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Consider the following WeightedQuickUnion structure. 
What’s the result of calling union(Louise, Linda)
and then union(Louise, Tina)?
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Announcements
• EX3 due TONIGHT 11:59pm PDT
• P4 (Mazes) has been released

- Please start early! Truly 2 weeks worth of work, and some of the coolest work 
too so we don’t want anyone to miss out!

- Not sure how to start writing code? That’s okay! Reading and integrating with 
substantial starter code is an objective for this assignment.

- Remember to read the instructions and 

• EX4 will be released Monday
- You’ll need Monday’s lecture for a good portion of it
- Still due Monday, 8/17 (week 9)
- Need something else fun to do this weekend? Consider solving a maze or two!
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Learning Objectives

1. Implement WeightedQuickUnion and describe why making the 
change protects against the worst case find runtime

2. Implement path compression and argue why it improves runtimes, 
despite not following an invariant

3. Describe what contributes to the runtime of Prim’s and Kruskal’s, 
and compare/contrast the two algorithms

4. Implement WeightedQuickUnion using arrays and describe the 
benefits of doing so

After this lecture, you should be able to...
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1 1

Review MSTs
• Minimum (minimizes sum of edge weights) Spanning (connects all vertices) Tree 

(exactly one path between any two nodes)
- Minimizing sum of edge weights is NOT the same as minimizing shortest paths!

• If a graph is connected, has at least one MST
• If a graph is connected and has all unique edges, has exactly one MST
• If a graph is connected and has duplicate edges, it may have multiple valid MSTs

- Which one we pick is down to arbitrary order we visit duplicates: Prim’s & Kruskal’s could 
potentially differ, but both MSTs would still be valid.
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Review Disjoint Sets ADT (aka “Union-Find”) 

• Kruskal’s MST algorithm goes edge-by-edge, but it 
needs a Disjoint Sets ADT under the hood to check 
whether vertices are already connected!

- Conceptually, a single instance of this ADT contains a 
“family” of sets that are disjoint (no element belongs to 
multiple sets)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either 
a member or a unique ID)

Behavior
makeSet(value) – new set with value 
as only member (and representative)
find(value) – return representative 
of the set containing value
union(x, y) – combine sets containing 
x and y into one set with all 
elements, choose single new 
representative

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)
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Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union 
operation

Avoids the worst case 
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT
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Review QuickFind vs. QuickUnion

Joyce, Brian, 
Eric, Melissa

Keanu, 
Farrell

Howard

DISJOINT SETS ADT

QuickFind QuickUnion

map from value to representative ID

Keanu

Joyce

Farrell

Brian

Eric

1

2

2

2

1

Melissa

Howard

2

3

Keanu (1)

Farrell

Howard (3)

Joyce (2)

EricBrian

Melissa

trees of values with representative 
ID at each root

(Baseline) QuickFind QuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1)

find(value) Θ(𝑛) Θ(1) Θ(𝑛)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(1)

Could also use one element from 
each set (e.g. the root) as its 
representative: only uniqueness 
matters
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Review QuickUnion: Why Use Both Roots?
Example: result of union(Eric, Farrell) on these Disjoint 
Sets given three possible implementations:

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

union(A, B):
rootB = find(B)
set A to point to rootB

union(A, B):
rootA = find(A)
set rootA to point to B

Keanu (1)

Farrell

Howard (3)

Joyce

EricBrian

Melissa

Keanu (1)

Farrell

Howard (3)

Joyce (2)

Eric
Brian

Melissa

Keanu (1)

Farrell

Howard (3)

Joyce

EricBrian

Melissa

Keanu (1)

Farrell

Howard (3)

Joyce (2)

EricBrian

Melissa

Correct: Everything in Eric’s set 
now connected to everything 
in Farrell’s set!

Incorrect: Eric and Joyce were 
connected before; the union 
operation shouldn’t remove 
connections.

