LEC 17 CSE 373 Minimum Spanning Trees

BEFORE WE START

What order will we visit these vertices while running Dijkstra's on this graph?

pollev.com/uwcse373

Instructor Aaron Johnston

- TAs Timothy Akintilo Brian Chan Joyce Elauria Eric Fan Farrell Fileas
- Melissa Hovik Leona Kazi Keanu Vestil Siddharth Vaidyanathan Howard Xiao

Announcements

- P3 due this Wednesday, 8/05 11:59pm PDT
- EX3 due this Friday, 8/07 11:59pm PDT
- <u>P4 Partner Form</u> is now open! Please fill out by lecture on Wednesday

Announcements: Exam I

- Exam I feedback & solution will be published this evening
 - We were so impressed with the skills everyone demonstrated! It's wonderful to see how much everyone has learned this quarter ⁽²⁾
 - Mean: ~85%, Median: ~87%, Standard Deviation: ~10%
 - Remember, this exam is just <u>one piece of feedback</u> about your learning this quarter (e.g. didn't test you on writing code at all, but that's clearly an important set of learning objectives from this course!)
 - Grades in general are still a woefully incomplete signal for you to gauge your mastery of the learning objectives, and <u>do not whatsoever indicate</u> some kind of fictional "computer science ability".
 - Use this as an opportunity to get feedback and review what you got wrong to further your learning! The grade you get is <u>so much less important</u> than what you do with it afterward!
 - Regrade requests will open tomorrow evening. Make sure you review the sample solution first.

Learning Objectives

After this lecture, you should be able to...

- 1. Describe the runtime for Dijkstra's algorithm and explain where it comes from
- 2. Identify a Minimum Spanning Tree, and explain why the Cut and Cycle properties must be true from the definition of an MST
- 3. Implement Prim's Algorithm and explain how it differs from Dijkstra's
- 4. Describe Kruskal's Algorithm at a high level, explain why it works, and describe why it needs a new ADT

Lecture Outline

- Dijkstra's Algorithm
 - Review Definition & Examples
 - Implementing Dijkstra's
- Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm & Disjoint Sets

Review Our Graph Problem Collection

SOLUTION

Base Traversal: BFS or DFS Modification: Check if each vertex == t SOLUTION

Base Traversal: BFS Modification: Generate shortest path tree as we go

SOLUTION

Base Traversal: Dijkstra's Algorithm Modification: Generate shortest path tree as we go

Review Dijkstra's Algorithm: Key Properties

- Once a vertex is marked known, its shortest path is known
 - Can reconstruct path by following back-pointers (in edgeTo map)
- While a vertex is not known, another shorter path might be found
 - We call this update **relaxing** the distance because it only ever shortens the current best path
- Going through closest vertices first lets us confidently say no shorter path will be found once known
 - Because not possible to find a shorter path that uses a farther vertex we'll consider later

```
dijkstraShortestPath(G graph, V start)
  Set known; Map edgeTo, distTo;
  initialize distTo with all nodes mapped to \infty, except start to 0
  while (there are unknown vertices):
    let u be the closest unknown vertex
    known.add(u)
    for each edge (u,v) to unknown v with weight w:
      oldDist = distTo.get(v) // previous best path to v
      newDist = distTo.get(u) + w // what if we went through u?
      if (newDist < oldDist):</pre>
        distTo.put(v, newDist)
        edgeTo.put(v, u)
```


INVARIANT

Review Why Does Dijkstra's Work?

Example:

- We're about to add X to the known set
- But how can we be sure we won't later find a path through some node A that is shorter to X?

- Dijkstra's Algorithm Invariant All vertices in the "known" set have the correct shortest path
- Similar "First Try Phenomenon" to BFS
- How can we be sure we won't find a shorter path to X later?

INVARIANT

Review Why Does Dijkstra's Work?

Example:

- We're about to add X to the known set
- But how can we be sure we won't later find a path through some node A that is shorter to X?
- Because if we could, Dijkstra's would explore A first

Dijkstra's Algorithm Invariant
All vertices in the "known" set have the corre
shortest path

- Similar "First Try Phenomenon" to BFS
- How can we be sure we won't find a shorter path to X later?
 - **Key Intuition**: Dijkstra's works because:
 - IF we always add the closest vertices to "known" first,
 - THEN by the time a vertex is added, any possible relaxing has happened and the path we know is *always the shortest*!

