LEC 20

cse 373 Sorting I

BEFORE WE START

Which of the following is true about Path Compression?

- a) It can be used on either QuickFind- or QuickUnionbased implementations of the DisjointSets ADT
- b) It increases the asymptotic runtime of the find() operation with the time to modify the path
- c) It improves the runtime of union() but doesn't improve the runtime of find()
- d) The first call to find() will have no benefits from path compression

pollev.com/uwcse373

Instructor Aaron Johnston

- TAs Timothy Akintilo Brian Chan Joyce Elauria Eric Fan Farrell Fileas
- Melissa Hovik Leona Kazi Keanu Vestil Siddharth Vaidyanathan Howard Xiao

Announcements

- EX3 late cutoff tonight 11:59pm
- EX4 released tonight, due *Monday* 8/17
 - Focuses on Minimum Spanning Trees & Sorting (including today's lecture and a little bit of Wednesday)
- P4 due next Wednesday 8/19
 - Starting now: ☺! Starting this weekend: ⊗!
- TA-led Industry Panel Q&A
 - Come chat with a panel of your amazing TAs! Learn about their backgrounds/experiences and ask about careers in technology, finding internships, or preparing for interviews.
 - We're taking a survey to decide on a time. Please fill this out by Tuesday night: <u>https://forms.gle/CBJVGeQXXCcDjUEQA</u>

Exam II Logistics

- Due to overwhelmingly positive feedback about logistics, same as Exam I:
 - 48 hours to complete an exam written for 1-2 hours
 - Open notes & internet, groups up to 8
 - Submit via Gradescope, OH in lecture
- Released 8/21 12:01 AM PDT
- Due 8/22 11:59 PM PDT
 - No late submissions!
- Focuses on second half of the course, up through this Friday's lecture (Topo Sort)
 - But technically "cumulative" in that you will need to use skills from the first half (e.g. algorithmic analysis, use List/Stack/Queue/Map, etc.)
- Like Exam I, will emphasize conceptual and "why?" questions. Unlike Exam I, will require you to write short snippets of code!

STUDYING

- Topics list released tonight so you can start looking things over, practice materials published next Monday
- Remember to use the Learning Objectives!

Learning Objectives

After this lecture, you should be able to...

- 1. Implement the DisjointSets ADT as WeightedQuickUnion + PathCompression using an array, and describe its benefits
- 2. Define an ordering relation and stable sort and determine whether a given sorting algorithm is stable
- 3. Implement Selection Sort and Insertion Sort, compare runtimes and best/worst cases of the two algorithms, and decide when they are appropriate
- 4. Implement Heap Sort, describe its runtime, and implement the inplace variant

Lecture Outline

- Review Disjoint Sets
 - Implementing using Arrays
- s 🗲

- Sorting
 - Definitions
 - Insertion & Selection Sort
 - Heap Sort

W UNIVERSITY of WASHINGTON	LEC 20: Sorting I CSE 3				
TRAVERSAL (COMMONLY SHORTEST PATHS)	MINIMUM SPANNING TREES				
Dijkstra's	Prim's	Kruskal's			
$\Theta(V \log V + E \log V)$	$\Theta(E \log V)$	$\Theta(E \log V)$ or equivalently $\Theta(E \log E)$			
 Goes in order of shortest-path- so-far Choose when: Want shortest path on weighted graph 	 Goes vertex-by-vertex Choose when: Want MST Graph is dense (more edges) 	 Goes edge-by-edge Choose when: Want MST Graph is sparse (fewer edges) Edges already sorted 			

Review Disjoint Sets Implementation

In-Practice Runtimes:

	(Baseline)	QuickFind	QuickUnion	WeightedQuickUnion	WQU + Path Compression
<pre>makeSet(value)</pre>	Θ(1)	Θ(1)	Θ(1)	Θ(1)	Θ(1)
<pre>find(value)</pre>	$\Theta(n)$	Θ(1)	$\Theta(n)$	$\Theta(\log n)$	$O(\log^* n)$
<pre>union(x, y) assuming root args</pre>	$\Theta(n)$	$\Theta(n)$	Θ(1)	Θ(1)	Θ(1)
union(x, y)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(\log n)$	$O(\log^* n)$
	Keanu 1 Joyce 2 Farrell 1 Brian 2 Eric 2	B	C		

Review Kruskal's Runtime

- find and union are log |V| in worst case, but amortized constant "in practice"
- Either way, dominated by time to sort the edges 😣
 - For an MST to exist, E can't be smaller than V, so assume it dominates
 - Note: some people write |E|log|V|, which is the same (within a constant factor)

Using Arrays for Up-Trees

- Since every node can have at most one parent, what if we use an array to store the parent relationships?
- Proposal: each node corresponds to an index, where we store the index of the parent (or -1 for roots). Use the root index as the representative ID!
- Just like with heaps, tree picture still conceptually correct, but exists in our minds!

