

Move pivot out 6 1 4
of the way

Bring low and high
pointers together,
swapping elements High
if needed X>=6

Meeting point is
where pivot
belongs; swap in.
Now recurse on
smaller portions of
same array!

YA UNIVERSITY of WASHINGTON LEC 21: Sorting II CSE 373 Summer 2020

Quick Sort (v2: In-Place)

quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerHalf = quickSort(getSmaller(pivot, list))
largerHalf = quickSort(getBigger(pivot, list))
return smallerHalf + pivot + largerHalf

}
ifn <

Worst case runtime? T(n) = {T(nl— 1) +n 12;;‘},136 = 0(n?)

1 ifn<1
Best case runtime? T(n) = T (E) + 1 otherwise = O(nlogn)

2
In-practice runtime? just trust me: @(nlogn)
(absurd amount of math to get here)

Stable? No 0 3 5

In-place? Yes

CSE 373 Summer 2020

LEC 21: Sorting Il

YA/ UNIVERSITY of WASHINGTON

Sorting: Summary

e L L e

What does Java do?

Actually uses a combination of 3

different sorts:

Selection Sort @(nz) @(nz) @(1) ° If ObjeCtS: use Merge Sort
Insertion Sort O(n) O(n2) 0(1) Yes (stable!)
Heap Sort o(n) o(nlogn) o(n) No e If p.rimitives: use Dual Pivot
In-Place Heap Sort ©(n) ©(nlogn) O(1) No QL,J,ICk Sort)

* If “reasonably short” array of
Merge Sort ©(nlogn) O(nlogn) O(nlogn) Yes primitives: use Insertion Sort

©(n)* optimized
_ SR * Researchers say 48 elements

Quick Sort ©(nlogn) ©(n?) O(n) No
In-place Quick Sort ©(nlogn) ©(n?) O(1) No

Key Takeaway: No single sorting
algorithm is “the best”!

Different sorts have different
properties in different situations
The “best sort” is one that is well-
suited to your data

YA UNIVERSITY of WASHINGTON LEC 21: Sorting II

CSE 373 Summer 2020

But Don’t Take it From Me...

Here are some excellent visualizations for the sorting algorithms we’ve talked about!

Comparing Sorting Algorithms

* Different Types of Input Data:
https://www.toptal.com/developers/sorting-algorithms

Comparing Sorting Algorithms

Insertion Sort:
https://www.youtube.com/watch?v=R0alU379I3U

* More Thorough Walkthrough:
https://visualgo.net/en/sorting?slide=1

Selection Sort:
https://www.youtube.com/watch?v=Ns4TPTC8whw

Heap Sort:
https://www.youtube.com/watch?v=Xw2D9aJRBY4

Merge Sort:
https://www.youtube.com/watch?v=XagqR3G NVoo

Quick Sort:
https://www.youtube.com/watch?v=ywWBy6J5gz8

https://www.youtube.com/watch?v=ROalU379l3U
https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=Xw2D9aJRBY4
https://www.youtube.com/watch?v=XaqR3G_NVoo
https://www.youtube.com/watch?v=ywWBy6J5gz8
https://www.toptal.com/developers/sorting-algorithms
https://visualgo.net/en/sorting?slide=1