Lecture Outline

- Dijkstra's Algorithm
 - *Review* Definition & Examples
 - Implementing Dijkstra's
- Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm & Disjoint Sets

Implementing Dijkstra's

- How do we implement "let u be the closest unknown vertex"?
- Would sure be convenient to store vertices in a structure that...
 - Gives them each a distance "priority" value
 - Makes it fast to grab the one with the smallest distance
 - Lets us update that distance as we discover new, better paths

MIN PRIORITY QUEUE ADT

```
dijkstraShortestPath(G graph, V start)
 Set known; Map edgeTo, distTo;
  initialize distTo with all nodes mapped to \infty, except start to 0
 while (there are unknown vertices):
    let u be the closest unknown vertex
    known.add(u)
    for each edge (u,v) to unknown v with weight w:
      oldDist = distTo.get(v) // previous best path to v
      newDist = distTo.get(u) + w // what if we went through u?
      if (newDist < oldDist):</pre>
        distTo.put(u, newDist)
        edgeTo.put(u, v)
```

Implementing Dijkstra's: Pseudocode

- Use a MinPriorityQueue to keep track of the perimeter
 - Don't need to track entire graph
 - Don't need separate "known" set – implicit in PQ (we'll never try to update a "known" vertex)
- This pseudocode is much closer to what you'll implement in P4
 - However, still some details for you to figure out!
 - e.g. how to initialize distTo with all nodes mapped to ∞
 - Spec will describe some optimizations for you to make ⁽³⁾

```
dijkstraShortestPath(G graph, V start)
```

```
Map edgeTo, distTo;
```

initialize distTo with all nodes mapped to ∞ , except start to 0

PriorityQueue<V> perimeter; perimeter.add(start);

```
while (!perimeter.isEmpty()):
    u = perimeter.removeMin()
```


Dijkstra's Runtime

Dijkstra's Runtime

dijkstraShortestPath(G graph, V start) Map edgeTo, distTo; ➡ initialize distTo with all nodes mappe $\Theta(|V|)$ PriorityQueue<V> perimeter; perimeter. **Final result:** $\Theta(|V|\log|V|)$ $\Theta(|V| \log |V| + |E| \log |V|)$ total $\Theta(|E|)$ iterations \longrightarrow for each edge (u,v) to v with weight oldDist = distTo**.get**(v) // pr Why can't we simplify further? newDist = distTo.get(u) + w // wh We don't know if |V| or |E| is if (newDist < oldDist):</pre> $\Theta(1)$ going to be larger, so we don't distTo.put(v, newDist) know which term will dominate. $\Theta(|E|\log|V|)$ edgeTo.put(v, u) if (perimeter.contains(v)): Sometimes we assume |E| is $\Theta(\log |V|)$ perimeter.changePriority(v, ne larger than |V|, so |E|log|V| else: dominates. But not always true! perimeter.add(v, newDist) $\Theta(\log |V|)$

Lecture Outline

- Dijkstra's Algorithm
 - *Review* Definition & Examples
 - Implementing Dijkstra's
- Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm & Disjoint Sets

Watt Would You Do? (sorry, I know it hertz to read these puns)

- Your friend at the electric company needs to connect all these cities to the power plant
- She knows the cost to lay wires between any pair of cities and wants the cheapest way to ensure electricity gets to every city

- Assume:
 - All edge weights are positive
 - The graph is undirected

Α

4

В

Ε

Finding a Solution

- We need a *set of edges* such that:
 - Every vertex touches at least one edge ("the edges span the graph")
 - The graph using just those edges is **connected**
 - The total weight of these edges is minimized
- Claim: The set of edges we pick never forms a cycle. Why?
 - V-1 edges is the exact minimum number of edges to connect all vertices
 - Taking away 1 edge breaks connectiveness
 - Adding 1 edge makes a cycle

pollev.com/uwcse373

Which of these are trees?

- A. Tree / Not-Tree / Not-Tree
- B. Tree / Tree / Not-Tree
- C. Tree / Not-Tree / Tree
- D. Tree / Tree / Tree
- E. I'm not sure ...

Review Definition of a Tree

- So far, we've thought of trees as nodes with "parent" & "child" relationships
 - LEC 09: "A binary tree is a collection of nodes where each node has at most 1 parent and anywhere from 0 to 2 children"
- We can express the definition of a tree another way:
 - A tree is a collection of nodes connected by edges where there is exactly one path between any pair of nodes
 - So all trees are **connected**, **acyclic** graphs!