Inefficient: Technically correct, but 
increases height of the up-tree so 
makes 
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pollev.com/uwcse373

Review QuickUnion: Let’s Build a Worst Case

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

find(A):
jump to A node
travel upward until root
return ID

Even with the ”use-the-roots” implementation of union, try to come 
up with a series of calls to union that would create a worst-case 
runtime for find on these Disjoint Sets:

A

B

C

D
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pollev.com/uwcse373

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

find(A):
jump to A node
travel upward until root
return ID

Even with the ”use-the-roots” implementation of union, try to come 
up with a series of calls to union that would create a worst-case 
runtime for find on these Disjoint Sets:

A

B

C

D

union(A, B)
union(B, C)
union(C, D)
find(A) B

A

C

D

Review QuickUnion: Let’s Build a Worst Case
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Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union 
operation

Avoids the worst case 
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT
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Review WeightedQuickUnion

• Goal: Always pick the smaller tree 
to go under the larger tree
• Implementation: Store the number 

of nodes (or “weight”) of each tree 
in the root

- Constant-time lookup instead of 
having to traverse the entire tree to 
count

union(A, B):
rootA = find(A)
rootB = find(B)
put lighter root under heavier root

union(A, B)
union(B, C)
union(C, D)
find(A) A

B

C

D

Now what happens?

B

A C D

Perfect! Best runtime we can get.
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WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible

0

N H

1 0
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WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible
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WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible
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WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible
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WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible
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WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible

0
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2 1

4 2

8 34
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WeightedQuickUnion: Performance

0

1 2

3

N H

1 0

2 1

4 2

8 3

16 4

4

5 6

7

8

9 10

11

12

13 14

15

• Consider the worst case where the tree height grows as fast as 
possible
• Worst case tree height is Θ(log N)
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Why Weights Instead of Heights?
• We used the number of items in a tree to decide upon the root

• Why not use the height of the tree?
- HeightedQuickUnion’s runtime is asymptotically the same: Θ(log(n))
- It’s easier to track weights than heights, even though WeightedQuickUnion

can lead to some suboptimal structures like this one:
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WeightedQuickUnion Runtime

• This is pretty good! But there’s one final optimization we can make: 
path compression

(Baseline) QuickFind QuickUnion WeightedQuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛)
union(x, y)
assuming root args

Θ(𝑛) Θ(𝑛) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛)
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Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union 
operation

Avoids the worst case 
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT
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• Thus far, the modifications we’ve studied are designed to 
preserve invariants

- E.g. Performing rotations to preserve the AVL invariant
- We rely on those invariants always being true so every call is fast

• Path compression is entirely different: we are modifying the tree 
structure to improve future performance

- Not adhering to a specific invariant
- The first call may be slow, but will optimize so future calls can be fast

Modifying Data Structures for Future Gains
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Path Compression: Idea
• This is the worst-case topology if we use WeightedQuickUnion

• Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just 

constant time work to point to root too)
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Path Compression: Idea
• This is the worst-case topology if we use WeightedQuickUnion

• Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just 

constant time work to point to root too)
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14 15

• Perform Path Compression on every find(), so future calls to find() are 
faster!
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Path Compression: Details and Runtime
• Run path compression on every find()!

- Including the find()s that are invoked as part of a union()

• Understanding the performance of M>1 operations requires 
amortized analysis

- Effectively averaging out rare events over many common ones
- Typically used for “In-Practice” case

- E.g. when we assume an array doesn’t resize “in practice”, we can do that because 
the rare resizing calls are amortized over many faster calls

- In 373 we don’t go in-depth on amortized analysis

0

1 2 3 4

5

6

7

8

9

10 11 12

13

14 15



CSE 373 Summer 2020LEC 19: Disjoint Sets II

Path Compression: Runtime
• M find()s on WeightedQuickUnion requires takes Θ(M log N)

• … but M find()s on WeightedQuickUnionWithPathCompression 
takes O(M log*N)!

- log*n is the “iterated log”: the number of times you need to apply log to 
n before it’s <= 1

- Note: log* is a loose bound

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Path Compression: Runtime
• Path compression results in find()s and union()s that are very very 

close to (amortized) constant time
- log* is less than 5 for any realistic input
- If M find()s/union()s on N nodes is O(M log*N)

and log*N ≈ 5, then find()/union()s amortizes
to O(1)!  🤯

N log* N

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the 
known universe is 2256ish
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WQU + Path Compression Runtime

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path Compression

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)

In-Practice Runtimes:

