
CSE 373 Summer 2020LEC 19: Disjoint Sets II

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 1 9

Disjoint Sets II

BEFORE WE START

pollev.com/uwcse373

Consider the following WeightedQuickUnion structure.
What’s the result of calling union(Louise, Linda)
and then union(Louise, Tina)?

Gene

Linda

Louise

Bob

ZekeTina

Jimmy Jr.
Jocelyn

Tammy

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Announcements
• EX3 due TONIGHT 11:59pm PDT
• P4 (Mazes) has been released

- Please start early! Truly 2 weeks worth of work, and some of the coolest work
too so we don’t want anyone to miss out!

- Not sure how to start writing code? That’s okay! Reading and integrating with
substantial starter code is an objective for this assignment.

- Remember to read the instructions and

• EX4 will be released Monday
- You’ll need Monday’s lecture for a good portion of it
- Still due Monday, 8/17 (week 9)
- Need something else fun to do this weekend? Consider solving a maze or two!

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Learning Objectives

1. Implement WeightedQuickUnion and describe why making the
change protects against the worst case find runtime

2. Implement path compression and argue why it improves runtimes,
despite not following an invariant

3. Describe what contributes to the runtime of Prim’s and Kruskal’s,
and compare/contrast the two algorithms

4. Implement WeightedQuickUnion using arrays and describe the
benefits of doing so

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 19: Disjoint Sets II

1 1

Review MSTs
• Minimum (minimizes sum of edge weights) Spanning (connects all vertices) Tree

(exactly one path between any two nodes)
- Minimizing sum of edge weights is NOT the same as minimizing shortest paths!

• If a graph is connected, has at least one MST
• If a graph is connected and has all unique edges, has exactly one MST
• If a graph is connected and has duplicate edges, it may have multiple valid MSTs

- Which one we pick is down to arbitrary order we visit duplicates: Prim’s & Kruskal’s could
potentially differ, but both MSTs would still be valid.

B

C
A

E
G

D F

H

V

Y
W

X

Z

2
1

9

2

5

3 4

6

4

5

3
8

3

2

V

Y
W

X

Z
4

5

3
8

3

2

No MSTs Exactly 1 MST Multiple Valid MSTs

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Review Disjoint Sets ADT (aka “Union-Find”)

• Kruskal’s MST algorithm goes edge-by-edge, but it
needs a Disjoint Sets ADT under the hood to check
whether vertices are already connected!

- Conceptually, a single instance of this ADT contains a
“family” of sets that are disjoint (no element belongs to
multiple sets)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either
a member or a unique ID)

Behavior
makeSet(value) – new set with value
as only member (and representative)
find(value) – return representative
of the set containing value
union(x, y) – combine sets containing
x and y into one set with all
elements, choose single new
representative

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union
operation

Avoids the worst case
runtime for Find

Makes future Find
operations faster

DISJOINT SETS ADT

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Review QuickFind vs. QuickUnion

Joyce, Brian,
Eric, Melissa

Keanu,
Farrell

Howard

DISJOINT SETS ADT

QuickFind QuickUnion

map from value to representative ID

Keanu

Joyce

Farrell

Brian

Eric

1

2

2

2

1

Melissa

Howard

2

3

Keanu (1)

Farrell

Howard (3)

Joyce (2)

EricBrian

Melissa

trees of values with representative
ID at each root

(Baseline) QuickFind QuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1)

find(value) Θ(𝑛) Θ(1) Θ(𝑛)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(1)

Could also use one element from
each set (e.g. the root) as its
representative: only uniqueness
matters

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Review QuickUnion: Why Use Both Roots?
Example: result of union(Eric, Farrell) on these Disjoint
Sets given three possible implementations:

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

union(A, B):
rootB = find(B)
set A to point to rootB

union(A, B):
rootA = find(A)
set rootA to point to B

Keanu (1)

Farrell

Howard (3)

Joyce

EricBrian

Melissa

Keanu (1)

Farrell

Howard (3)

Joyce (2)

Eric
Brian

Melissa

Keanu (1)

Farrell

Howard (3)

Joyce

EricBrian

Melissa

Keanu (1)

Farrell

Howard (3)

Joyce (2)

EricBrian

Melissa

Correct: Everything in Eric’s set
now connected to everything
in Farrell’s set!

Incorrect: Eric and Joyce were
connected before; the union
operation shouldn’t remove
connections.

