BEFORE WE START

Which of the following is true about Path Compression?

a) It can be used on either QuickFind- or QuickUnion-based implementations of the DisjointSets ADT
b) It increases the asymptotic runtime of the find() operation with the time to modify the path
c) It improves the runtime of union() but doesn’t improve the runtime of find()
d) The first call to find() will have no benefits from path compression
Announcements

• EX3 late cutoff tonight 11:59pm

• EX4 released tonight, due **Monday 8/17**
 - Focuses on Minimum Spanning Trees & Sorting (including today’s lecture and a little bit of Wednesday)

• P4 due next Wednesday 8/19
 - Starting now: 😊! Starting this weekend: 😞!

• TA-led Industry Panel Q&A
 - Come chat with a panel of your amazing TAs! Learn about their backgrounds/experiences and ask about careers in technology, finding internships, or preparing for interviews.
 - We’re taking a survey to decide on a time. Please fill this out by Tuesday night: https://forms.gle/CBJVGeQXXCcDjUEQA
Exam II Logistics

• Due to overwhelmingly positive feedback about logistics, same as Exam I:
 - 48 hours to complete an exam written for 1-2 hours
 - Open notes & internet, groups up to 8
 - Submit via Gradescope, OH in lecture

• Released 8/21 12:01 AM PDT

• Due 8/22 11:59 PM PDT
 - No late submissions!

• Focuses on second half of the course, up through this Friday’s lecture (Topo Sort)
 - But technically “cumulative” in that you will need to use skills from the first half (e.g. algorithmic analysis, use List/Stack/Queue/Map, etc.)

• Like Exam I, will emphasize conceptual and “why?” questions. Unlike Exam I, will require you to write short snippets of code!

STUDYING
• Topics list released tonight so you can start looking things over, practice materials published next Monday
• Remember to use the Learning Objectives!
Learning Objectives

After this lecture, you should be able to...

1. Implement the DisjointSets ADT as WeightedQuickUnion + PathCompresssion using an array, and describe its benefits

2. Define an ordering relation and stable sort and determine whether a given sorting algorithm is stable

3. Implement Selection Sort and Insertion Sort, compare runtimes and best/worst cases of the two algorithms, and decide when they are appropriate

4. Implement Heap Sort, describe its runtime, and implement the in-place variant
Lecture Outline

• **Review** Disjoint Sets
 - Implementing using Arrays

• Sorting
 - Definitions
 - Insertion & Selection Sort
 - Heap Sort
Dijkstra’s

\[\Theta(|V| \log |V| + |E| \log |V|) \]

- Goes in order of shortest-path-so-far
- Choose when:
 - Want shortest path on *weighted* graph

Prim’s

\[\Theta(|E| \log |V|) \]

- Goes vertex-by-vertex
- Choose when:
 - Want MST
 - Graph is dense (more edges)

Kruskal’s

\[\Theta(|E| \log |V|) \]

- Goes edge-by-edge
- Choose when:
 - Want MST
 - Graph is sparse (fewer edges)
 - Edges already sorted

TRAVERSAL (COMMONLY SHORTEST PATHS)

MINIMUM SPANNING TREES

\[\Theta(|E| \log |V|) \]

or equivalently \[\Theta(|E| \log |E|) \]
Review Disjoint Sets Implementation

In-Practice Runtimes:

<table>
<thead>
<tr>
<th></th>
<th>(Baseline)</th>
<th>QuickFind</th>
<th>QuickUnion</th>
<th>WeightedQuickUnion</th>
<th>WQU + Path Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>makeSet(value)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>find(value)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$O(\log^* n)$</td>
</tr>
<tr>
<td>union(x, y) assuming root args</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>union(x, y)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$O(\log^* n)$</td>
</tr>
</tbody>
</table>
Review Kruskal’s Runtime

• **find** and **union** are $\log |V|$ in worst case, but amortized constant “in practice”

• Either way, dominated by time to sort the edges 😞
 - For an MST to exist, E can’t be smaller than V, so assume it dominates
 - Note: some people write $|E| \log |V|$, which is the same (within a constant factor)
DISJOINT SETS ADT