3

Using Arrays: Find

- Initial jump to element still done with extra Map
- But traversing up the tree can be done purely within the array!

find(A):
 index = jump to A node's index
 while array[index] > 0:
 index = array[index]
 path compression
 return index

Using Arrays: Union

- For WeightedQuickUnion, we need to store the number of nodes in each tree (the weight)
- Instead of just storing -1 to indicate a root, we can store -1 * weight!

```
union(A, B):
  rootA = find(A)
  rootB = find(B)
  use -1 * array[rootA] and -1 *
       array[rootB] to determine weights
  put lighter root under heavier root
```


Using Arrays: Union

- For WeightedQuickUnion, we need to store the number of nodes in each tree (the weight)
- Instead of just storing -1 to indicate a root, we can store -1 * weight!

Using Arrays for WQU+PC

- Same asymptotic runtime as using tree nodes, but check out all these other benefits:
 - More compact in memory
 - Better spatial locality, leading to better constant factors from cache usage
 - Simplify the implementation!

	(Baseline)	QuickFind	QuickUnion	WeightedQuickUnion	WQU + Path Compression	ArrayWQU+PC
<pre>makeSet(value)</pre>	Θ(1)	Θ(1)	Θ(1)	Θ(1)	Θ(1)	Θ(1)
<pre>find(value)</pre>	$\Theta(n)$	Θ(1)	$\Theta(n)$	$\Theta(\log n)$	$O(\log^* n)$	$O(\log^* n)$
<pre>union(x, y) assuming root args</pre>	$\Theta(n)$	$\Theta(n)$	Θ(1)	Θ(1)	Θ(1)	Θ(1)
union(x, y)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(\log n)$	$O(\log^* n)$	$O(\log^* n)$

Lecture Outline

- *Review* Disjoint Sets
 - Implementing using Arrays
- Sorting
 - Definitions
 - Insertion & Selection Sort
 - Heap Sort

Sorting

- Generally: given items, put them in order
- Why study sorting?
 - Sorting is incredibly common in programming
 - Often a component of other algorithms!
 - Very common in interviews
 - Interesting case study for approaching computational problems
 - We'll use some data structures we've already studied

Types of Sorts

1. Comparison Sorts

Compare two elements at a time. Works whenever we could implement a compareTo method between elements.

2. Niche Sorts

Leverage specific properties of data or problem to sort without directly comparing elements. E.g. if you already know you'll only be sorting numbers < 5, make 5 buckets and add directly

We'll focus on comparison sorts: much more common, and very generalizable!

Bonus topic beyond the scope of the class

Sorting: Definitions (Knuth's **TAOCP**)

- An ordering relation < for keys a, b, and c has the following properties:
 - Law of Trichotomy: Exactly one of a < b, a = b, b < a is true
 - Law of Transitivity: If a < b, and b < c, then a < c

• A **sort** is a permutation (re-arrangement) of a sequence of elements that puts the keys into non-decreasing order, relative to the ordering relation

$$- x_1 \le x_2 \le x_3 \le \dots \le x_N$$

<pre>int temperature</pre>	
----------------------------	--

• Built-in, simple ordering relation

```
class Movie {
   String name;
   int year;
}
```

- More complex: Whenever we sort, we also must decide what ordering relation to use for that application
 - Sort by name?
 - Sort by year?
 - Some combination of both?