Inefficient: Technically correct, but
increases height of the up-tree so
makes

CSE 373 Summer 2020LEC 19: Disjoint Sets II

pollev.com/uwcse373

Review QuickUnion: Let’s Build a Worst Case

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

find(A):
jump to A node
travel upward until root
return ID

Even with the ”use-the-roots” implementation of union, try to come
up with a series of calls to union that would create a worst-case
runtime for find on these Disjoint Sets:

A

B

C

D

CSE 373 Summer 2020LEC 19: Disjoint Sets II

pollev.com/uwcse373

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

find(A):
jump to A node
travel upward until root
return ID

Even with the ”use-the-roots” implementation of union, try to come
up with a series of calls to union that would create a worst-case
runtime for find on these Disjoint Sets:

A

B

C

D

union(A, B)
union(B, C)
union(C, D)
find(A) B

A

C

D

Review QuickUnion: Let’s Build a Worst Case

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union
operation

Avoids the worst case
runtime for Find

Makes future Find
operations faster

DISJOINT SETS ADT

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Review WeightedQuickUnion

• Goal: Always pick the smaller tree
to go under the larger tree
• Implementation: Store the number

of nodes (or “weight”) of each tree
in the root

- Constant-time lookup instead of
having to traverse the entire tree to
count

union(A, B):
rootA = find(A)
rootB = find(B)
put lighter root under heavier root

union(A, B)
union(B, C)
union(C, D)
find(A) A

B

C

D

Now what happens?

B

A C D

Perfect! Best runtime we can get.

CSE 373 Summer 2020LEC 19: Disjoint Sets II

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

N H

1 0

CSE 373 Summer 2020LEC 19: Disjoint Sets II

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

1

N H

1 0

2 1

CSE 373 Summer 2020LEC 19: Disjoint Sets II

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

1

2

3

N H

1 0

2 1

4 ?

CSE 373 Summer 2020LEC 19: Disjoint Sets II

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

1 2

3

N H

1 0

2 1

4 2

CSE 373 Summer 2020LEC 19: Disjoint Sets II

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

1 2

3

4

5 6

7

N H

1 0

2 1

4 2

8 ?

CSE 373 Summer 2020LEC 19: Disjoint Sets II

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

1 2

3

N H

1 0

2 1

4 2

8 34

5 6

7

CSE 373 Summer 2020LEC 19: Disjoint Sets II

WeightedQuickUnion: Performance

0

1 2

3

N H

1 0

2 1

4 2

8 3

16 4

4

5 6

7

8

9 10

11

12

13 14

15

• Consider the worst case where the tree height grows as fast as
possible
• Worst case tree height is Θ(log N)

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Why Weights Instead of Heights?
• We used the number of items in a tree to decide upon the root

• Why not use the height of the tree?
- HeightedQuickUnion’s runtime is asymptotically the same: Θ(log(n))
- It’s easier to track weights than heights, even though WeightedQuickUnion

can lead to some suboptimal structures like this one:

1 2

0

4

6

53 8

9

7+ 1 2

0

4 653

8

9

7

CSE 373 Summer 2020LEC 19: Disjoint Sets II

WeightedQuickUnion Runtime

• This is pretty good! But there’s one final optimization we can make:
path compression

(Baseline) QuickFind QuickUnion WeightedQuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛)
union(x, y)
assuming root args

Θ(𝑛) Θ(𝑛) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛)

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union
operation

Avoids the worst case
runtime for Find

Makes future Find
operations faster

DISJOINT SETS ADT

CSE 373 Summer 2020LEC 19: Disjoint Sets II

• Thus far, the modifications we’ve studied are designed to
preserve invariants

- E.g. Performing rotations to preserve the AVL invariant
- We rely on those invariants always being true so every call is fast

• Path compression is entirely different: we are modifying the tree
structure to improve future performance

- Not adhering to a specific invariant
- The first call may be slow, but will optimize so future calls can be fast

Modifying Data Structures for Future Gains

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Path Compression: Idea
• This is the worst-case topology if we use WeightedQuickUnion

• Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just

constant time work to point to root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13 14

15

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Path Compression: Idea
• This is the worst-case topology if we use WeightedQuickUnion

• Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just

constant time work to point to root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13

14 15

• Perform Path Compression on every find(), so future calls to find() are
faster!

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Path Compression: Details and Runtime
• Run path compression on every find()!

- Including the find()s that are invoked as part of a union()

• Understanding the performance of M>1 operations requires
amortized analysis

- Effectively averaging out rare events over many common ones
- Typically used for “In-Practice” case

- E.g. when we assume an array doesn’t resize “in practice”, we can do that because
the rare resizing calls are amortized over many faster calls

- In 373 we don’t go in-depth on amortized analysis

0

1 2 3 4

5

6

7

8

9

10 11 12

13

14 15

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Path Compression: Runtime
• M find()s on WeightedQuickUnion requires takes Θ(M log N)

• … but M find()s on WeightedQuickUnionWithPathCompression
takes O(M log*N)!

