
CSE 373 Summer 2020LEC 02: Lists

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan

Farrell Fileas
Leona Kazi
Keanu Vestil
Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 0 2

Lists

BEFORE WE START

Fill out the 373 Start-of-
Quarter survey! Max 3 min:

tinyurl.com/20SuStart

https://tinyurl.com/20SuStart

CSE 373 Summer 2020LEC 02: Lists

Announcements
• Project 0 released!

- Instructions on course website (calendar or under projects)
- Due Wednesday July 1 before 11:59pm PST
- Goals

- Refresh 143 concepts
- Set up IntelliJ and tools we’ll use in this class (Java, GitLab, Git, Checkstyle)
- Learn about JUnit and unit testing

• Sections start tomorrow!
- Canvas events will be created today

• Missing permissions?
- We’ll post a form to fill out

CSE 373 Summer 2020LEC 02: Lists

Announcements
• Office Hours

- This quarter, we’ll run queue via Discord
- A popular instant messaging + voice/video chat service
- All-in-one location for OH queue, community building, getting help from peers

@TA On Duty quick question about the definition of an ADT @dubs

Sure! Let’s all discuss in this Zoom meeting:

#oh-queue

You

TAping all TAs currently
“on duty” in OH

briefly summarize
your question

@ your project
partner or anyone else
you’re working with

CSE 373 Summer 2020LEC 02: Lists

Why Discord?
• Build community!

- Survey results: COVID has made us distant L
- Social channels for hanging out, meeting people, finding partners

- These are your space! Not managed by course staff

• Seamless Queueing
- Students reported Zoom waiting rooms and spreadsheets were clunky
- Hang around, get a notification when a TA is ready

• Be In the Room Where It Happens
- Chat while you’re waiting!

- Public channels: ask if anyone has a similar issue, see who else is on the queue and reach
out

CSE 373 Summer 2020LEC 02: Lists

Using Discord
• Two ways to participate:

1 2Create Discord Account

• Discord is a 3rd-Party App
- You do NOT need to enter any personal information to participate in OH
- But you are welcome to make an account or use an existing one
- Have fun, but be respectful and welcoming

Join Anonymously

• Enter your email
• Stay logged in for the quarter
• Easier to meet people and build

community

• Temporary display name, no other info
• Account disappears when you close window
• Use Discord as simple, anonymous queue

service; get helped over Zoom

OR

CSE 373 Summer 2020LEC 02: Lists

Announcements
• Office Hours

- Discord server invite will be posted later today
- Office Hours will start this Friday, June 26th

- Note: TA continually monitor Piazza, only monitor Discord during OH

• Instructor meeting link added to Staff Page
- Schedule a 1:1 for anything! Course concerns, taking these concepts beyond

373, interviews/job advice, meaning of life, etc.

• Survey results: Anxious about 143 material?
- Don’t worry! J P0 is all about helping you get back up to speed!
- We’ll publish an additional review guide today

CSE 373 Summer 2020LEC 02: Lists

Lecture Outline
• Runtime Analysis

• The List ADT

• Design Decisions

CSE 373 Summer 2020LEC 02: Lists

Learning Objectives

• (143 Review) Determine whether simple code belongs to the
constant, linear, or quadratic complexity classes

• Distinguish the List ADT from ArrayList and LinkedList
implementations

• Compare the runtime of certain operations on ArrayList and
LinkedList, based on how they’re implemented

• Describe the process of making design decisions

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 02: Lists

Runtime Analysis
• What does it mean for a data structure to be ”slow” or “fast”?

• We could just run and measure the (wallclock) time!
- Why won’t that work?

- Different hardware could affect speed
- What other programs are running?
- Speed affected by the input given

• Our general approach:
- Count how many “steps” a program takes to execute on an input of size N

CSE 373 Summer 2020LEC 02: Lists

143 Review “Big Oh”
• Efficiency: measure of computing resources used by code

- Could be time (most common), space/memory taken up, etc.