Sorting: Stability

• A sort is **stable** if the relative order of *equivalent* keys is maintained after sorting

- Stability and Equivalency only matter for complex types
 - i.e. when there is more data than just the key

Anita	Basia	Anita	Duska	Esteba	an	Dus	ka	Caris
Anita	Anita	Basia	Caris	Duska	D	uska	Es	steban

Sorting: Performance Definitions

- Runtime performance is sometimes called the **time complexity**
 - Example: Dijkstra's has time complexity O(E log V).
- Extra memory usage is sometimes called the space complexity
 - Dijkstra's has space complexity Θ(V)
 - Priority Queue, distTo and edgeTo maps
 - The input graph takes up space Θ(V+E), but we don't count this as part of the space complexity since the graph itself already exists and is an input to Dijkstra's

Lecture Outline

- *Review* Disjoint Sets
 - Implementing using Arrays

• Sorting

- Definitions
- Insertion & Selection Sort
- Heap Sort

Sorting Strategy 1: Iterative Improvement

• Invariants/Iterative improvement

INVARIANT

- Step-by-step make one more part of the input your desired output.
- We'll write iterative algorithms to satisfy the following invariant:
- After k iterations of the loop, the first k elements of the array will be sorted.

Iterative Improvement After k iterations of the loop, the first k elements of the array will be sorted

Every iteration, **select** the smallest unsorted item to fill the next spot.

Selection Sort Stability

Swapping non-adjacent items can result in instability of sorting algorithms

Every iteration, **insert** the next unsorted item into the sorted items

Insertion Sort

Insertion Sort Stability

Insertion sort is stable!

- All swaps happen between
 adjacent items to get current
 item into correct relative position
 within sorted portion of array
- Duplicates will always be compared against one another in their original orientation, so can maintain stability with proper if logic

void insertionSort(list) { for each current in list: target = findSpot(current) shift(target, current) } int findSpot(current) { for each spot in sorted items going backwards: if (current goes in spot): return spot } void shift(target, current) { for (i = current; i > target; i--): item[i+1] = item[i] item[target] = current } }

1 Poll Everywhere

```
Worst case runtime?\Theta(n^2)Best case runtime?\Theta(n)
```

Insertion Sort best case: when the input is already sorted!

W What's the best case input (of size 5) for insertion sort?

Selection vs. Insertion Sort

```
void selectionSort(list) {
   for each current in list:
      target = findNextMin(current)
      swap(target, current)
}
```

"Look through unsorted to **select** the smallest item to replace the current item"

• Then **swap** the two elements

Worst case runtime? $\Theta(n^2)$ Best case runtime? $\Theta(n^2)$ In-practice runtime? $\Theta(n^2)$ Stable? No In-place? Yes Minimizes writing to an array (doesn't have to shift everything)

```
void insertionSort(list) {
   for each current in list:
      target = findSpot(current)
      shift(target, current)
}
```

"Look through sorted to **insert** the current item in the spot where it belongs"

Then **shift** everything over to make space

Worst case runtime? $\Theta(n^2)$ Best case runtime? $\Theta(n)$ In-practice runtime? $\Theta(n^2)$ Stable? Yes In-place? Yes Almost always preferred: Stable & can take advantage of an already-sorted list. (LinkedList means no shifting ⁽ⁱ⁾, though doesn't change asymptotic runtime)

Lecture Outline

- *Review* Disjoint Sets
 - Implementing using Arrays

• Sorting

- Definitions
- Insertion & Selection Sort
- Heap Sort

Sorting Strategy 2: Impose Structure

- Consider what contributes to Selection sort runtime of $\Theta(n^2)$
 - Unavoidable n iterations to consider each element
 - Finding next minimum element to swap requires a $\Theta(n)$ linear scan! Could we do better?

• If only we knew a way to *structure* our *data* to make it fast to find the smallest item remaining in our dataset...

MIN PRIORITY QUEUE ADT

- 1. run Floyd's buildHeap on your data
- 2. call removeMin n times to pull out every element!

```
void heapSort(list) {
    E[] heap = buildHeap(list)
    E[] output = new E[n]
    for (i = 0; i < n; i++):
        output[i] = removeMin(heap)
}</pre>
```

Worst case runtime?Θ(n log n)Best case runtime?Θ(n)In-practice runtime?Θ(n log n)Stable?NoIn-place?If we get clever...

In-Place Heap Sort

In Place Heap Sort


```
void inPlaceHeapSort(list) {
    buildHeap(list) // alters original array
    for (n : list)
        list[n - i - 1] = removeMin(heap part of list)
}
```

Complication: final array is reversed! Lots of fixes:

- Run reverse afterwards (O(n))
- Use a max heap
- Reverse compare function to emulate max heap

Worst case runtime?	$\Theta(n\log n)$			
Best case runtime?	$\Theta(n)$			
In-practice runtime?	$\Theta(n\log n)$			
Stable?	No			
In-place?	Yes			