
CSE 373 Summer 2020LEC 18: Disjoint Sets I

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 1 8

Disjoint Sets I

BEFORE WE START

pollev.com/uwcse373

Which of the following is true about minimum
spanning trees?

a) Every graph has at least one MST
b) Every graph has at most one MST
c) The shortest path from any vertex u to any vertex

v is the one that follows the MST
d) Every MST has a source vertex
e) Dijkstra’s algorithm computes an MST
f) None of the above

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Announcements
• P3 due TONIGHT at 11:59pm PDT

- Don’t forget to fill out the P3 Feedback Survey!

• EX3 due Friday, 8/07 11:59pm PDT
• P4, the last project of the quarter, released tonight!

- If you haven’t already, please fill out the P4 Partner Form so we can send out
partner assignments

https://canvas.uw.edu/courses/1381169/quizzes/1280980
https://courses.cs.washington.edu/courses/cse373/tools/20su/partner/p4/

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Learning Objectives

1. Describe Kruskal’s Algorithm, evaluate why it works, and describe
why it needs a new ADT

2. Compare and contrast QuickUnion with QuickFind and describe
how the two structure optimize for different operations

3. Implement WeightedQuickUnion and describe why making the
change protects against the worst case find runtime

4. Describe path compression at a high level and argue for why it
improves runtimes despite not following an invariant

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Review Minimum Spanning Trees (MSTs)
• A Minimum Spanning Tree for a graph is a set of that graph’s edges

that connect all of that graph’s vertices (spanning) while minimizing
the total weight of the set (minimum)

- Note: does NOT necessarily minimize the path from each vertex to every
other vertex

- Any tree with V vertices will have V-1 edges
- A separate entity from the graph itself! More of an “annotation” applied to

the graph, just like a Shortest Paths Tree (SPT)

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Minimum Spanning Tree

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Review Why do MST Algorithms Work?
• Two useful properties for MST edges. We can think about them from

either perspective:
- Cycle Property: The heaviest edge along a cycle is NEVER part of an MST.
- Cut Property: Split the vertices of the graph into any two sets A and B. The lightest

edge between A and B is ALWAYS part of an MST. (Prim’s thinks this way)

• Whenever you add an edge to a tree you create exactly one cycle.
Removing any edge from that cycle gives another tree!
• This observation, combined with the cycle and cut properties form the

basis of all of the greedy algorithms for MSTs.
- greedy algorithm: chooses best known option at each point and commits, rather

than waiting for a global view of the graph before deciding

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Review Adapting Dijkstra’s: Prim’s Algorithm
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0
PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v) // previous smallest edge to v
newDist = distTo.get(u) + w // is this a smaller edge to v?
if (newDist < oldDist):

distTo.put(u, newDist)
edgeTo.put(u, v)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

distTo.get(u) +

prims• Normally, Dijkstra’s checks for a
shorter path from the start.

• But MSTs don’t care about
individual paths, only the overall
weight!

• New condition: “would this be a
smaller edge to connect the
current known set to the rest of
the graph?”

X

KNOWN

3??

3

1

A

1

C
1??

B

4

CSE 373 Summer 2020LEC 18: Disjoint Sets I

A Different Approach
• Suppose the MST on the right was produced by Prim’s
• Observation: We basically chose all the smallest edges

in the entire graph (1, 2, 3, 4, 6)
- The only exception was 5. Why shouldn’t we add edge 5?
- Because adding 5 would create a cycle, and to connect A, C, & D

we’d rather choose 1 & 4 than 1 & 5 or 4 & 5.

• Prim’s thinks “vertex by vertex”, but what if you think
“edge by edge” instead?

- Start with the smallest edge in the entire graph and work your
way up

- Add the edge to the MST as long as it connects two new
groups (meaning don’t add any edges that would create a
cycle)

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Building an MST “edge by edge”
in this graph:

• Add edge 1
• Add edge 2
• Add edge 3
• Add edge 4
• Skip edge 5 (would create a cycle)
• Add edge 6
• Finished: all vertices in the MST!

