
CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 1 7

Minimum
Spanning Trees

BEFORE WE START

pollev.com/uwcse373

What order will we visit these vertices while running
Dijkstra’s on this graph?

Z

1

5

A

2
C

M

B

start

6

3 7

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Announcements
• P3 due this Wednesday, 8/05 11:59pm PDT
• EX3 due this Friday, 8/07 11:59pm PDT
• P4 Partner Form is now open! Please fill out by lecture on Wednesday

https://courses.cs.washington.edu/courses/cse373/tools/20su/partner/p4/

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Announcements: Exam I
• Exam I feedback & solution will be published this evening

- We were so impressed with the skills everyone demonstrated! It’s wonderful
to see how much everyone has learned this quarter J

- Mean: ~85%, Median: ~87%, Standard Deviation: ~10%
- Remember, this exam is just one piece of feedback about your learning this

quarter (e.g. didn’t test you on writing code at all, but that’s clearly an
important set of learning objectives from this course!)

- Grades in general are still a woefully incomplete signal for you to gauge your
mastery of the learning objectives, and do not whatsoever indicate some kind
of fictional “computer science ability”.

- Use this as an opportunity to get feedback and review what you got wrong to
further your learning! The grade you get is so much less important than what
you do with it afterward!

- Regrade requests will open tomorrow evening. Make sure you review the
sample solution first.

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Learning Objectives

1. Describe the runtime for Dijkstra’s algorithm and explain where it
comes from

2. Identify a Minimum Spanning Tree, and explain why the Cut and
Cycle properties must be true from the definition of an MST

3. Implement Prim’s Algorithm and explain how it differs from
Dijkstra’s

4. Describe Kruskal’s Algorithm at a high level, explain why it works,
and describe why it needs a new ADT

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Lecture Outline
• Dijkstra’s Algorithm

- Review Definition & Examples
- Implementing Dijkstra’s

• Minimum Spanning Trees

• Prim’s Algorithm

• Kruskal’s Algorithm & Disjoint Sets

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Review Our Graph Problem Collection

s-t Connectivity Problem

Given source vertex s and a target
vertex t, does there exist a path

from s to t?

Unweighted Shortest Path
Problem

Given source vertex s and target
vertex t, what path from s to t

minimizes the number of edges?
How long is that path, and what

edges make it up?

Weighted Shortest Path Problem

Given source vertex s and target
vertex t, what path from s to t

minimizes the total weight of its
edges? How long is that path, and

what edges make it up?

WED

SOLUTION
Base Traversal: BFS or DFS
Modification: Check if each vertex == t

SOLUTION
Base Traversal: BFS
Modification: Generate shortest path tree
as we go

SOLUTION
Base Traversal: Dijkstra’s Algorithm
Modification: Generate shortest path tree
as we go

WED FRI

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Review Dijkstra’s Algorithm: Key Properties

• Once a vertex is marked known,
its shortest path is known

- Can reconstruct path by following
back-pointers (in edgeTo map)

• While a vertex is not known,
another shorter path might be
found

- We call this update relaxing the
distance because it only ever
shortens the current best path

• Going through closest vertices
first lets us confidently say no
shorter path will be found once
known

- Because not possible to find a
shorter path that uses a farther
vertex we’ll consider later

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)

CO R R ECT ED
A FT ER LECT UR E

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Review Why Does Dijkstra’s Work?

X

KNOWN

8??

3

1

A

1

5

6??

Example:
• We’re about to add X to the known set
• But how can we be sure we won’t later find a

path through some node A that is shorter to X?
• Because if we could, Dijkstra’s would explore A

first

• Similar “First Try Phenomenon” to BFS

• How can we be sure we won’t find a shorter
path to X later?

- Key Intuition: Dijkstra’s works because:
- IF we always add the closest vertices to “known” first,
- THEN by the time a vertex is added, any possible

relaxing has happened and the path we know is always
the shortest!

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the correct
shortest pathIN

VA
R
IA

N
T

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Review Why Does Dijkstra’s Work?

• Similar “First Try Phenomenon” to BFS

• How can we be sure we won’t find a shorter
path to X later?