• We measure runtime in proportion to the input data size, N
- Growth Rate: change in runtime as N gets bigger

• Assume:
- Every Java statement takes the same amount of time to run
- Method call runtime: total of statements in its body
- Loop runtime: (number of repetitions) x (total of its body)

CSE 373 Summer 2020LEC 02: Lists

143 Review “Big Oh”

a = b + 1;

for (int i = 0; i < N; i++) {
data[i] = a;

}

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

data1[i] = a;
data2[i] = b;
data3[i] = c;

}
}

Runs 1 statement
Constant

Runs N statements
Linear

Runs 3N2 statements
Quadratic

• We ignore constants like 3 because they are
tiny next to N or N2

• We say that this algorithm runs "on the
order of" N2

• or O(N2) for short ("Big-Oh of N squared")

CSE 373 Summer 2020LEC 02: Lists

143 Review Complexity Class
• Complexity Class: a category of algorithm efficiency based on the

algorithm’s relationship to the input size N

Complexity
Class

Big-O Runtime if you
double N

constant O(1) unchanged

logarithmic O(log2 N) increases slightly

linear O(N) doubles

log-linear O(N log2 N) slightly more than
doubles

quadratic O(N2) quadruples

...

exponential O(2N) multiplies drastically

CSE 373 Summer 2020LEC 02: Lists

Lecture Outline
• Runtime Analysis

• The List ADT

• Design Decisions

CSE 373 Summer 2020LEC 02: Lists

Review ADTs: Abstract Data Types
• An abstract data type is a data type that

does not specify any one
implementation.

- Think of this as an agreement: about what
is provided, but not how.

• Data structures implement ADTs.
• Resizable array can implement List, Stack,

Queue, Deque, PQ, etc.
• Linked nodes can implement List, Stack,

Queue, Deque, PQ, etc.

List

ArrayList
LinkedList

ADT

Data Structure
Data Structure

For Example:

CSE 373 Summer 2020LEC 02: Lists

Case Study: The List ADT
List: a collection storing an ordered sequence of elements.
- Each item is accessible by an index.
- A list has a variable size defined as the number of elements in the list
- Elements can be added to or removed from any position in the list

Relation to code/mental image of a list:

List<String> names = new ArrayList<>(); // []
names.size(); // evaluates to 0
names.add(”Timothy"); // [“Timothy”]
names.add(”Siddharth"); // [“Timothy, Siddharth”]
names.insert(”Leona”, 0); // [“Leona”, “Timothy”, “Siddharth”]
names.size(); // evaluates to 3

CSE 373 Summer 2020LEC 02: Lists

Case Study: List Implementations

LIST ADT

State

get(index) return item at index
set(item, index) replace item at index
add(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

Set of ordered items
Count of items

Behavior

ArrayList<E>

State

get return data[index]
set data[index] = value
add data[size] = value, if out of
space grow data
insert shift values to make hole
at index, data[index] = value, if
out of space grow data
delete shift following values
forward
size return size

data[]
size

Behavior

LinkedList<E>

State

get loop until index, return node’s
value
set loop until index, update node’s
value
add create new node, update next of
last node
insert create new node, loop until
index, update next fields
delete loop until index, skip node
size return size

Node front;
size

Behavior

0 1 2 3 4

88.6 26.1 94.4 0 0

list free space

88.6 26.1 94.4[88.6, 26.1, 94.4]

CSE 373 Summer 2020LEC 02: Lists

Case Study: Let’s Zoom In On ArrayList
• How do Java / other programming languages implement ArrayList to achieve all the List

behavior?

• On the inside:

- stores the elements inside an array (which has a fixed capacity) that typically has
more space than currently used (For example when there is only 1 element in the
actual list, the array might have 10 spaces for data),

- stores all of these elements at the front of the array and keeps track of how many
there are (the size) so that the implementation doesn’t get confused enough to
look at the empty space. This means that sometimes we will have to do a lot of
work to shift the elements around.