• And if log* n <= 5 for any reasonable input…
- We’ve just witnessed an incredible feat of data 

structure engineering: every operation is constant!?*
- *Caveat: amortized constant, in the “in-practice” case; 

still logarithmic in the worst case!
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Kruskal’s Runtime

• find and union are log|V| in worst case, but amortized constant “in practice”
• Either way, dominated by time to sort the edges L

- For an MST to exist, E can’t be smaller than V, so assume it dominates
- Note: some people write |E|log|V|, which is the same (within a constant factor)

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

total Θ 𝑉 iterations

Θ |𝑉|

Θ V log |𝑉|

Θ 𝐸 iterations

Θ 𝐸 log |𝐸|

Θ log |𝑉|

Θ log |𝑉|

Θ E log |𝑉|Θ E log |𝐸|
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Dijkstra’s Prim’s Kruskal’s

TRAVERSAL
(COMMONLY SHORTEST PATHS) MINIMUM SPANNING TREES

𝜣( 𝑽 𝐥𝐨𝐠 𝑽 + 𝑬 𝐥𝐨𝐠 |𝑽|) 𝜣( 𝑬 𝐥𝐨𝐠 |𝑽|) 𝜣( 𝑬 𝐥𝐨𝐠 |𝑽|)

• Goes edge-by-edge
• Choose when:

• Want MST
• Graph is sparse (fewer edges)
• Edges already sorted

• Goes vertex-by-vertex
• Choose when:

• Want MST
• Graph is dense (more edges)

• Goes in order of shortest-path-
so-far

• Choose when:
• Want shortest path on 

weighted graph
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Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union 
operation

Avoids the worst case 
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT
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Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2

Optimizes for the Union 
operation

Avoids the worst case 
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT

ArrayWeighted
QuickUnion + Path 

Compression

5

Better constant factors 
when stored in an array
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Using Arrays for Up-Trees
• Since every node can have at most one 

parent, what if we use an array to 
store the parent relationships?
• Proposal: each node corresponds to an 

index, where we store the index of the 
parent (or –1 for roots). Use the root 
index as the representative ID!
• Just like with heaps, tree picture still 

conceptually correct, but exists in our 
minds!

Keanu (2)

Farrell

Howard (4)

Joyce (0)

EricBrian

Melissa

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric
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Using Arrays: Find
• Initial jump to element still done with 

extra Map
• But traversing up the tree can be done 

purely within the array!

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric

Keanu (2)

Farrell

Howard (4)

Joyce (0)

EricBrian

Melissa

Melissa

Keanu

Brian
…

find(A):
index = jump to A node’s index
while array[index] >= 0:
index = array[index]

path compression
return index

1

2

find(Melissa)

1

2

= 0

• Can still do path compression by setting all indices 
along the way to the root index!

0

3

3

CO R R ECT ED
A FT ER  LECT UR E
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Using Arrays: Union
• For WeightedQuickUnion, we need 

to store the number of nodes in 
each tree (the weight)
• Instead of just storing -1 to indicate 

a root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric

Keanu (2)

Farrell

Joyce (0)

EricBrian

Melissa

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 * 

array[rootB] to determine weights
put lighter root under heavier root

weight 4
weight 2

union(Eric, Farrell)

Howard (4)

weight 1
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Using Arrays: Union
• For WeightedQuickUnion, we need 

to store the number of nodes in 
each tree (the weight)
• Instead of just storing -1 to indicate 

a root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Brian Keanu Melissa Howard Farrell Eric

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 * 

array[rootB] to determine weights
put lighter root under heavier root

-6 0

Keanu (2)

Farrell

Joyce (0)

EricBrian

Melissa

weight 6

Howard (4)

weight 1

Keanu

union(Eric, Farrell)
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Using Arrays for WQU+PC
• Same asymptotic runtime as using tree nodes, but check out all these 

other benefits:
- More compact in memory
- Better spatial locality, leading to better constant factors from cache usage
- Simplify the implementation!

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path Compression ArrayWQU+PC

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)
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Recap: Graph Modeling

SCENARIO
&

QUESTION TO 
ANSWER

ANSWER!

