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Disjoint Sets I

BEFORE WE START

pollev.com/uwcse373

Which of the following is true about minimum 
spanning trees?

a) Every graph has at least one MST
b) Every graph has at most one MST
c) The shortest path from any vertex u to any vertex 

v is the one that follows the MST
d) Every MST has a source vertex
e) Dijkstra’s algorithm computes an MST
f) None of the above
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Announcements
• P3 due TONIGHT at 11:59pm PDT

- Don’t forget to fill out the P3 Feedback Survey!

• EX3 due Friday, 8/07 11:59pm PDT
• P4, the last project of the quarter, released tonight!

- If you haven’t already, please fill out the P4 Partner Form so we can send out 
partner assignments

https://canvas.uw.edu/courses/1381169/quizzes/1280980
https://courses.cs.washington.edu/courses/cse373/tools/20su/partner/p4/
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Learning Objectives

1. Describe Kruskal’s Algorithm, evaluate why it works, and describe 
why it needs a new ADT

2. Compare and contrast QuickUnion with QuickFind and describe 
how the two structure optimize for different operations

3. Implement WeightedQuickUnion and describe why making the 
change protects against the worst case find runtime

4. Describe path compression at a high level and argue for why it 
improves runtimes despite not following an invariant

After this lecture, you should be able to...
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Review Minimum Spanning Trees (MSTs)
• A Minimum Spanning Tree for a graph is a set of that graph’s edges 

that connect all of that graph’s vertices (spanning) while minimizing 
the total weight of the set (minimum)

- Note: does NOT necessarily minimize the path from each vertex to every 
other vertex

- Any tree with V vertices will have V-1 edges
- A separate entity from the graph itself! More of an “annotation” applied to 

the graph, just like a Shortest Paths Tree (SPT)
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Review Why do MST Algorithms Work?
• Two useful properties for MST edges. We can think about them from 

either perspective:
- Cycle Property: The heaviest edge along a cycle is NEVER part of an MST.
- Cut Property: Split the vertices of the graph into any two sets A and B. The lightest 

edge between A and B is ALWAYS part of an MST. (Prim’s thinks this way)

• Whenever you add an edge to a tree you create exactly one cycle.
Removing any edge from that cycle gives another tree!
• This observation, combined with the cycle and cut properties form the 

basis of all of the greedy algorithms for MSTs.
- greedy algorithm: chooses best known option at each point and commits, rather 

than waiting for a global view of the graph before deciding
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Review Adapting Dijkstra’s: Prim’s Algorithm
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0
PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)      // previous smallest edge to v
newDist = distTo.get(u) + w  // is this a smaller edge to v?
if (newDist < oldDist):

distTo.put(u, newDist)
edgeTo.put(u, v)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

distTo.get(u) + 

prims• Normally, Dijkstra’s checks for a 
shorter path from the start.

• But MSTs don’t care about 
individual paths, only the overall 
weight!

• New condition: “would this be a 
smaller edge to connect the 
current known set to the rest of 
the graph?”
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A Different Approach
• Suppose the MST on the right was produced by Prim’s
• Observation: We basically chose all the smallest edges 

in the entire graph (1, 2, 3, 4, 6)
- The only exception was 5. Why shouldn’t we add edge 5?
- Because adding 5 would create a cycle, and to connect A, C, & D 

we’d rather choose 1 & 4 than 1 & 5 or 4 & 5.

• Prim’s thinks “vertex by vertex”, but what if you think 
“edge by edge” instead?

