
CSE 373 Summer 2020LEC 20: Sorting I

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 2 0

Sorting I

BEFORE WE START

pollev.com/uwcse373

Which of the following is true about Path
Compression?
a) It can be used on either QuickFind- or QuickUnion-

based implementations of the DisjointSets ADT
b) It increases the asymptotic runtime of the find()

operation with the time to modify the path
c) It improves the runtime of union() but doesn’t

improve the runtime of find()
d) The first call to find() will have no benefits from

path compression

CSE 373 Summer 2020LEC 20: Sorting I

Announcements
• EX3 late cutoff tonight 11:59pm
• EX4 released tonight, due Monday 8/17

- Focuses on Minimum Spanning Trees & Sorting (including today’s lecture and a
little bit of Wednesday)

• P4 due next Wednesday 8/19
- Starting now: J! Starting this weekend: L!

• TA-led Industry Panel Q&A
- Come chat with a panel of your amazing TAs! Learn about their

backgrounds/experiences and ask about careers in technology, finding
internships, or preparing for interviews.

- We’re taking a survey to decide on a time. Please fill this out by Tuesday night:
https://forms.gle/CBJVGeQXXCcDjUEQA

https://forms.gle/CBJVGeQXXCcDjUEQA

CSE 373 Summer 2020LEC 20: Sorting I

Exam II Logistics
• Due to overwhelmingly positive feedback about

logistics, same as Exam I:
- 48 hours to complete an exam written for 1-2 hours
- Open notes & internet, groups up to 8
- Submit via Gradescope, OH in lecture

• Released 8/21 12:01 AM PDT
• Due 8/22 11:59 PM PDT

- No late submissions!
• Focuses on second half of the course, up through

this Friday’s lecture (Topo Sort)
- But technically “cumulative” in that you will need to

use skills from the first half (e.g. algorithmic analysis,
use List/Stack/Queue/Map, etc.)

• Like Exam I, will emphasize conceptual and
“why?” questions. Unlike Exam I, will require you
to write short snippets of code!

LEC 12 - 22

SEC 06 - 09 P 3 - 4

EX 3 - 4

EXAM II

• Topics list released tonight so you
can start looking things over,
practice materials published next
Monday

• Remember to use the Learning
Objectives!

STUDYING

CSE 373 Summer 2020LEC 20: Sorting I

Learning Objectives

1. Implement the DisjointSets ADT as WeightedQuickUnion +
PathCompression using an array, and describe its benefits

2. Define an ordering relation and stable sort and determine whether
a given sorting algorithm is stable

3. Implement Selection Sort and Insertion Sort, compare runtimes and
best/worst cases of the two algorithms, and decide when they are
appropriate

4. Implement Heap Sort, describe its runtime, and implement the in-
place variant

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 20: Sorting I

Lecture Outline
• Review Disjoint Sets

- Implementing using Arrays

• Sorting
- Definitions
- Insertion & Selection Sort
- Heap Sort

CSE 373 Summer 2020LEC 20: Sorting I

Dijkstra’s Prim’s Kruskal’s

TRAVERSAL
(COMMONLY SHORTEST PATHS) MINIMUM SPANNING TREES

𝜣(𝑽 𝐥𝐨𝐠 𝑽 + 𝑬 𝐥𝐨𝐠 |𝑽|) 𝜣(𝑬 𝐥𝐨𝐠 |𝑽|) 𝜣(𝑬 𝐥𝐨𝐠 |𝑽|)

• Goes edge-by-edge
• Choose when:

• Want MST
• Graph is sparse (fewer edges)
• Edges already sorted

• Goes vertex-by-vertex
• Choose when:

• Want MST
• Graph is dense (more edges)

• Goes in order of shortest-path-
so-far

• Choose when:
• Want shortest path on

weighted graph

or equivalently 𝜣(𝑬 𝐥𝐨𝐠 |𝑬|)

CSE 373 Summer 2020LEC 20: Sorting I

Review Disjoint Sets Implementation

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path Compression

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)

In-Practice Runtimes:

Keanu

Joyce

Farrell

Brian

Eric

1

2

2

2

1

B

A

C

D
0

1 2

3

4

5 6

7

0

1 23 45

CSE 373 Summer 2020LEC 20: Sorting I

Review Kruskal’s Runtime

• find and union are log|V| in worst case, but amortized constant “in practice”
• Either way, dominated by time to sort the edges L