- log*n is the “iterated log”: the number of times you need to apply log to
n before it’s <= 1

- Note: log* is a loose bound

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Path Compression: Runtime
• Path compression results in find()s and union()s that are very very

close to (amortized) constant time
- log* is less than 5 for any realistic input
- If M find()s/union()s on N nodes is O(M log*N)

and log*N ≈ 5, then find()/union()s amortizes
to O(1)! 🤯

N log* N

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the
known universe is 2256ish

CSE 373 Summer 2020LEC 19: Disjoint Sets II

WQU + Path Compression Runtime

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path Compression

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)

In-Practice Runtimes:

• And if log* n <= 5 for any reasonable input…
- We’ve just witnessed an incredible feat of data

structure engineering: every operation is constant!?*
- *Caveat: amortized constant, in the “in-practice” case;

still logarithmic in the worst case!

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Kruskal’s Runtime

• find and union are log|V| in worst case, but amortized constant “in practice”
• Either way, dominated by time to sort the edges L

- For an MST to exist, E can’t be smaller than V, so assume it dominates
- Note: some people write |E|log|V|, which is the same (within a constant factor)

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

total Θ 𝑉 iterations

Θ |𝑉|

Θ V log |𝑉|

Θ 𝐸 iterations

Θ 𝐸 log |𝐸|

Θ log |𝑉|

Θ log |𝑉|

Θ E log |𝑉|Θ E log |𝐸|

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Dijkstra’s Prim’s Kruskal’s

TRAVERSAL
(COMMONLY SHORTEST PATHS) MINIMUM SPANNING TREES

𝜣(𝑽 𝐥𝐨𝐠 𝑽 + 𝑬 𝐥𝐨𝐠 |𝑽|) 𝜣(𝑬 𝐥𝐨𝐠 |𝑽|) 𝜣(𝑬 𝐥𝐨𝐠 |𝑽|)

• Goes edge-by-edge
• Choose when:

• Want MST
• Graph is sparse (fewer edges)
• Edges already sorted

• Goes vertex-by-vertex
• Choose when:

• Want MST
• Graph is dense (more edges)

• Goes in order of shortest-path-
so-far

• Choose when:
• Want shortest path on

weighted graph

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union
operation

Avoids the worst case
runtime for Find

Makes future Find
operations faster

DISJOINT SETS ADT

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2

Optimizes for the Union
operation

Avoids the worst case
runtime for Find

Makes future Find
operations faster

DISJOINT SETS ADT

ArrayWeighted
QuickUnion + Path

Compression

5

Better constant factors
when stored in an array

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Using Arrays for Up-Trees
• Since every node can have at most one

parent, what if we use an array to
store the parent relationships?
• Proposal: each node corresponds to an

index, where we store the index of the
parent (or –1 for roots). Use the root
index as the representative ID!
• Just like with heaps, tree picture still

conceptually correct, but exists in our
minds!

Keanu (2)

Farrell

Howard (4)

Joyce (0)

EricBrian

Melissa

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Using Arrays: Find
• Initial jump to element still done with

extra Map
• But traversing up the tree can be done

purely within the array!

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric

Keanu (2)

Farrell

Howard (4)

Joyce (0)

EricBrian

Melissa

Melissa

Keanu

Brian
…

find(A):
index = jump to A node’s index
while array[index] >= 0:
index = array[index]

path compression
return index

1

2

find(Melissa)

1

2

= 0

• Can still do path compression by setting all indices
along the way to the root index!

0

3

3

CO R R ECT ED
A FT ER LECT UR E

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Using Arrays: Union
• For WeightedQuickUnion, we need

to store the number of nodes in
each tree (the weight)
• Instead of just storing -1 to indicate

a root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric

Keanu (2)

Farrell

Joyce (0)

EricBrian

Melissa

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 *

array[rootB] to determine weights
put lighter root under heavier root

weight 4
weight 2

union(Eric, Farrell)

Howard (4)

weight 1

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Using Arrays: Union
• For WeightedQuickUnion, we need

to store the number of nodes in
each tree (the weight)
• Instead of just storing -1 to indicate

a root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 *

array[rootB] to determine weights
put lighter root under heavier root

-6 0

Keanu (2)

Farrell

Joyce (0)

EricBrian

Melissa

weight 6

Howard (4)

weight 1

Keanu

union(Eric, Farrell)

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Using Arrays for WQU+PC
• Same asymptotic runtime as using tree nodes, but check out all these

other benefits:
- More compact in memory
- Better spatial locality, leading to better constant factors from cache usage
- Simplify the implementation!