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
- If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
- If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
- If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
- If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
- If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

A

B

D

E
C

2
111

3
5

8

9
107

6

F

“islands”

4

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
- If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Prim’s Demos and Visualizations
• Dijkstra’s Visualization

- https://www.youtube.com/watch?v=1oiQ0hrVwJk
- Dijkstra’s proceeds radially from its source, because it chooses nearby

edges by path length from source

• Prim’s Visualization
- https://www.youtube.com/watch?v=6uq0cQZOyoY
- Prim’s jumps around the perimeter, because it chooses nearby edges by

edge weight (there’s no source)

• Kruskal’s Visualization
- https://www.youtube.com/watch?v=ggLyKfBTABo
- Kruskal’s jumps around the entire graph, because it chooses from all

edges purely by edge weight (while preventing cycles)

https://www.youtube.com/watch?v=1oiQ0hrVwJk
https://www.youtube.com/watch?v=6uq0cQZOyoY
https://www.youtube.com/watch?v=ggLyKfBTABo

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Selecting an ADT
• Kruskal’s needs to find what MST a vertex

belongs to, and union those MSTs together
- Our existing ADTs don’t lend themselves well to

“unioning” two sets…
- Let’s define a new one!

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Disjoint Sets ADT (aka “Union-Find”)
• Kruskal’s will use a Disjoint Sets ADT under

the hood
- Conceptually, a single instance of this ADT

contains a “family” of sets that are disjoint (no
element belongs to multiple sets)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either
a member or a unique ID)

Behavior
makeSet(value) – new set with value
as only member (and representative)
find(value) – return representative
of the set containing value
union(x, y) – combine sets containing
x and y into one set with all
elements, choose single new
representative

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST);

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Project 4: Mazes!
• You find yourself trapped in the Labyrinth of

Greek legend – bummer!
• How do you solve a maze?

- If we could model a maze as a graph, we’d just need
an algorithm to find a path from s to t… Maybe even
the shortest path?

• How do you generate a maze?
- We’d love an algorithm that is guaranteed to connect

s to t (spanning), but only produces one path from s
to t (tree)…

s

t

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Project 4: Mazes
• It turns out that randomizing the weights of a graph and

then computing the MST is a fantastic way to generate
mazes!
• In P4, you’ll do both: Implement Dijkstra’s to solve an

arbitrary maze, then implement Kruskal’s (and a Disjoint Set)
to generate those mazes
• This project is really application-heavy!

- Graphical User Interface (GUI) for viewing mazes and solving them
- Significantly more starter code than past projects, to give you

practice integrating with an existing codebase
- A major part of the challenge in P4 is reading through the starter

code to understand what you need to interface with! Don’t
underestimate the time that takes.

• 2 week project, and 2 weeks worth of work. It’s never been
more important to start early!

s

t

1.2

2.3

0.2 0.6

2.6 1.9

3.1 2.1

2.41.8

1.4

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union
operation

Avoids the worst case
runtime for Find

Makes future Find
operations faster

DISJOINT SETS ADT

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Case Study: Disjoint Sets
• Today’s lecture on the data structures which implement the Disjoint

Sets ADT is an interesting case study in data structure design and
iterative design improvements

- Good chance to dust off your metacognitive skills!
- In particular, try to identify what observations we make in each data structure

that inspire improvements in the next data structure. How could you apply a
similar skill to your own data structures?

Metacognitive
Opportunities
Ahead!

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Maps to Sets

makeSet(value) Θ(1)
find(value) Θ(𝑛)
union(x, y) Θ(𝑛)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either
a member or a unique ID)

Behavior
makeSet(value) – new set with value
as only member (and representative)
find(value) – return representative
of the set containing value
union(x, y) – combine sets containing
x and y into one set with all
elements, choose single new
representative

find(value): scan
through every set under

every representative

union(x, y): copy all
elements from set

pointed to by x into set
pointed to by y

Maps to Sets (baseline): map from
representative ID to set of values

1

2

Keanu, Farrell

Joyce, Brian, Eric

Can we use an existing data structure? aka “Can we just throw
maps at the problem?”

CSE 373 Summer 2020LEC 18: Disjoint Sets I

QuickFind Implementation
QuickFind: map from value to
representative ID

Keanu

Joyce

Farrell

Brian

Eric

1

2

2

2

1

Maps to Sets QuickFind

makeSet(value) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1)
union(x, y) Θ(𝑛) Θ(𝑛)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either
a member or a unique ID)

Behavior
makeSet(value) – new set with value
as only member (and representative)
find(value) – return representative
of the set containing value
union(x, y) – combine sets containing
x and y into one set with all
elements, choose single new
representative

find(value): lookup
element and return
corresponding rep.

union(x, y): scan
through all elements to
find those in same set,

update to new rep.

• If we store values as the keys, we
can take advantage of fast lookup
to make find fast!