- For an MST to exist, E can’t be smaller than V, so assume it dominates
- Note: some people write |E|log|V|, which is the same (within a constant factor)

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

total Θ 𝑉 iterations

Θ |𝑉|

Θ V log |𝑉|

Θ 𝐸 iterations

Θ 𝐸 log |𝐸|

Θ log |𝑉|

Θ log |𝑉|

Θ E log |𝑉|Θ E log |𝐸|

CSE 373 Summer 2020LEC 20: Sorting I

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union
operation

Avoids the worst case
runtime for Find

Makes future Find
operations faster

DISJOINT SETS ADT

CSE 373 Summer 2020LEC 20: Sorting I

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2

Optimizes for the Union
operation

Avoids the worst case
runtime for Find

Makes future Find
operations faster

DISJOINT SETS ADT

ArrayWeighted
QuickUnion + Path

Compression

5

Better constant factors
when stored in an array

CSE 373 Summer 2020LEC 20: Sorting I

Using Arrays for Up-Trees
• Since every node can have at most one

parent, what if we use an array to
store the parent relationships?
• Proposal: each node corresponds to an

index, where we store the index of the
parent (or –1 for roots). Use the root
index as the representative ID!
• Just like with heaps, tree picture still

conceptually correct, but exists in our
minds!

Keanu (2)

Farrell

Howard (4)

Joyce (0)

EricBrian

Melissa

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric

CSE 373 Summer 2020LEC 20: Sorting I

Using Arrays: Find
• Initial jump to element still done with

extra Map
• But traversing up the tree can be done

purely within the array!

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric

Keanu (2)

Farrell

Howard (4)

Joyce (0)

EricBrian

Melissa

Melissa

Keanu

Brian
…

find(A):
index = jump to A node’s index
while array[index] > 0:
index = array[index]

path compression
return index

1

2

find(Melissa)

1

2

= 0

• Can still do path compression by setting all indices
along the way to the root index!

0

3

3

CSE 373 Summer 2020LEC 20: Sorting I

Using Arrays: Union
• For WeightedQuickUnion, we need

to store the number of nodes in
each tree (the weight)
• Instead of just storing -1 to indicate

a root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric

Keanu (2)

Farrell

Joyce (0)

EricBrian

Melissa

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 *

array[rootB] to determine weights
put lighter root under heavier root

weight 4
weight 2

union(Eric, Farrell)

Howard (4)

weight 1

CSE 373 Summer 2020LEC 20: Sorting I

Using Arrays: Union
• For WeightedQuickUnion, we need

to store the number of nodes in
each tree (the weight)
• Instead of just storing -1 to indicate

a root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 *

array[rootB] to determine weights
put lighter root under heavier root

-6 0

Keanu (2)

Farrell

Joyce (0)

EricBrian

Melissa

weight 6

Howard (4)

weight 1

Keanu

union(Eric, Farrell)

CSE 373 Summer 2020LEC 20: Sorting I

Using Arrays for WQU+PC
• Same asymptotic runtime as using tree nodes, but check out all these

other benefits:
- More compact in memory
- Better spatial locality, leading to better constant factors from cache usage
- Simplify the implementation!

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path Compression ArrayWQU+PC

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)

CSE 373 Summer 2020LEC 20: Sorting I

Lecture Outline
• Review Disjoint Sets

- Implementing using Arrays

• Sorting
- Definitions
- Insertion & Selection Sort
- Heap Sort

CSE 373 Summer 2020LEC 20: Sorting I

Sorting
• Generally: given items, put them in

order

• Why study sorting?
- Sorting is incredibly common in

programming
- Often a component of other algorithms!
- Very common in interviews

- Interesting case study for approaching
computational problems

- We’ll use some data structures we’ve
already studied

Sorting Week

CSE 373 Summer 2020LEC 20: Sorting I

Types of Sorts

1. Comparison Sorts

Compare two elements at a time.
Works whenever we could implement a
compareTo method between elements.

2. Niche Sorts

Leverage specific properties of
data or problem to sort without

directly comparing elements.
E.g. if you already know you’ll only be
sorting numbers < 5, make 5 buckets

and add directly

We’ll focus on comparison sorts: much
more common, and very generalizable!