- Key Intuition: Dijkstra’s works because:
- IF we always add the closest vertices to “known” first,
- THEN by the time a vertex is added, any possible

relaxing has happened and the path we know is always
the shortest!

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the correct
shortest pathIN

VA
R
IA

N
T

X

KNOWN

7??

3

1

A

1

5

6

Example:
• We’re about to add X to the known set
• But how can we be sure we won’t later find a

path through some node A that is shorter to X?
• Because if we could, Dijkstra’s would explore A

first

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Lecture Outline
• Dijkstra’s Algorithm

- Review Definition & Examples
- Implementing Dijkstra’s

• Minimum Spanning Trees

• Prim’s Algorithm

• Kruskal’s Algorithm & Disjoint Sets

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Implementing Dijkstra’s
• How do we implement “let u be the closest unknown vertex”?

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):
distTo.put(u, newDist)
edgeTo.put(u, v)

• Would sure be
convenient to store
vertices in a structure
that…

- Gives them each a
distance “priority” value

- Makes it fast to grab the
one with the smallest
distance

- Lets us update that
distance as we discover
new, better paths

MIN PRIORITY QUEUE ADT

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Implementing Dijkstra’s: Pseudocode
• Use a MinPriorityQueue to

keep track of the
perimeter

- Don’t need to track entire
graph

- Don’t need separate
“known” set – implicit in
PQ (we’ll never try to
update a “known” vertex)

• This pseudocode is much
closer to what you’ll
implement in P4

- However, still some details
for you to figure out!

- e.g. how to initialize distTo
with all nodes mapped to ∞

- Spec will describe some
optimizations for you to
make J

dijkstraShortestPath(G graph, V start)
Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CO R R ECT ED
A FT ER LECT UR E

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Dijkstra’s Runtime
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Dijkstra’s Runtime
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|
Θ 𝑉 log 𝑉 + |𝐸|log |𝑉|

Final result:

Why can’t we simplify further?
• We don’t know if |V| or |E| is

going to be larger, so we don’t
know which term will dominate.

• Sometimes we assume |E| is
larger than |V|, so |E|log|V|
dominates. But not always true!

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Lecture Outline
• Dijkstra’s Algorithm

- Review Definition & Examples
- Implementing Dijkstra’s

• Minimum Spanning Trees

• Prim’s Algorithm

• Kruskal’s Algorithm & Disjoint Sets

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Watt Would You Do? (sorry, I know it hertz to read these puns)

• Your friend at the electric company needs to connect all these cities
to the power plant
• She knows the cost to lay wires between any pair of cities and wants

the cheapest way to ensure electricity gets to every city

• Assume:
- All edge weights are positive
- The graph is undirected

A

B

D

E
C

3 6
111

4
5

8

9
107

2

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Finding a Solution
• We need a set of edges such that:

- Every vertex touches at least one edge (“the edges span the graph”)
- The graph using just those edges is connected
- The total weight of these edges is minimized

• Claim: The set of edges we pick never forms a cycle. Why?
- V-1 edges is the exact minimum number of edges

to connect all vertices
- Taking away 1 edge breaks

connectiveness
- Adding 1 edge makes a cycle A

B

D

E
C

3 6

1

4

2

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

pollev.com/uwcse373

Which of these are trees?

A. Tree / Not-Tree / Not-Tree
B. Tree / Tree / Not-Tree
C. Tree / Not-Tree / Tree
D. Tree / Tree / Tree
E. I’m not sure …

A

B

D

E
C

3
2

1

4

A

B

D

E
C

2

1

4

A

B

D

E
C

3
2

1

4

5

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Review Definition of a Tree
• So far, we’ve thought of trees as nodes

with “parent” & “child” relationships
- LEC 09: “A binary tree is a collection of nodes

where each node has at most 1 parent and
anywhere from 0 to 2 children”

• We can express the definition of a tree
another way:

- A tree is a collection of nodes connected by
edges where there is exactly one path
between any pair of nodes

- So all trees are connected, acyclic graphs!