• But what about union?

find(Farrell) à 1
find(Eric) à 2
find(Farrell) != find(Eric)
find(Farrell) == find(Keanu)

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union
operation

Avoids the worst case
runtime for Find

Makes future Find
operations faster

DISJOINT SETS ADT

CSE 373 Summer 2020LEC 18: Disjoint Sets I

QuickUnion Data Structure
• Fundamental idea:

- QuickFind tracks each element’s ID
- QuickUnion tracks each element’s parent. Only the root has an ID!

- Each set becomes tree-like, but something slightly different called an up-tree: store
pointers from children to parents!

Joyce, Brian,
Eric, Melissa

Keanu,
Farrell

Howard

Keanu (1)

Farrell

Howard (3)

Joyce (2)

EricBrian

Melissa

Abstract Idea of “Disjoint Sets” Implementation using QuickUnion

=

CSE 373 Summer 2020LEC 18: Disjoint Sets I

QuickUnion: Find

• Key idea: can travel upward from any
node to find its representative ID
• How do we jump to a node quickly?

- Also store a map from value to its node
(Omitted in future slides)

find(Farrell) à 1
find(Eric) à 2
find(Farrell) != find(Eric)
find(Farrell) == find(Keanu)

find(Eric):
jump to Eric node
travel upward until root
return ID

Keanu (1)

Farrell

Howard (3)

Joyce (2)

EricBrian

Melissa

Brian

Melissa

Howard
…

CSE 373 Summer 2020LEC 18: Disjoint Sets I

QuickUnion: Union
• Key idea: easy to simply rearrange pointers to

union entire trees together!
• Which of these implementations would you

prefer?
- Vote in the Participants Panel!

union(Eric, Farrell):
rootF = find(Farrell)
set Eric to point to rootF

Keanu (1)

Farrell

Howard (3)

Joyce (2)

EricBrian

Melissa

union(Eric, Farrell):
rootE = find(Eric)
rootF = find(Farrell)
set rootE to point to rootF

Keanu (1)

Farrell

Howard (3)

Joyce (2)

Eric
Brian

Melissa

Keanu (1)

Farrell

Howard (3)

Joyce

EricBrian

Melissa

RESULT:

CSE 373 Summer 2020LEC 18: Disjoint Sets I

QuickUnion: Union
union(Eric, Farrell):
rootF = find(Farrell)
set Eric to point to rootF

union(Eric, Farrell):
rootE = find(Eric)
rootF = find(Farrell)
set rootE to point to rootF

Keanu (1)

Farrell

Howard (3)

Joyce (2)

Eric
Brian

Melissa

Keanu (1)

Farrell

Howard (3)

Joyce

EricBrian

Melissa

RESULT:

• We prefer the right implementation because by changing just the root, we effectively pull the
entire tree into the new set!
• If we change the first node instead, we have to do more work for the rest of the old tree
• A rare example of constant time work manipulating a factor of n elements

CSE 373 Summer 2020LEC 18: Disjoint Sets I

QuickUnion: Why bother with the second root?

• Key idea: will help minimize runtime for future find() calls if we keep
the height of the tree short!

- Pointing directly to the second element would make the tree taller

union(Eric, Farrell):
rootE = find(Eric)
rootF = find(Farrell)
set rootE to point to rootF

Keanu (1)

Farrell

Howard (3)

Joyce

EricBrian

Melissa

union(Eric, Farrell):
rootE = find(Eric)
set rootE to point to Farell

Keanu (1)

Farrell

Howard (3)
Joyce

EricBrian

Melissa

Why not just use:

CSE 373 Summer 2020LEC 18: Disjoint Sets I

QuickUnion: Checking in on those runtimes
• Only if we discount the runtime from

union’s calls to find! Otherwise, Θ(𝑛).
- However, for Kruskal’s, not a bad

assumption: we only ever call union with
roots anyway!

Maps to Sets QuickFind QuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1)
findSet(value) Θ(𝑛) Θ(1) Θ(𝑛)
union(x, y) Θ(𝑛) Θ(𝑛) Θ(1)

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST);

*

*

CSE 373 Summer 2020LEC 18: Disjoint Sets I

pollev.com/uwcse373

QuickUnion: Let’s Build a Worst Case

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

find(A):
jump to A node
travel upward until root
return ID

Even with the ”use-the-roots” implementation of union, try to come
up with a series of calls to union that would create a worst-case
runtime for find on these Disjoint Sets:

A

B

C

D

CSE 373 Summer 2020LEC 18: Disjoint Sets I

pollev.com/uwcse373

QuickUnion: Let’s Build a Worst Case

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

find(A):
jump to A node
travel upward until root
return ID

Even with the ”use-the-roots” implementation of union, try to come
up with a series of calls to union that would create a worst-case
runtime for find on these Disjoint Sets:

A

B

C

D

union(A, B)
union(B, C)
union(C, D)
find(A) B

A

C

D

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Analyzing the QuickUnion Worst Case
• How did we get a degenerate tree?