Our Solution: The MST Problem

- We need a set of edges such that Minimum Spanning Tree:
 - Every vertex touches at least one edges ("the edges span the graph")
 - The graph using just those edges is connected
 - The total weight of these edges is minimized

Cycle Property

- Given any cycle, the heaviest edge along it must NOT be in the MST
 - Why not? A tree has no cycles, so we must discard at least one edge
 - Discarding exactly one edge will always leave all vertices connected
 - If we discard the heaviest edge, we minimize the edges still in use!

Cut Property

- Given any cut, the minimum-weight crossing edge must be IN the MST
 - A **cut** is a partitioning of the vertices into two sets
 - (other crossing edges can also be in the MST)
 - Why? Some edge must connect the two, always best to use the smallest

If only we knew of an algorithm that maintained a set of "known" and "unknown" vertices and repeatedly chose the minimum edge between the two sets ...

Lecture Outline

- Dijkstra's Algorithm
 - *Review* Definition & Examples
 - Implementing Dijkstra's
- Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm & Disjoint Sets

Adapting Dijkstra's: Prim's Algorithm

- MSTs don't have a "source vertex"
 - Replace "vertices for which we know the shortest path from s" with "vertices in the MST-under-construction"
 - Visit vertices in order of *distance from MST-under-construction*
 - Relax an edge based on its distance from source
- Note:
 - Prim's algorithm was developed in 1930 by Votěch Jarník, then independently rediscovered by Robert Prim in 1957 and Dijkstra in 1959. It's sometimes called Jarník's, Prim-Jarník, or DJP

Adapting Dijkstra's: Prim's Algorithm

- Normally, Dijkstra's checks for a shorter path from the start.
- But MSTs don't care about individual paths, only the overall weight!
- New condition: "would this be a smaller edge to connect the current known set to the rest of the graph?"


```
prims (G graph, V start)
Map edgeTo, distTo;
initialize distTo with all nodes mapped to \infty, except start to 0
PriorityQueue<V> perimeter; perimeter.add(start);
while (!perimeter.isEmpty()):
  u = perimeter.removeMin()
  known.add(u)
  for each edge (u,v) to unknown v with weight w:
    oldDist = distTo.get(v) // previous smallest edge to v
    newDist = distTo.get(u) + w // is this a smaller edge to v?
    if (newDist < oldDist):</pre>
      distTo.put(v, newDist)
      edgeTo.put(v, u)
      if (perimeter.contains(v)):
        perimeter.changePriority(v, newDist)
      else:
        perimeter.add(v, newDist)
```


pollev.com/uwcse373

Node	known?	distTo	edgeTo
А			
В			
С			
D			
E			
F			

```
primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;
```

```
while (!perimeter.isEmpty()):
    u = perimeter.removeMin()
    known.add(u)
    for each edge (u,v) to unknown v with weight w:
        oldDist = distTo.get(v)
        newDist = distTo.get(v)
        newDist = w
        if (newDist < oldDist):
            distTo.put(v, newDist)
            edgeTo.put(v, u)
        if (perimeter.contains(v)):
            perimeter.changePriority(v, newDist)
        else:
```

```
perimeter.add(v, newDist)
```

pollev.com/uwcse373

Let's Try It!

Choose F as the start

Node	known?	distTo	edgeTo
А		∞	
В		∞	
С		~	
D		~	
E		~	
F		0	/

```
primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;
```

```
while (!perimeter.isEmpty()):
    u = perimeter.removeMin()
    known.add(u)
    for each edge (u,v) to unknown v with weight w:
        oldDist = distTo.get(v)
        newDist = distTo.get(v)
        newDist = w
        if (newDist < oldDist):
            distTo.put(v, newDist)
            edgeTo.put(v, u)
        if (perimeter.contains(v)):
            perimeter.changePriority(v, newDist)
        else:
            perimeter.add(v, newDist)
```

pollev.com/uwcse373

Let's Try It!

Pull F into the known set, updating its neighbors

Node	known?	distTo	edgeTo
А		∞	
В		6??	F
С		10??	F
D		8??	F
E		9??	F
F	Y	0	/

```
primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;
```

```
while (!perimeter.isEmpty()):
    u = perimeter.removeMin()
    known.add(u)
    for each edge (u,v) to unknown v with weight w:
        oldDist = distTo.get(v)
        newDist = distTo.get(v)
        newDist = w
        if (newDist < oldDist):
            distTo.put(v, newDist)
            edgeTo.put(v, u)
        if (perimeter.contains(v)):
            perimeter.changePriority(v, newDist)
        else:
```

perimeter.add(v, newDist)

pollev.com/uwcse373

Let's Try It!