QuickFind
QuickUnion
Weighted QuickUnion
Weighted QuickUnion + Path Compression

1. QuickFind
 Optimizes for the Union operation
2. QuickUnion
3. Weighted QuickUnion
 Avoids the worst case runtime for Find
4. Weighted QuickUnion + Path Compression
 Makes future Find operations faster
DISJOINT SETS ADT

2. QuickUnion
 - Optimizes for the Union operation

3. Weighted QuickUnion
 - Avoids the worst case runtime for Find

4. Weighted QuickUnion + Path Compression
 - Makes future Find operations faster

5. ArrayWeighted QuickUnion + Path Compression
 - Better constant factors when stored in an array
Using Arrays for Up-Trees

- Since every node can have at most one parent, what if we use an array to store the parent relationships?
- Proposal: each node corresponds to an index, where we store the index of the parent (or –1 for roots). Use the root index as the representative ID!
- Just like with heaps, tree picture still conceptually correct, but exists in our minds!
Using Arrays: Find

- Initial **jump to element** still done with extra Map
- But **traversing up the tree** can be done purely within the array!

- Can still do **path compression** by setting all indices along the way to the root index!

```python
find(A):
    index = jump to A node’s index
    while array[index] > 0:
        index = array[index]
    path compression
    return index
```

```python
find(Melissa) = 0
```

![Diagram showing the process of finding an element using arrays and the path compression technique.](image)
Using Arrays: Union

- For WeightedQuickUnion, we need to store the number of nodes in each tree (the weight).

- Instead of just storing -1 to indicate a root, we can store -1 * weight!

```python
union(A, B):
    rootA = find(A)
    rootB = find(B)
    use -1 * array[rootA] and -1 * array[rootB] to determine weights
    put lighter root under heavier root
```

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-4</td>
<td>0</td>
<td>-2</td>
<td>6</td>
<td>-1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Joyce Brian Keanu Melissa Howard Farrell Eric
Using Arrays: Union

• For WeightedQuickUnion, we need to store the number of nodes in each tree (the weight)

• Instead of just storing -1 to indicate a root, we can store -1 * weight!

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 * array[rootB] to determine weights
put lighter root under heavier root

union(Eric, Farrell)
Using Arrays for WQU+PC

• Same asymptotic runtime as using tree nodes, but check out all these other benefits:
 - More compact in memory
 - Better spatial locality, leading to better constant factors from cache usage
 - Simplify the implementation!

<table>
<thead>
<tr>
<th></th>
<th>(Baseline)</th>
<th>QuickFind</th>
<th>QuickUnion</th>
<th>WeightedQuickUnion</th>
<th>WQU + Path Compression</th>
<th>ArrayWQU+PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>makeSet(value)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>find(value)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$O(\log^* n)$</td>
<td>$O(\log^* n)$</td>
</tr>
<tr>
<td>union(x, y)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>assuming root args</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>union(x, y)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$O(\log^* n)$</td>
<td>$O(\log^* n)$</td>
</tr>
</tbody>
</table>
Lecture Outline

• **Review** Disjoint Sets
 - Implementing using Arrays

• **Sorting**
 - Definitions
 - Insertion & Selection Sort
 - Heap Sort
Sorting

• Generally: given items, put them in order

• Why study sorting?
 - Sorting is incredibly common in programming
 - Often a component of other algorithms!
 - Very common in interviews
 - Interesting case study for approaching computational problems
 - We’ll use some data structures we’ve already studied
Types of Sorts

1. Comparison Sorts

Compare two elements at a time. Works whenever we could implement a `compareTo` method between elements.

We’ll focus on comparison sorts: much more common, and very generalizable!