- Start with the smallest edge in the entire graph and work your 
way up

- Add the edge to the MST as long as it connects two new 
groups (meaning don’t add any edges that would create a 
cycle)
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Building an MST “edge by edge” 
in this graph:

• Add edge 1
• Add edge 2
• Add edge 3
• Add edge 4
• Skip edge 5 (would create a cycle)
• Add edge 6
• Finished: all vertices in the MST!
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Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track 
of isolated “islands” of vertices 
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within the 

same “island”, it forms a cycle! Discard it.
- If an edge connects two vertices in different 

“islands”, add it to the MST! Now those 
“islands” need to be combined.
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Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!
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Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!
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Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!
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Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
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• Key Intuition: Kruskal’s keeps track 
of isolated “islands” of vertices 
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within the 

same “island”, it forms a cycle! Discard it.
- If an edge connects two vertices in different 
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“islands” need to be combined.
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Kruskal’s Algorithm
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Prim’s Demos and Visualizations
• Dijkstra’s Visualization

- https://www.youtube.com/watch?v=1oiQ0hrVwJk
- Dijkstra’s proceeds radially from its source, because it chooses nearby 

edges by path length from source

• Prim’s Visualization
- https://www.youtube.com/watch?v=6uq0cQZOyoY
- Prim’s jumps around the perimeter, because it chooses nearby edges by 

edge weight (there’s no source)

• Kruskal’s Visualization
- https://www.youtube.com/watch?v=ggLyKfBTABo
- Kruskal’s jumps around the entire graph, because it chooses from all 

edges purely by edge weight (while preventing cycles)

https://www.youtube.com/watch?v=1oiQ0hrVwJk
https://www.youtube.com/watch?v=6uq0cQZOyoY
https://www.youtube.com/watch?v=ggLyKfBTABo
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Selecting an ADT
• Kruskal’s needs to find what MST a vertex 

belongs to, and union those MSTs together
- Our existing ADTs don’t lend themselves well to 

“unioning” two sets…
- Let’s define a new one!
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kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)
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Disjoint Sets ADT (aka “Union-Find”) 
• Kruskal’s will use a Disjoint Sets ADT under 

the hood
- Conceptually, a single instance of this ADT 

contains a “family” of sets that are disjoint (no 
element belongs to multiple sets)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either 
a member or a unique ID)

Behavior
makeSet(value) – new set with value 
as only member (and representative)
find(value) – return representative 
of the set containing value
union(x, y) – combine sets containing 
x and y into one set with all 
elements, choose single new 
representative

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST);
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Project 4: Mazes!
• You find yourself trapped in the Labyrinth of 

Greek legend – bummer!
• How do you solve a maze?

- If we could model a maze as a graph, we’d just need 
an algorithm to find a path from s to t… Maybe even 
the shortest path?

• How do you generate a maze?
- We’d love an algorithm that is guaranteed to connect 

s to t (spanning), but only produces one path from s 
to t (tree)…

s

t
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Project 4: Mazes
• It turns out that randomizing the weights of a graph and 

then computing the MST is a fantastic way to generate 
mazes!
• In P4, you’ll do both: Implement Dijkstra’s to solve an 

arbitrary maze, then implement Kruskal’s (and a Disjoint Set) 
to generate those mazes
• This project is really application-heavy!

- Graphical User Interface (GUI) for viewing mazes and solving them
- Significantly more starter code than past projects, to give you

practice integrating with an existing codebase
- A major part of the challenge in P4 is reading through the starter

code to understand what you need to interface with! Don’t
underestimate the time that takes.

• 2 week project, and 2 weeks worth of work. It’s never been 
more important to start early!
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Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union 
operation

Avoids the worst case
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT
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Case Study: Disjoint Sets
• Today’s lecture on the data structures which implement the Disjoint 

Sets ADT is an interesting case study in data structure design and 
iterative design improvements

- Good chance to dust off your metacognitive skills!
- In particular, try to identify what observations we make in each data structure 

that inspire improvements in the next data structure. How could you apply a 
similar skill to your own data structures?

Metacognitive 
Opportunities 
Ahead!
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Maps to Sets

makeSet(value) Θ(1)
find(value) Θ(𝑛)
union(x, y) Θ(𝑛)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either 
a member or a unique ID)

Behavior
makeSet(value) – new set with value 
as only member (and representative)
find(value) – return representative 
of the set containing value
union(x, y) – combine sets containing 
x and y into one set with all 
elements, choose single new 
representative

find(value): scan 
through every set under 

every representative

union(x, y): copy all 
elements from set 

pointed to by x into set 
pointed to by y

Maps to Sets (baseline): map from 
representative ID to set of values

1

2

Keanu, Farrell

Joyce, Brian, Eric

Can we use an existing data structure? aka “Can we just throw 
maps at the problem?”
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QuickFind Implementation
QuickFind: map from value to 
representative ID