MODEL AS A GRAPH RUN ALGORITHM

• Choose vertices
• Choose edges
• Directed/Undirected
• Weighted/Unweighted
• Cyclic/Acyclic

…

• Just visit every node?
• BFS or DFS

• s-t Connectivity?
• BFS or DFS

• Unweighted shortest path?
• BFS

• Weighted shortest path?
• Dijkstra’s

• Minimum Spanning Tree?
• Prim’s or Kruskal’s

Often need to refine 
original model as you work 
through details of algorithm

Many ways to model 
any scenario with a 
graph, but question 
motivates which data 
is important
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Appendix Another Graph Modeling 
Practice Problem
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Graph Modeling Activity
Note Passing - Part I
Imagine you are an American High School student. You have a very 
important note to pass to your crush, but the two of you do not 
share a class so you need to rely on a chain of friends to pass the 
note along for you. A note can only be passed from one student to 
another when they share a class, meaning when two students 
have the same teacher during the same class period.

Unfortunately, the school administration is not as romantic as you, 
and passing notes is against the rules. If a teacher sees a note, 
they will take it and destroy it. Figure out if there is a sequence of 
handoffs to enable you to get your note to your crush.

How could you model this situation as a graph?

Period 1 Period 2 Period 3 Period 4

You Smith Patel Lee Brown

Anika Smith Lee Martinez Brown

Bao Brown Patel Martinez Smith

Carla Martinez Jones Brown Smith

Dan Lee Lee Brown Patel

Crush Martinez Brown Smith Patel
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Possible Design
• Vertices

- Students
- Fields: Name, have note

• Edges 
- Classes shared by students
- Not directed
- Could be left without weights
- Fields: vertex 1, vertex 2, teacher, period

You

Anika

Carla

Bao

Dan
Crush

Smith, 1

Martinez, 1

Patel, 2

Lee, 2

M
ar

tin
ez

, 3

Br
ow

n,
 3

Smith
, 4

Patel, 4

You

A

B

C

D

Crush

A B

B DYou

A CYou

D CrushB

C CrushA

C D

Adjacency List

Algorithm

BFS or DFS to see if you and your Crush are connected



CSE 373 Summer 2020LEC 19: Disjoint Sets II

More Design
Note Passing - Part II
Now that you know there exists a way to get your note to your crush, we can work on picking the best hand off 
path possible.

Thought Experiments:
1. What if you want to optimize for time to get your crush the note as early in the day as possible?

- How can we use our knowledge of which period students share to calculate for time knowing that period 
1 is earliest in the day and period 4 is later in the day?

- How can we account for the possibility that it might take more than a single school day to deliver the 
note?

2. What if you want to optimize for rick avoidance to make sure your note only gets passed in classes least likely 
for it to get intercepted?

- Some teachers are better at intercepting notes than others. The more notes a teacher has intercepted, the 
more likely it is they will take yours and it will never get to your crush. If we knew how many notes each 
teacher has intercepted how might we incorporate that into our graph to find the least risky route?
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Optimize for Time

You

Anika

Carla

Bao

Dan
Crush

1

12

2
3

34

4

1. Add the period number to each edge as its weight
2. Run Dijkstra’s from You to Crush

Vertex Distance Predecessor Process Order

You 0 -- 0

Anika 1 You 1

Bao 2 You 5

Carla 6 Dan 3

Dan 3 Anika 2

Crush 7 Carla 4*

*The path found wraps around to a new school day because the path 
moves from a later period to an earlier one
- We can change our algorithm to check for wrap arounds and try other 
routes

“Distance” will represent the sum of which periods the note is passed in, because smaller period values are 
earlier in the day the smaller the sum the earlier the note gets there except in the case of a “wrap around”
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Optimize for Risk

You

Anika

Carla

Bao

Dan
Crush

1

32

4
3

51

4

1. Add the number of 
letters intercepted by 
the teacher to each edge 
as its weight

2. Run Dijkstra’s from You 
to Crush

Vertex Distance Predecessor Process Order

You 0 -- 0

Anika 1 You 1

Bao 4 Anika 2

Carla 5 Bao 3

Dan 10 Carla 5

Crush 8 Carla 4

Teacher Notes
Intercepted

Smith 1

Martinez 3

Lee 4

Brown 5

Patel 2

“Distance” will represent the sum of notes intercepted across the 
teachers in your passing route. The smaller the sum of notes the 
“safer” the path. 


