LEC 14

cse 373 Graphs

BEFORE WE START

Head to PollEverywhere to let us know what you thought of the exam and the online format!

- 1. How many hours did you spend?
- 2. Compared to your expectations, how difficult was the exam?
- 3. Compared to other classes, how clear was the link between course content and what we tested you on?
- 4. What did you think of the logistics?

pollev.com/uwcse373

Instructor Aaron Johnston

- TAs Timothy Akintilo Brian Chan Joyce Elauria Eric Fan Farrell Fileas
- Melissa Hovik Leona Kazi Keanu Vestil Siddharth Vaidyanathan Howard Xiao

You did it!

EXAM I out of the way!

- I know there can be a lot of anxiety surrounding exams!
 - Hopefully the take-home format helped reduce time pressure, learning objectives helped clarify our expectations, and group work helped you bounce your ideas off someone!
- This class has a LOT of difficult content, so pat yourself on the back for reviewing so much material
- Next steps:
 - We're hard at work grading your responses, expect feedback published by early next week
 - If there are concepts you felt shaky on, schedule a 1:1 to review!

Announcements

- P2 late cutoff tonight at 11:59pm
 - Exam days "free late days", so submitting today will use up 3 total late days
- P3 due in 1.5 weeks on Wednesday, 8/05
 - Start early!
 - Remember that changePriority and contains aren't efficient on a heap alone – you should use an extra data structure!
 - Recommendation: just get it working first, then analyze where inefficiencies are – what data structure could help?
- EX3 published this Friday, 7/31
 - Focusing on post-Exam I content, especially this week

Announcements

- If you're at all interested in careers in tech, now's a great time to start thinking about applying for internships or jobs!
 - A+ Advice for Getting a Job (373-specific lecture recording!): Linked on calendar now, along with some other fantastic resources (Job Guide & Resume Guide)!
- I've doubled available 1:1 slots this week! Come chat if you're interested in talking about how you might apply this class in industry (or grad school!) ③

Learning Objectives

After this lecture, you should be able to...

- 1. Categorize graph data structures based on which properties they exhibit
- 2. Select which properties of a graph would be most appropriate to model a scenario (e.g. Directed/Undirected, Cyclic/Acyclic, etc.)
- 3. Compare the runtimes of Adjacency Matrix and Adjacency List graph implementations, and select the most appropriate one for a particular problem
- 4. Describe the high-level algorithm for solving the s-t Connectivity Problem, and be prepared to expand on it going forward

Lecture Outline

- Graphs
 - Definitions
 - Choosing Graph Types
- Graph Implementations
- s-t Connectivity Problem

Review Trees

- A tree is a collection of nodes where each node has at most 1 parent and at least 0 children
 - A **binary tree** is a tree where each node has at most 2 children
- Root node: the single node with no parent, "top" of the tree
- Leaf node: a node with no children
- Subtree: a node and all its descendants
- Edge: connection between parent and a child

Review Trees We've Seen So Far

0

Α

Inter-data Relationships

Arrays

• Elements only store pure data, no connection info

1

В

2

С

• Only relationship between data is order

Trees

- Elements store data and connection info
- Directional relationships between nodes; limited connections

B

Α

Graphs

- Elements AND connections can store data
- Relationships dictate structure; huge freedom with connections

Everything is Graphs

- Everything is graphs.
- Most things we've studied this quarter can be represented by graphs.
 - BSTs are graphs
 - Linked lists? Graphs.
 - Heaps? Also can be represented as graphs.
 - Those trees we drew in the tree method? Graphs.
- But it's not just data structures that we've discussed...
 - Google Maps database? Graph.
 - Facebook? They have a "graph search" team. Because it's a graph
 - Gitlab's history of a repository? Graph.
 - Those pictures of prerequisites in your program? Graphs.
 - Family tree? That's a graph

Applications

- Physical Maps
 - Airline maps
 - Vertices are airports, edges are flight paths
 - Traffic
 - Vertices are addresses, edges are streets
- Relationships
 - Social media graphs
 - Vertices are accounts, edges are follower relatior
 - Code bases
 - Vertices are classes, edges are usage
- Influence
 - Biology
 - Vertices are cancer cell destinations, edges are m
- Related topics
 - Web Page Ranking
 - Vertices are web pages, edges are hyperlinks
 - Wikipedia
 - Vertices are articles, edges are links

So many more:

www.allthingsgraphed.com

Graphs

- A Graph consists of two sets, V and E:
 - V: Set of vertices (aka nodes)
 - E: Set of edges (pairs of vertices)
 - |V|: Size of V (also called n)
 - |E|: Size of E (also called m)