2. Niche Sorts

Leverage specific properties of data or problem to sort without directly comparing elements. E.g. if you already know you’ll only be sorting numbers < 5, make 5 buckets and add directly

Bonus topic beyond the scope of the class
Sorting: Definitions (Knuth’s TAOCP)

• An **ordering relation** < for keys a, b, and c has the following properties:
 - Law of Trichotomy: Exactly one of a < b, a = b, b < a is true
 - Law of Transitivity: If a < b, and b < c, then a < c

• A **sort** is a permutation (re-arrangement) of a sequence of elements that puts the keys into non-decreasing order, relative to the ordering relation
 - \(x_1 \leq x_2 \leq x_3 \leq ... \leq x_N \)

```
int temperature

• Built-in, simple ordering relation
```

```
class Movie {
  String name;
  int year;
}
```

• More complex: Whenever we sort, *we also must decide* what ordering relation to use for that application
 - Sort by name?
 - Sort by year?
 - Some combination of both?
Sorting: Stability

- A sort is **stable** if the relative order of *equivalent* keys is maintained after sorting.

|----------------|------------|------------|------------|------------|------------|------------|

Stable sort using name as key

Unstable sort using name as key

- Stability and Equivalency only matter for complex types
 - i.e. when there is more data than just the key.

<table>
<thead>
<tr>
<th>Anita</th>
<th>Basia</th>
<th>Anita</th>
<th>Duska</th>
<th>Esteban</th>
<th>Duska</th>
<th>Caris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anita</td>
<td>Anita</td>
<td>Basia</td>
<td>Caris</td>
<td>Duska</td>
<td>Duska</td>
<td>Esteban</td>
</tr>
<tr>
<td>Anita</td>
<td>Anita</td>
<td>Basia</td>
<td>Caris</td>
<td>Duska</td>
<td>Duska</td>
<td>Esteban</td>
</tr>
</tbody>
</table>
Sorting: Performance Definitions

• Runtime performance is sometimes called the time complexity
 - Example: Dijkstra’s has time complexity $O(E \log V)$.

• Extra memory usage is sometimes called the space complexity
 - Dijkstra’s has space complexity $\Theta(V)$
 - Priority Queue, distTo and edgeTo maps
 - The input graph takes up space $\Theta(V+E)$, but we don’t count this as part of the space complexity since the graph itself already exists and is an input to Dijkstra’s
Lecture Outline

• Review Disjoint Sets
 - Implementing using Arrays

• Sorting
 - Definitions
 - Insertion & Selection Sort
 - Heap Sort
Sorting Strategy 1: Iterative Improvement

• Invariants/Iterative improvement
 - Step-by-step make one more part of the input your desired output.

• We’ll write iterative algorithms to satisfy the following invariant:
• After k iterations of the loop, the first k elements of the array will be sorted.
Selection Sort

Every iteration, select the smallest unsorted item to fill the next spot.

https://www.youtube.com/watch?v=Ns4TPTC8whw
void selectionSort(list) {
 for each current in list:
 target = findNextMin(current)
 swap(target, current)
}

int findNextMin(current) {
 min = current
 for each item in unsorted items:
 if (item < min):
 min = current
 return min
}

int swap(target, current) {
 temp = current
 current = target
 target = temp
}

Worst case runtime? \(\Theta(n^2)\)
Best case runtime? \(\Theta(n^2)\)
In-practice runtime? \(\Theta(n^2)\)
Stable? No
In-place? Yes
Selection Sort Stability

Swapping non-adjacent items can result in instability of sorting algorithms.
Insertion Sort

https://www.youtube.com/watch?v=ROalU379i3U

Every iteration, **insert** the next unsorted item into the sorted items.
Insertion Sort

void insertionSort(list) {
 for each current in list:
 target = findSpot(current)
 shift(target, current)
}

t void findSpot(current) {
 for each spot in sorted items going backwards:
 if (current goes in spot):
 return spot
}

void shift(target, current) {
 for (i = current; i > target; i--):
 item[i+1] = item[i]
 item[target] = current
}

Sorted Items

Current Item

Unsorted Items

<table>
<thead>
<tr>
<th>Sorted Items</th>
<th>Unsorted Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Worst case runtime? $\Theta(n^2)$

Best case runtime? $\Theta(n)$

In-practice runtime? $\Theta(n^2)$

Stable? Yes

In-place? Yes
Insertion Sort Stability

Insertion sort is **stable**!