Bonus topic beyond the
scope of the class

CSE 373 Summer 2020LEC 20: Sorting I

Sorting: Definitions (Knuth’s TAOCP)

• An ordering relation < for keys a, b, and c has the
following properties:

- Law of Trichotomy: Exactly one of a < b, a = b, b < a is true
- Law of Transitivity: If a < b, and b < c, then a < c

• A sort is a permutation (re-arrangement) of a
sequence of elements that puts the keys into non-
decreasing order, relative to the ordering relation

- x1 ≤ x2 ≤ x3≤ ...≤ xN

int temperature

class Movie {
String name;
int year;

}

• Built-in, simple ordering
relation

• More complex: Whenever we
sort, we also must decide
what ordering relation to use
for that application
• Sort by name?
• Sort by year?
• Some combination of

both?

https://www.amazon.com/Art-Computer-Programming-Sorting-Searching/dp/0201896850

CSE 373 Summer 2020LEC 20: Sorting I

Sorting: Stability
• A sort is stable if the relative order of equivalent keys is maintained after sorting

Anita
2010

Basia
2018

Caris
2019

Duska
2020

Duska
2015

Anita
2016

Anita
2010

Anita
2016

Basia
2018

Caris
2019

Duska
2020

Duska
2015

Anita Basia Anita Duska Esteban Duska Caris

Anita Anita Basia Caris Duska Duska Esteban

• Stability and Equivalency only matter for complex types
• i.e. when there is more data than just the key

INPUT

Anita
2016

Anita
2010

Basia
2018

Caris
2019

Duska
2015

Duska
2020

Stable sort using name as key Unstable sort using name as key

CSE 373 Summer 2020LEC 20: Sorting I

Sorting: Performance Definitions
• Runtime performance is sometimes called the time complexity

- Example: Dijkstra’s has time complexity O(E log V).

• Extra memory usage is sometimes called the space complexity
- Dijkstra’s has space complexity Θ(V)

- Priority Queue, distTo and edgeTo maps
- The input graph takes up space Θ(V+E), but we don’t count this as part of the

space complexity since the graph itself already exists and is an input to
Dijkstra’s

CSE 373 Summer 2020LEC 20: Sorting I

Lecture Outline
• Review Disjoint Sets

- Implementing using Arrays

• Sorting
- Definitions
- Insertion & Selection Sort
- Heap Sort

CSE 373 Summer 2020LEC 20: Sorting I

Sorting Strategy 1: Iterative Improvement
• Invariants/Iterative improvement

- Step-by-step make one more part of the input your desired output.

• We’ll write iterative algorithms to satisfy the following invariant:
• After 𝑘 iterations of the loop, the first 𝑘 elements of the array will be

sorted.

Iterative Improvement
After k iterations of the loop, the first k
elements of the array will be sorted

IN
VA

R
IA

N
T

CSE 373 Summer 2020LEC 20: Sorting I

Selection Sort
0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted ItemsCurrent Item

https://www.youtube.com/watch?v=Ns4TPTC8whw

Every iteration, select the smallest unsorted item to fill the next spot.

https://www.youtube.com/watch?v=Ns4TPTC8whw

CSE 373 Summer 2020LEC 20: Sorting I

Selection Sort

void selectionSort(list) {
for each current in list:

target = findNextMin(current)
swap(target, current)

}
int findNextMin(current) {

min = current
for each item in unsorted items:

if (item < min):
min = current

return min
}
int swap(target, current) {

temp = current
current = target
target = temp

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛2)

Θ(𝑛2)

No

Yes

Θ(𝑛2)

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

CSE 373 Summer 2020LEC 20: Sorting I

Selection Sort Stability

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

…

Swapping non-adjacent items can
result in instability of sorting
algorithms

CSE 373 Summer 2020LEC 20: Sorting I

Insertion Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 5 1 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

https://www.youtube.com/watch?v=ROalU379l3U

Every iteration, insert the next unsorted item into the sorted items

https://www.youtube.com/watch?v=ROalU379l3U

CSE 373 Summer 2020LEC 20: Sorting I

Insertion Sort
0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item
void insertionSort(list) {

for each current in list:
target = findSpot(current)
shift(target, current)

}
int findSpot(current) {

for each spot in sorted items going backwards:
if (current goes in spot):

return spot
}
void shift(target, current) {

for (i = current; i > target; i--):
item[i+1] = item[i]

item[target] = current
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛2)

Θ(𝑛)

Yes

Yes

Θ(𝑛2)

CSE 373 Summer 2020LEC 20: Sorting I

Insertion Sort Stability
0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

3 5a 4 5b 2 6 8

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

Insertion sort is stable!