Choose B and update its neighbors. Note that E is updated to 2, NOT 8 – only the cost to add it to the growing tree!

Node	known?	distTo	edgeTo
А		3??	В
В	Y	6	F
С		10??	F
D		8??	F
E		2??	В
F	Y	0	/

```
primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;
```

```
while (!perimeter.isEmpty()):
    u = perimeter.removeMin()
    known.add(u)
    for each edge (u,v) to unknown v with weight w:
        oldDist = distTo.get(v)
        newDist = distTo.get(v)
        newDist = w
        if (newDist < oldDist):
            distTo.put(v, newDist)
            edgeTo.put(v, u)
        if (perimeter.contains(v)):
            perimeter.changePriority(v, newDist)
        else:
```

```
perimeter.add(v, newDist)
```

pollev.com/uwcse373

Let's Try It!

Choose E and update its neighbors. We found a smaller way to get to D!

Node	known?	distTo	edgeTo
А		3??	В
В	Y	6	F
С		10??	F
D		7??	E
Е	Y	2	В
F	Y	0	/

```
primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;
```

```
while (!perimeter.isEmpty()):
    u = perimeter.removeMin()
    known.add(u)
    for each edge (u,v) to unknown v with weight w:
        oldDist = distTo.get(v)
        newDist = distTo.get(v)
        newDist = w
        if (newDist < oldDist):
            distTo.put(v, newDist)
            edgeTo.put(v, u)
        if (perimeter.contains(v)):
            perimeter.changePriority(v, newDist)
        else:
```

```
perimeter.add(v, newDist)
```

pollev.com/uwcse373

Let's Try It!

Choose A and update its neighbors. We found much smaller options to add C and D!

Node	known?	distTo	edgeTo
А	Y	3	В
В	Y	6	F
С		1??	А
D		4??	А
E	Y	2	В
F	Y	0	/

```
primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;
```

```
while (!perimeter.isEmpty()):
    u = perimeter.removeMin()
    known.add(u)
    for each edge (u,v) to unknown v with weight w:
        oldDist = distTo.get(v)
        newDist = distTo.get(v)
        newDist = w
        if (newDist < oldDist):
            distTo.put(v, newDist)
            edgeTo.put(v, u)
        if (perimeter.contains(v)):
            perimeter.changePriority(v, newDist)
        else:
```

```
perimeter.add(v, newDist)
```

pollev.com/uwcse373

Let's Try It!

Choose C and update its neighbors. Nothing changes.

Node	known?	distTo	edgeTo
А	Y	3	В
В	Y	6	F
С	Y	1	А
D		4??	А
E	Y	2	В
F	Y	0	/

```
primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;
```

```
while (!perimeter.isEmpty()):
    u = perimeter.removeMin()
    known.add(u)
    for each edge (u,v) to unknown v with weight w:
        oldDist = distTo.get(v)
        newDist = distTo.get(v)
        newDist = w
        if (newDist < oldDist):
            distTo.put(v, newDist)
            edgeTo.put(v, u)
        if (perimeter.contains(v)):
            perimeter.changePriority(v, newDist)
        else:
```

```
perimeter.add(v, newDist)
```

pollev.com/uwcse373

Let's Try It!

Choose D and finish the algorithm! We have our MST: an undirected graph with all edgeTo edges!

Node	known?	distTo	edgeTo
А	Y	3	В
В	Y	6	F
С	Y	1	А
D	Y	4	А
E	Y	2	В
F	Y	0	/

```
primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;
```

```
while (!perimeter.isEmpty()):
    u = perimeter.removeMin()
    known.add(u)
    for each edge (u,v) to unknown v with weight w:
        oldDist = distTo.get(v)
        newDist = distTo.get(v)
        newDist = w
        if (newDist < oldDist):
            distTo.put(v, newDist)
            edgeTo.put(v, u)
        if (perimeter.contains(v)):
            perimeter.changePriority(v, newDist)
        else:
```

```
perimeter.add(v, newDist)
```

Prim's Runtime

pollev.com/uwcse373

Poll Everywhere

What if we started somewhere else?