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path Compression ArrayWQU+PC

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Recap: Graph Modeling

SCENARIO
&

QUESTION TO
ANSWER

ANSWER!

MODEL AS A GRAPH RUN ALGORITHM

• Choose vertices
• Choose edges
• Directed/Undirected
• Weighted/Unweighted
• Cyclic/Acyclic

…

• Just visit every node?
• BFS or DFS

• s-t Connectivity?
• BFS or DFS

• Unweighted shortest path?
• BFS

• Weighted shortest path?
• Dijkstra’s

• Minimum Spanning Tree?
• Prim’s or Kruskal’s

Often need to refine
original model as you work
through details of algorithm

Many ways to model
any scenario with a
graph, but question
motivates which data
is important

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Appendix Another Graph Modeling
Practice Problem

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Graph Modeling Activity
Note Passing - Part I
Imagine you are an American High School student. You have a very
important note to pass to your crush, but the two of you do not
share a class so you need to rely on a chain of friends to pass the
note along for you. A note can only be passed from one student to
another when they share a class, meaning when two students
have the same teacher during the same class period.

Unfortunately, the school administration is not as romantic as you,
and passing notes is against the rules. If a teacher sees a note,
they will take it and destroy it. Figure out if there is a sequence of
handoffs to enable you to get your note to your crush.

How could you model this situation as a graph?

Period 1 Period 2 Period 3 Period 4

You Smith Patel Lee Brown

Anika Smith Lee Martinez Brown

Bao Brown Patel Martinez Smith

Carla Martinez Jones Brown Smith

Dan Lee Lee Brown Patel

Crush Martinez Brown Smith Patel

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Possible Design
• Vertices

- Students
- Fields: Name, have note

• Edges
- Classes shared by students
- Not directed
- Could be left without weights
- Fields: vertex 1, vertex 2, teacher, period

You

Anika

Carla

Bao

Dan
Crush

Smith, 1

Martinez, 1

Patel, 2

Lee, 2

M
ar

tin
ez

, 3

Br
ow

n,
 3

Smith
, 4

Patel, 4

You

A

B

C

D

Crush

A B

B DYou

A CYou

D CrushB

C CrushA

C D

Adjacency List

Algorithm

BFS or DFS to see if you and your Crush are connected

CSE 373 Summer 2020LEC 19: Disjoint Sets II

More Design
Note Passing - Part II
Now that you know there exists a way to get your note to your crush, we can work on picking the best hand off
path possible.

Thought Experiments:
1. What if you want to optimize for time to get your crush the note as early in the day as possible?

- How can we use our knowledge of which period students share to calculate for time knowing that period
1 is earliest in the day and period 4 is later in the day?

- How can we account for the possibility that it might take more than a single school day to deliver the
note?

2. What if you want to optimize for rick avoidance to make sure your note only gets passed in classes least likely
for it to get intercepted?

- Some teachers are better at intercepting notes than others. The more notes a teacher has intercepted, the
more likely it is they will take yours and it will never get to your crush. If we knew how many notes each
teacher has intercepted how might we incorporate that into our graph to find the least risky route?

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Optimize for Time

You

Anika

Carla

Bao

Dan
Crush

1

12

2
3

34

4

1. Add the period number to each edge as its weight
2. Run Dijkstra’s from You to Crush

Vertex Distance Predecessor Process Order

You 0 -- 0

Anika 1 You 1

Bao 2 You 5

Carla 6 Dan 3

Dan 3 Anika 2

Crush 7 Carla 4*

*The path found wraps around to a new school day because the path
moves from a later period to an earlier one
- We can change our algorithm to check for wrap arounds and try other
routes

“Distance” will represent the sum of which periods the note is passed in, because smaller period values are
earlier in the day the smaller the sum the earlier the note gets there except in the case of a “wrap around”

CSE 373 Summer 2020LEC 19: Disjoint Sets II

Optimize for Risk

You

Anika

Carla

Bao

Dan
Crush

1

32

4
3

51

4

1. Add the number of
letters intercepted by
the teacher to each edge
as its weight

2. Run Dijkstra’s from You
to Crush

Vertex Distance Predecessor Process Order

You 0 -- 0

Anika 1 You 1

Bao 4 Anika 2

Carla 5 Bao 3

Dan 10 Carla 5

Crush 8 Carla 4

Teacher Notes
Intercepted

Smith 1

Martinez 3

Lee 4

Brown 5

Patel 2

“Distance” will represent the sum of notes intercepted across the
teachers in your passing route. The smaller the sum of notes the
“safer” the path.