- All swaps happen between
adjacent items to get current
item into correct relative position
within sorted portion of array

- Duplicates will always be
compared against one another in
their original orientation, so can
maintain stability with proper if
logic

CSE 373 Summer 2020LEC 20: Sorting I

pollev.com/uwcse373

void insertionSort(list) {
for each current in list:

target = findSpot(current)
shift(target, current)

}
int findSpot(current) {

for each spot in sorted items going backwards:
if (current goes in spot):

return spot
}
void shift(target, current) {

for (i = current; i > target; i--):
item[i+1] = item[i]

item[target] = current
}

Insertion Sort best case: when the input is
already sorted!

Worst case runtime? Θ(𝑛2)
Best case runtime? Θ(𝑛)

CSE 373 Summer 2020LEC 20: Sorting I

Selection vs. Insertion Sort
void selectionSort(list) {

for each current in list:
target = findNextMin(current)
swap(target, current)

}

void insertionSort(list) {
for each current in list:

target = findSpot(current)
shift(target, current)

}

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

“Look through sorted to insert the current item
in the spot where it belongs”
• Then shift everything over to make space

“Look through unsorted to select the smallest
item to replace the current item”
• Then swap the two elements

Worst case runtime? Θ(𝑛2)
Best case runtime? Θ(𝑛2)
In-practice runtime? Θ(𝑛2)
Stable? No
In-place? Yes

Worst case runtime? Θ(𝑛2)
Best case runtime? Θ(𝑛)
In-practice runtime? Θ(𝑛2)
Stable? Yes
In-place? Yes

Minimizes writing to an
array (doesn’t have to shift
everything)

Almost always preferred: Stable
& can take advantage of an
already-sorted list.
(LinkedList means no shifting J,
though doesn’t change
asymptotic runtime)

CSE 373 Summer 2020LEC 20: Sorting I

Lecture Outline
• Review Disjoint Sets

- Implementing using Arrays

• Sorting
- Definitions
- Insertion & Selection Sort
- Heap Sort

CSE 373 Summer 2020LEC 20: Sorting I

void selectionSort(list) {
for each current in list:

target = findNextMin(current)
swap(target, current)

}
int findNextMin(current) {

min = current
for each item in unsorted items:

if (item < min):
min = current

return min
}

Sorting Strategy 2: Impose Structure
• Consider what contributes to

Selection sort runtime of Θ 𝑛!
- Unavoidable n iterations to

consider each element
- Finding next minimum element

to swap requires a Θ 𝑛 linear
scan! Could we do better?

• If only we knew a way to structure our data to make it fast to find the
smallest item remaining in our dataset...

Θ 𝑛 iterations
Θ 𝑛

MIN PRIORITY QUEUE ADT

CSE 373 Summer 2020LEC 20: Sorting I

Heap Sort
1. run Floyd’s buildHeap on your data
2. call removeMin n times to pull out every element!

void heapSort(list) {
E[] heap = buildHeap(list)
E[] output = new E[n]
for (i = 0; i < n; i++):

output[i] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Θ(𝑛 log 𝑛)

https://www.youtube.com/watch?v=Xw2D9aJRBY4

If we get clever…

https://www.youtube.com/watch?v=Xw2D9aJRBY4

CSE 373 Summer 2020LEC 20: Sorting I

In-Place Heap Sort

0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

CSE 373 Summer 2020LEC 20: Sorting I

In Place Heap Sort

void inPlaceHeapSort(list) {
buildHeap(list) // alters original array
for (n : list)

list[n – i - 1] = removeMin(heap part of list)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Yes

Θ(𝑛 log 𝑛)

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed! Lots of fixes:
- Run reverse afterwards (𝑂(𝑛))
- Use a max heap
- Reverse compare function to emulate max heap