Not Trees:

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Our Solution: The MST Problem
• We need a set of edges such that Minimum Spanning Tree:

- Every vertex touches at least one edges (“the edges span the graph”)
- The graph using just those edges is connected
- The total weight of these edges is minimized

A

B

D

E
C

3 6

1

4

2

A

B

D

E
C

3

4

9
107

A Spanning Tree: A Minimum Spanning Tree:

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

B C

A

2

4

3
1D

Cycle Property
• Given any cycle, the heaviest edge along it must NOT be in the MST

- Why not? A tree has no cycles, so we must discard at least one edge
- Discarding exactly one edge will always leave all vertices connected
- If we discard the heaviest edge, we minimize the edges still in use!

B C

A 4

3
1D

B C

A

2

4
1D

B C

A

2 3
1D

Total: 6Total: 7Total: 8

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

B
C

A

2

4

3
1

D

Cut Property
• Given any cut, the minimum-weight crossing edge must be IN the MST

- A cut is a partitioning of the vertices into two sets
- (other crossing edges can also be in the MST)
- Why? Some edge must connect the two, always best to use the smallest

🤔 If only we knew of an algorithm that maintained a set of
“known” and “unknown” vertices and repeatedly chose the

minimum edge between the two sets …

B
C

A D

2

4

3
1

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Lecture Outline
• Dijkstra’s Algorithm

- Review Definition & Examples
- Implementing Dijkstra’s

• Minimum Spanning Trees

• Prim’s Algorithm

• Kruskal’s Algorithm & Disjoint Sets

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Adapting Dijkstra’s: Prim’s Algorithm
• MSTs don’t have a “source vertex”

- Replace “vertices for which we know the shortest path from s” with “vertices
in the MST-under-construction”

- Visit vertices in order of distance from MST-under-construction
- Relax an edge based on its distance from source

• Note:
- Prim’s algorithm was developed in 1930 by Votěch Jarník, then independently

rediscovered by Robert Prim in 1957 and Dijkstra in 1959. It’s sometimes
called Jarník’s, Prim-Jarník, or DJP

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Adapting Dijkstra’s: Prim’s Algorithm
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0
PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v) // previous smallest edge to v
newDist = distTo.get(u) + w // is this a smaller edge to v?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

distTo.get(u) +

prims• Normally, Dijkstra’s checks for a
shorter path from the start.

• But MSTs don’t care about
individual paths, only the overall
weight!

• New condition: “would this be a
smaller edge to connect the
current known set to the rest of
the graph?”

X

KNOWN

3??

3

1

A

1

C
1??

B

4

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

pollev.com/uwcse373

Let’s Try It!

Node known? distTo edgeTo
A

B

C

D

E

F

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

pollev.com/uwcse373

Let’s Try It!

Node known? distTo edgeTo
A ∞

B ∞

C ∞

D ∞

E ∞

F 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose F as the
start

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

pollev.com/uwcse373

Let’s Try It!

Node known? distTo edgeTo
A ∞

B 6?? F

C 10?? F

D 8?? F

E 9?? F

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Pull F into the known
set, updating its
neighbors

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

pollev.com/uwcse373

Let’s Try It!

Node known? distTo edgeTo
A 3?? B

B Y 6 F

C 10?? F

D 8?? F

E 2?? B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose B and
update its
neighbors. Note
that E is updated
to 2, NOT 8 –
only the cost to
add it to the
growing tree!

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

pollev.com/uwcse373

Let’s Try It! primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A 3?? B

B Y 6 F

C 10?? F

D 7?? E

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose E and
update its
neighbors. We
found a smaller
way to get to D!

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

pollev.com/uwcse373

Let’s Try It! primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A Y 3 B

B Y 6 F

C 1?? A

D 4?? A

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose A and
update its
neighbors. We
found much
smaller options
to add C and D!

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

pollev.com/uwcse373

Let’s Try It! primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A Y 3 B

B Y 6 F

C Y 1 A

D 4?? A

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose C and
update its
neighbors.
Nothing
changes.

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

pollev.com/uwcse373

Let’s Try It! primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A Y 3 B

B Y 6 F

C Y 1 A

D Y 4 A

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose D and
finish the
algorithm! We
have our MST:
an undirected
graph with all
edgeTo edges!