Keanu

Joyce

Farrell

Brian

Eric

1

2

2

2

1

Maps to Sets QuickFind

makeSet(value) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1)
union(x, y) Θ(𝑛) Θ(𝑛)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either 
a member or a unique ID)

Behavior
makeSet(value) – new set with value 
as only member (and representative)
find(value) – return representative 
of the set containing value
union(x, y) – combine sets containing 
x and y into one set with all 
elements, choose single new 
representative

find(value): lookup 
element and return 
corresponding rep.

union(x, y): scan 
through all elements to 
find those in same set, 

update to new rep.

• If we store values as the keys, we 
can take advantage of fast lookup 
to make find fast!

• But what about union?

find(Farrell) à 1
find(Eric) à 2
find(Farrell) != find(Eric)
find(Farrell) == find(Keanu)
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Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union 
operation

Avoids the worst case
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT
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QuickUnion Data Structure
• Fundamental idea:

- QuickFind tracks each element’s ID
- QuickUnion tracks each element’s parent.  Only the root has an ID!

- Each set becomes tree-like, but something slightly different called an up-tree: store 
pointers from children to parents!

Joyce, Brian, 
Eric, Melissa

Keanu, 
Farrell

Howard

Keanu (1)

Farrell

Howard (3)

Joyce (2)

EricBrian

Melissa

Abstract Idea of “Disjoint Sets” Implementation using QuickUnion

=



CSE 373 Summer 2020LEC 18: Disjoint Sets I

QuickUnion: Find

• Key idea: can travel upward from any 
node to find its representative ID
• How do we jump to a node quickly?

- Also store a map from value to its node 
(Omitted in future slides)

find(Farrell) à 1
find(Eric) à 2
find(Farrell) != find(Eric)
find(Farrell) == find(Keanu)

find(Eric):
jump to Eric node
travel upward until root
return ID

Keanu (1)

Farrell

Howard (3)

Joyce (2)

EricBrian

Melissa

Brian

Melissa

Howard
…
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QuickUnion: Union
• Key idea: easy to simply rearrange pointers to 

union entire trees together!
• Which of these implementations would you 

prefer?
- Vote in the Participants Panel!

union(Eric, Farrell):
rootF = find(Farrell)
set Eric to point to rootF

Keanu (1)

Farrell

Howard (3)

Joyce (2)

EricBrian

Melissa

union(Eric, Farrell):
rootE = find(Eric)
rootF = find(Farrell)
set rootE to point to rootF

Keanu (1)

Farrell

Howard (3)

Joyce (2)

Eric
Brian

Melissa

Keanu (1)

Farrell

Howard (3)

Joyce

EricBrian

Melissa

RESULT:
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QuickUnion: Union
union(Eric, Farrell):
rootF = find(Farrell)
set Eric to point to rootF

union(Eric, Farrell):
rootE = find(Eric)
rootF = find(Farrell)
set rootE to point to rootF

Keanu (1)

Farrell

Howard (3)

Joyce (2)

Eric
Brian

Melissa

Keanu (1)

Farrell

Howard (3)

Joyce

EricBrian

Melissa

RESULT:

• We prefer the right implementation because by changing just the root, we effectively pull the 
entire tree into the new set!
• If we change the first node instead, we have to do more work for the rest of the old tree
• A rare example of constant time work manipulating a factor of n elements
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QuickUnion: Why bother with the second root?

• Key idea: will help minimize runtime for future find() calls if we keep 
the height of the tree short!

- Pointing directly to the second element would make the tree taller

union(Eric, Farrell):
rootE = find(Eric)
rootF = find(Farrell)
set rootE to point to rootF

Keanu (1)

Farrell

Howard (3)

Joyce

EricBrian

Melissa

union(Eric, Farrell):
rootE = find(Eric)
set rootE to point to Farell

Keanu (1)

Farrell

Howard (3)
Joyce

EricBrian

Melissa

Why not just use:
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QuickUnion: Checking in on those runtimes
• Only if we discount the runtime from 

union’s calls to find! Otherwise, Θ(𝑛).
- However, for Kruskal’s, not a bad 

assumption: we only ever call union with 
roots anyway!