- Even though pointing a root to a root usually helps with this, we can still get a
degenerate tree if we put the root of a large tree under the root of a small tree.

- In QuickUnion, rootA always goes under rootB
- But what if we could ensure the smaller tree went under the larger tree?

B

A

C

D

union(C, D) B

A

C

D

What currently
happens

What would help
avoid degenerate tree

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union
operation

Avoids the worst case
runtime for Find

Makes future Find
operations faster

DISJOINT SETS ADT

CSE 373 Summer 2020LEC 18: Disjoint Sets I

WeightedQuickUnion

• Goal: Always pick the smaller tree
to go under the larger tree
• Implementation: Store the number

of nodes (or “weight”) of each tree
in the root

- Constant-time lookup instead of
having to traverse the entire tree to
count

union(A, B):
rootA = find(A)
rootB = find(B)
put lighter root under heavier root

union(A, B)
union(B, C)
union(C, D)
find(A) A

B

C

D

Now what happens?

B

A C D

Perfect! Best runtime we can get.

CSE 373 Summer 2020LEC 18: Disjoint Sets I

WeightedQuickUnion: Performance
• union()’s runtime is still dependent on find()’s runtime, which is a

function of the tree’s height
• What’s the worst-case height for WeightedQuickUnion?

union(A, B):
rootA = find(A)
rootB = find(B)
put lighter root under heavier root

CSE 373 Summer 2020LEC 18: Disjoint Sets I

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

N H

1 0

CSE 373 Summer 2020LEC 18: Disjoint Sets I

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

1

N H

1 0

2 1

CSE 373 Summer 2020LEC 18: Disjoint Sets I

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

1

2

3

N H

1 0

2 1

4 ?

CSE 373 Summer 2020LEC 18: Disjoint Sets I

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

1 2

3

N H

1 0

2 1

4 2

CSE 373 Summer 2020LEC 18: Disjoint Sets I

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

1 2

3

4

5 6

7

N H

1 0

2 1

4 2

8 ?

CSE 373 Summer 2020LEC 18: Disjoint Sets I

WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as

possible

0

1 2

3

N H

1 0

2 1

4 2

8 34

5 6

7

CSE 373 Summer 2020LEC 18: Disjoint Sets I

WeightedQuickUnion: Performance

0

1 2

3

N H

1 0

2 1

4 2

8 3

16 4

4

5 6

7

8

9 10

11

12

13 14

15

• Consider the worst case where the tree height grows as fast as
possible
• Worst case tree height is Θ(log N)

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Why Weights Instead of Heights?
• We used the number of items in a tree to decide upon the root

• Why not use the height of the tree?
- HeightedQuickUnion’s runtime is asymptotically the same: Θ(log(n))
- It’s easier to track weights than heights, even though WeightedQuickUnion

can lead to some suboptimal structures like this one:

1 2

0

4

6

53 8

9

7+ 1 2

0

4 653

8

9

7

CSE 373 Summer 2020LEC 18: Disjoint Sets I

WeightedQuickUnion Runtime

• This is pretty good! But there’s one final optimization we can make:
path compression

Maps to Sets QuickFind QuickUnion WeightedQuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛)
union(x, y)
assuming root args

Θ(𝑛) Θ(𝑛) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛)

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union
operation

Avoids the worst case
runtime for Find

Makes future Find
operations faster

DISJOINT SETS ADT

CSE 373 Summer 2020LEC 18: Disjoint Sets I

• Thus far, the modifications we’ve studied are designed to
preserve invariants

- E.g. Performing rotations to preserve the AVL invariant
- We rely on those invariants always being true so every call is fast

• Path compression is entirely different: we are modifying the tree
structure to improve future performance

- Not adhering to a specific invariant
- The first call may be slow, but will optimize so future calls can be fast

Modifying Data Structures for Future Gains

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Path Compression: Idea
• This is the worst-case topology if we use WeightedQuickUnion

• Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just

constant time work to point to root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13 14

15

CSE 373 Summer 2020LEC 18: Disjoint Sets I

Path Compression: Idea
• This is the worst-case topology if we use WeightedQuickUnion

• Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just

constant time work to point to root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13

14 15

• Perform Path Compression on every find(), so future calls to find() are
faster!