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Prim’s Runtime
primMST(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|
Θ 𝑉 log 𝑉 + |𝐸|log |𝑉|

Final result:

Unsurprisingly, runtime is just like
Dijkstra’s algorithm.

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

pollev.com/uwcse373

What if we started somewhere else?

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Starting from F:

Starting from A? B? C?

• In this example we started from the power plant, F.
What would happen if we started from some other
vertex in this graph?
a) We would no longer get a correct MST.
b) We would get an MST but it wouldn’t solve the

problem of connecting electricity.
c) We would get a correct MST, but a different one.
d) We would get the exact same MST.

• Since a Minimum Spanning Tree includes every vertex and
minimizes all of its weights, it doesn’t matter where we start!
• This graph has a unique MST, but some graphs have multiple

valid MSTs. In that case, starting elsewhere could give a
different but correct MST!

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Prim’s Demos and Visualizations
• Dijkstra’s Visualization

- https://www.youtube.com/watch?v=1oiQ0hrVwJk
- Dijkstra’s proceeds radially from its source, because it chooses

edges by path length from source

• Prim’s Visualization
- https://www.youtube.com/watch?v=6uq0cQZOyoY
- Prim’s jumps around the graph (the perimeter), because it chooses

edges by edge weight (there’s no source)

https://www.youtube.com/watch?v=1oiQ0hrVwJk
https://www.youtube.com/watch?v=6uq0cQZOyoY

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Lecture Outline
• Dijkstra’s Algorithm

- Review Definition & Examples
- Implementing Dijkstra’s

• Minimum Spanning Trees

• Prim’s Algorithm

• Kruskal’s Algorithm & Disjoint Sets

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

A Different Approach

• Observation: We basically chose all the smallest
edges in the entire graph (1, 2, 3, 4, 6)

- The only exception was 5. Why didn’t we add edge 5?
- Because adding 5 would have created a cycle, and to connect A, C,

& D we’d rather choose 1 & 4 than 1 & 5 or 4 & 5.

• Prim’s thinks “vertex by vertex”, but what if you think
“edge by edge” instead?

- Start with the smallest edge in the entire graph and work
your way up

- Add the edge to the MST as long as it connects two new
groups (meaning don’t add any edges that would create a
cycle)

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Building an MST “edge by edge”
in this graph:

• Add edge 1
• Add edge 2
• Add edge 3
• Add edge 4
• Skip edge 5 (would create a cycle)
• Add edge 6
• Finished: all vertices in the MST!

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Kruskal’s Algorithm
• This “edge by edge” approach is how Kruskal’s Algorithm works!
• Visualization: https://www.youtube.com/watch?v=ggLyKfBTABo

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST);

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- If an edge connects two vertices within the
same “island”, it forms a cycle! Discard it.

- If an edge connects two vertices in different
“islands”, add it to the MST! Now those
“islands” need to be combined.

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

https://www.youtube.com/watch?v=ggLyKfBTABo

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Disjoint Sets ADT (aka “Union-Find”)
• Kruskal’s needs to find what MST a vertex

belongs to, and union those MSTs together

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (use
one of its members as a “name”)

Behavior
makeSet(value) – new set with value
as only member (and representative)
findSet(value) – return
representative of the set containing
value
union(x, y) – combine sets containing
x and y into one set with all
elements, choose single new
representative

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST);

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

CSE 373 Summer 2020LEC 17: Minimum Spanning Trees

Can we use an existing data structure?

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (use
one of its members as a “name”)

Behavior
makeSet(value) – new set with value
as only member (and representative)
findSet(value) – return
representative of the set containing
value
union(x, y) – combine sets containing
x and y into one set with all
elements, choose single new
representative

Approach 1 Approach 2

makeSet(value) Θ(1) Θ(1)

findSet(value) Θ(1) Θ(𝑛)

union(x, y) Θ(𝑛) Θ(𝑛)

Approach 1: map from value
to representative element

Keanu

Joyce

Farrell

Brian

Eric

Keanu

Joyce

Joyce

Joyce

Keanu

Approach 2: map from
representative to set of values

Keanu

Joyce

Keanu, Farrell

Joyce, Brian, Eric

Both approaches limited by union: requires scanning through all elements to update. Could we do better? Coming up next!