Maps to Sets QuickFind QuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1)
findSet(value) Θ(𝑛) Θ(1) Θ(𝑛)
union(x, y) Θ(𝑛) Θ(𝑛) Θ(1)

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST);

*

*
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pollev.com/uwcse373

QuickUnion: Let’s Build a Worst Case

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

find(A):
jump to A node
travel upward until root
return ID

Even with the ”use-the-roots” implementation of union, try to come 
up with a series of calls to union that would create a worst-case 
runtime for find on these Disjoint Sets:

A

B

C

D
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pollev.com/uwcse373

QuickUnion: Let’s Build a Worst Case

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

find(A):
jump to A node
travel upward until root
return ID

Even with the ”use-the-roots” implementation of union, try to come 
up with a series of calls to union that would create a worst-case 
runtime for find on these Disjoint Sets:

A

B

C

D

union(A, B)
union(B, C)
union(C, D)
find(A) B

A

C

D
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Analyzing the QuickUnion Worst Case
• How did we get a degenerate tree?

- Even though pointing a root to a root usually helps with this, we can still get a 
degenerate tree if we put the root of a large tree under the root of a small tree.

- In QuickUnion, rootA always goes under rootB
- But what if we could ensure the smaller tree went under the larger tree?

B

A

C

D

union(C, D) B

A

C

D

What currently 
happens

What would help 
avoid degenerate tree
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Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union 
operation

Avoids the worst case 
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT
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WeightedQuickUnion

• Goal: Always pick the smaller tree 
to go under the larger tree
• Implementation: Store the number 

of nodes (or “weight”) of each tree 
in the root

- Constant-time lookup instead of 
having to traverse the entire tree to 
count

union(A, B):
rootA = find(A)
rootB = find(B)
put lighter root under heavier root

union(A, B)
union(B, C)
union(C, D)
find(A) A

B

C

D

Now what happens?

B

A C D

Perfect! Best runtime we can get.
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WeightedQuickUnion: Performance
• union()’s runtime is still dependent on find()’s runtime, which is a 

function of the tree’s height
• What’s the worst-case height for WeightedQuickUnion?

union(A, B):
rootA = find(A)
rootB = find(B)
put lighter root under heavier root
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WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible

0

N H

1 0
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WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 
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WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible
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WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible
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WeightedQuickUnion: Performance
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• Consider the worst case where the tree height grows as fast as 
possible
• Worst case tree height is Θ(log N)
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Why Weights Instead of Heights?
• We used the number of items in a tree to decide upon the root

• Why not use the height of the tree?
- HeightedQuickUnion’s runtime is asymptotically the same: Θ(log(n))
- It’s easier to track weights than heights, even though WeightedQuickUnion

can lead to some suboptimal structures like this one:
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WeightedQuickUnion Runtime

• This is pretty good! But there’s one final optimization we can make: 
path compression

Maps to Sets QuickFind QuickUnion WeightedQuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛)
union(x, y)
assuming root args

Θ(𝑛) Θ(𝑛) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛)
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Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union 
operation

Avoids the worst case 
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT
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• Thus far, the modifications we’ve studied are designed to 
preserve invariants

- E.g. Performing rotations to preserve the AVL invariant
- We rely on those invariants always being true so every call is fast

• Path compression is entirely different: we are modifying the tree 
structure to improve future performance

- Not adhering to a specific invariant
- The first call may be slow, but will optimize so future calls can be fast

Modifying Data Structures for Future Gains
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Path Compression: Idea
• This is the worst-case topology if we use WeightedQuickUnion

• Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just 

constant time work to point to root too)
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Path Compression: Idea
• This is the worst-case topology if we use WeightedQuickUnion

• Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just 

constant time work to point to root too)
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• Perform Path Compression on every find(), so future calls to find() are 
faster!