- All swaps happen **between adjacent items** to get current item into correct relative position within sorted portion of array.

- Duplicates will always be compared against one another **in their original orientation**, so can maintain stability with proper if logic.
void insertionSort(list) {
 for each current in list:
 target = findSpot(current)
 shift(target, current)
}

int findSpot(current) {
 for each spot in sorted items going backwards:
 if (current goes in spot):
 return spot
}

void shift(target, current) {
 for (i = current; i > target; i--):
 item[i+1] = item[i]
 item[target] = current
}

Worst case runtime? $\Theta(n^2)$
Best case runtime? $\Theta(n)$

Insertion Sort best case: when the input is already sorted!
Selection vs. Insertion Sort

void selectionSort(list)

\[
\text{for each current in list:} \\
\quad \text{target} = \text{findNextMin}(\text{current}) \\
\quad \text{swap}(\text{target}, \text{current})
\]

“Look through **unsorted** to **select** the smallest item to replace the **current item**”

- Then **swap** the two elements

Worst case runtime? Θ(n²)
Best case runtime? Θ(n²)
In-practice runtime? Θ(n²)
Stable? No
In-place? Yes

Minimizes writing to an array (doesn’t have to shift everything)

void insertionSort(list)

\[
\text{for each current in list:} \\
\quad \text{target} = \text{findSpot}(\text{current}) \\
\quad \text{shift}(\text{target}, \text{current})
\]

“Look through **sorted** to **insert** the current item in the spot where it belongs”

- Then **shift** everything over to make space

Worst case runtime? Θ(n²)
Best case runtime? Θ(n)
In-practice runtime? Θ(n²)
Stable? Yes
In-place? Yes

Almost always preferred: Stable & can take advantage of an already-sorted list.
(LinkedList means no shifting 😊, though doesn’t change asymptotic runtime)

0 1 2 3 4 5 6 7 8 9

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Sorted Items

Unsorted Items

Current Item
Lecture Outline

• **Review** Disjoint Sets
 - Implementing using Arrays

• **Sorting**
 - Definitions
 - Insertion & Selection Sort
 - Heap Sort
Sorting Strategy 2: Impose Structure

• Consider what contributes to Selection sort runtime of $\Theta(n^2)$
 - Unavoidable n iterations to consider each element
 - Finding next minimum element to swap requires a $\Theta(n)$ linear scan! Could we do better?

• If only we knew a way to structure our data to make it fast to find the smallest item remaining in our dataset...

```c
void selectionSort(list) {
  \(\theta(n)\) iterations
  for each current in list:
    target = findNextMin(current)
    swap(target, current)
}

int findNextMin(current) {
  min = current
  for each item in unsorted items:
    if (item < min):
      min = current
  return min
}
```

MIN PRIORITY QUEUE ADT
Heap Sort

1. run Floyd’s `buildHeap` on your data
2. call `removeMin` n times to pull out every element!

```java
void heapSort(list) {
    E[] heap = buildHeap(list)
    E[] output = new E[n]
    for (i = 0; i < n; i++):
        output[i] = removeMin(heap)
}
```

Worst case runtime? \(\Theta(n \log n) \)

Best case runtime? \(\Theta(n) \)

In-practice runtime? \(\Theta(n \log n) \)

Stable? No

In-place? If we get clever...
In-Place Heap Sort

Heap Sorted Items

Current Item

percolateDown(22)

Heap Sorted Items

Current Item

Heap Sorted Items

Sorted Items

Current Item

Sorted Items

Current Item

Sorted Items
In Place Heap Sort

```java
void inplaceHeapSort(list) {
    buildHeap(list) // alters original array
    for (n : list)
        list[n - i - 1] = removeMin(heap part of list)
}
```

- **Worst case runtime?** $\Theta(n \log n)$
- **Best case runtime?** $\Theta(n)$
- **In-practice runtime?** $\Theta(n \log n)$
- **Stable?** No
- **In-place?** Yes

Complication: final array is reversed! Lots of fixes:
- Run reverse afterwards ($O(n)$)
- Use a max heap
- Reverse compare function to emulate max heap