[“Leona”, “Timothy”, “Siddharth”] [“Leona”, “Timothy”, “Siddharth”, null, null, null]

List View ArrayList View

CSE 373 Summer 2020LEC 02: Lists

Implementing ArrayList

ArrayList<E>

State

get return data[index]
set data[index] = value
add data[size] = value, if out of
space grow data
insert shift values to make hole
at index, data[index] = value, if
out of space grow data
delete shift following values
forward
size return size

data[]
size

Behavior

0 1 2 3

insert(“d”, 0) a b c

size = 3

insert(element, index) with shifting

0 1 2 3

a b c

size = 43

delete(index) with shifting

cbad

4

delete(0) d a b c

CSE 373 Summer 2020LEC 02: Lists

pollev.com/uwcse373

Should we overwrite index 3 with null?

ArrayList<E>

State

get return data[index]
set data[index] = value
add data[size] = value, if out of
space grow data
insert shift values to make hole
at index, data[index] = value, if
out of space grow data
delete shift following values
forward
size return size

data[]
size

Behavior

insert(“d”, 0) a b c

size = 3

insert(element, index) with shifting

0 1 2 3

b c

size = 43

delete(index) with shifting

cbad

4

delete(0) da c

Briefly explain why or why not.

CSE 373 Summer 2020LEC 02: Lists

0 1 2 3 4 5 6 7

Implementing ArrayList

0 1 2 3

append(2) 3 5

numberOfItems =

append(element) with growth

410

4

2

5

ArrayList<E>

State

get return data[index]
set data[index] = value
add data[size] = value, if out of
space grow data
insert shift values to make hole
at index, data[index] = value, if
out of space grow data
delete shift following values
forward
size return size

data[]
size

Behavior

CSE 373 Summer 2020LEC 02: Lists

pollev.com/uwcse373

Which operations will be much faster for
LinkedList than ArrayList?

LIST ADT

State

get(index) return item at index
set(item, index) replace item at index
add(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

Set of ordered items
Count of items

Behavior

ArrayList<E>

State

get return data[index]
set data[index] = value
add data[size] = value, if out of
space grow data
insert shift values to make hole
at index, data[index] = value, if
out of space grow data
delete shift following values
forward
size return size

data[]
size

Behavior

LinkedList<E>

State

get loop until index, return node’s
value
set loop until index, update node’s
value
add create new node, update next of
last node
insert create new node, loop until
index, update next fields
delete loop until index, skip node
size return size

Node front;
size

Behavior

Briefly explain why.

CSE 373 Summer 2020LEC 02: Lists

Lecture Outline
• Runtime Analysis

• The List ADT

• Design Decisions

CSE 373 Summer 2020LEC 02: Lists

Design Decisions
• For every ADT, many ways to implement
• Based on your situation you should consider:

- Speed vs Memory Usage
- Generic/Reusability vs Specific/Specialized
- One Function vs Another
- Robustness vs Performance

• This class is all about implementing ADTs based on making the right
design tradeoffs!

- A common topic in interview questions

CSE 373 Summer 2020LEC 02: Lists

pollev.com/uwcse373

Design Decisions
• Dub Street Burgers is implementing a new system to

manage orders
• When an order comes in, it’s placed at the end of the

set of orders
• Food is prepared in approximately the same order it

was requested, but sometimes orders are fulfilled out
of order

• Let’s represent tickets using the List ADT. What
implementation should we use? Why?

CSE 373 Summer 2020LEC 02: Lists

What implementation should we use? Why?
• ArrayList

- Creating a new order is very fast (as long as we don’t have to resize)
- Cooks can see any given order easily

• LinkedList
- Creating an order is slower (have to iterate through whole list)
- We’ll mostly be removing from the front of the list, which is fast because it

requires no shifting

CSE 373 Summer 2020LEC 02: Lists

Comparing ADT Implementations: List
ArrayList LinkedList

add (front) linear constant

remove (front) linear constant

add (back) (usually) constant linear

remove (back) constant linear

get constant linear

put linear linear

• Important to be able to come up with this, and understand why
• But only half the story: to be able to make a design decision, need the context to

understand which of these we should prioritize

CSE 373 Summer 2020LEC 02: Lists

Design Decisions
• Both ArrayList and LinkedList have pros and cons, neither is strictly

better than the other

• The Design Decision process:
- Evaluate pros and cons
- Decide on a design
- Defend your design decision

• This is a major objective of the course!