- In this example we started from the power plant, F. What would happen if we started from some other vertex in this graph?
 - a) We would no longer get a correct MST.
 - b) We would get an MST but it wouldn't solve the problem of connecting electricity.
 - c) We would get a correct MST, but a different one.
 - d) We would get the exact same MST.
- Since a Minimum Spanning Tree includes every vertex and minimizes all of its weights, it doesn't matter where we start!
 - This graph has a unique MST, but some graphs have multiple valid MSTs. In that case, starting elsewhere could give a different but correct MST!

Starting from A? B? C?

Prim's Demos and Visualizations

- Dijkstra's Visualization
 - <u>https://www.youtube.com/watch?v=1oiQ0hrVwJk</u>
 - Dijkstra's proceeds radially from its source, because it chooses edges by *path length from source*
- Prim's Visualization
 - <u>https://www.youtube.com/watch?v=6uq0cQZOyoY</u>
 - Prim's jumps around the graph (the perimeter), because it chooses edges by edge weight (there's no source)

Lecture Outline

- Dijkstra's Algorithm
 - *Review* Definition & Examples
 - Implementing Dijkstra's
- Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm & Disjoint Sets

A Different Approach

- **Observation**: We basically chose all the smallest edges in the entire graph (1, 2, 3, 4, 6)
 - The only exception was 5. Why didn't we add edge 5?
 - Because adding 5 would have created a cycle, and to connect A, C,
 & D we'd rather choose 1 & 4 than 1 & 5 or 4 & 5.
- Prim's thinks "vertex by vertex", but what if you think "edge by edge" instead?
 - Start with the smallest edge in the entire graph and work your way up
 - Add the edge to the MST as long as it connects two new groups (meaning don't add any edges that would create a cycle)

Building an MST "edge by edge" in this graph:

- Add edge 1
- Add edge 2
- Add edge 3
- Add edge 4
- Skip edge 5 (would create a cycle)
- Add edge 6
- Finished: all vertices in the MST!

Kruskal's Algorithm

- This "edge by edge" approach is how Kruskal's Algorithm works!
- Visualization: <u>https://www.youtube.com/watch?v=ggLyKfBTABo</u>
- Key Intuition: Kruskal's keeps track of isolated "islands" of vertices (each is a sub-MST)
 - If an edge connects two vertices within the same "island", it forms a cycle! Discard it.
 - If an edge connects two vertices in different "islands", add it to the MST! Now those "islands" need to be combined.

```
kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)
for each edge (u,v) in ascending order:
    uMST = msts.find(u)
    vMST = msts.find(v)
    if (uMST != vMST):
```

```
finalMST.add(edge (u, v))
msts.union(uMST, vMST);
```

Disjoint Sets ADT (aka "Union-Find")

• Kruskal's needs to **find** what MST a vertex belongs to, and **union** those MSTs together

```
kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)
for each edge (u,v) in ascending order:
    uMST = msts.find(u)
    vMST = msts.find(v)
    if (uMST != vMST):
        finalMST.add(edge (u, v))
        msts.union(uMST, vMST);
```


DISJOINT SETS ADT

State

Family of Sets

- disjoint: no shared elements
- each set has a representative (use one of its members as a "name")

Behavior

makeSet(value) - new set with value as only member (and representative) findSet(value) - return representative of the set containing value union(x, y) - combine sets containing x and y into one set with all elements, choose single new representative

Can we use an existing data structure?

Approach 1: map from value	Approach 2: map	from		
to representative element	representative to	set of values		DISIONT SETS ADT
Keanu Keanu	Keanu	Keanu, Farr	ell	DISJOINT SETS ADT
Joyce Joyce	Joyce	Joyce, Brian	, Eric	State Family of Sets
Farrell Keanu				 each set has a representative (use one of its members as a "name")
Brian Joyce				one of its members as a name)
		Approach 1	Approach 2	Behavior
Joyce	<pre>makeSet(value)</pre>	Θ(1)	Θ(1)	as only member (and representative) <u>findSet(value)</u> - return
	<pre>findSet(value)</pre>	Θ(1)	$\Theta(n)$	representative of the set containing value
	union(x, y)	$\Theta(n)$	$\Theta(n)$	x and y into one set with all elements, choose single new
				representative

Both approaches limited by union: requires scanning through all elements to update. Could we do better? *Coming up next!*