Directed vs Undirected; Acyclic vs Cyclic

Labeled and Weighted Graphs

Vertex Labels

Vertex & Edge Labels

 $\begin{array}{c} 2 \\ c \\ 5 \\ d \\ 1 \\ b \\ 4 \end{array}$

Numeric Edge Labels (Edge Weights)

More Graph Terminology

- A Simple Graph has no self-loops or parallel edges
 - In a simple graph, |E| is $O(|V|^2)$
 - Unless otherwise stated, all graphs in this course are simple
- Vertices with an edge between them are adjacent
 - Vertices or edges may have optional labels
 - Numeric edge labels are sometimes called weights

More More Graph Terminology

- Two vertices are **connected** if there is a path between them
 - If all the vertices are connected, we say the graph is **connected**
 - The number of edges leaving a vertex is its degree
- A path is a sequence of vertices connected by edges
 - A **simple path** is a path without repeated vertices
 - A cycle is a path whose first and last edges are the same
 - A graph with a cycle is cyclic

Lecture Outline

- Graphs
 - Definitions
 - Choosing Graph Types
- Graph Implementations
- s-t Connectivity Problem

Doll Everywhere

pollev.com/uwcse373

This schematic map of the Paris Métro is a graph. Which of the following characteristics make sense here?

- A. Undirected / Connected / Cyclic / Vertex-labeled
- B. Directed / Connected / Cyclic / Vertex-labeled
- C. Undirected / Connected / Cyclic / Edge-labeled
- D. Directed / Connected / Cyclic / Edge-labeled
- E. I'm not sure ...

pollev.com/uwcse373

Some examples

Poll Everywhere

- For each of the following: what should you choose for vertices and edges? Directed?
- Webpages on the Internet
- Ways to walk between UW buildings
- Course Prerequisites

Ideas: What graph characteristics would best model these situations?

Тор

Some examples

- For each of the following: what should you choose for vertices and edges? Directed?
- Webpages on the Internet
 - Vertices: webpages. Edges from a to b if a has a hyperlink to b.
 - Directed, since hyperlinks go in one direction
- Ways to walk between UW buildings
 - Vertices: buildings. Edges: from parent to child, maybe for marriages too?
 - Undirected, since each route can be walked both ways
- Course Prerequisites
 - Vertices: courses. Edge: from a to b if a is a prereq for b.
 - Directed, since one course comes before the other

Lecture Outline

- Graphs
 - Definitions
 - Choosing Graph Types
- Graph Implementations

• s-t Connectivity Problem

Multi-Variable Analysis

- So far, we thought of everything as being in terms of some single argument "n" (sometimes its own parameter, other times a size)
 - But there's no reason we can't do reasoning in terms of multiple inputs!
- Why multi-variable?
 - Remember, algorithmic analysis is just a tool to help us understand code.
 Sometimes, it helps our understanding more to build a Oh/Omega/Theta bound for multiple factors, rather than handling those factors in case analysis.
- With graphs, we usually do our reasoning in terms of:
 - n (or |V|): total number of vertices (sometimes just call it V)
 - m (or |E|): total number of edges (sometimes just call it E)
 - deg(u): degree of node u (how many outgoing edges it has)

Multi-Variable Analysis

instead of wrapping them up into cases!

Adjacency Matrix

- Create a 2D matrix that is $|V| \times |V|$
- In an adjacency matrix, a[u][v] is 1 if there is an edge (u,v), and 0 otherwise.
- Symmetric for undirected graphs

	0 1	4
6	2-(3

	0	1	2	3	4	5	6
0	0	1	1	0	0	0	0
1	1	0	0	1	0	0	0
2	1	0	0	1	0	0	0
3	0	1	1	0	0	1	0
4	0	0	0	0	0	1	0
5	0	0	0	1	1	0	0
6	0	0	0	0	0	0	0

Add Edge	Θ(1)
Remove Edge	O (1)
Check if edge (u, v) exists	O (1)
Get out-neighbors of u	O (<i>n</i>)
Get out-neighbors of v	O (n)
(Space Complexity)	$\Theta(n^2)$

Adjacency List

- Create a Map from V to some Collection of E
- In an adjacency list, if (u,v) ∈ E, then v is found in the collection under key u
- Since each node maps to a list of its neighbors, in undirected graph every edge will be included twice
 - In directed graph, every edge from u is in list associated with key u.

Add Edge	Θ(1)
Remove Edge	$\Theta(\deg(u))$
Check if edge (u, v) exists	$\Theta(\deg(u))$
Get out-neighbors of u	$\Theta(\deg(u))$
Get out-neighbors of v	$\Theta(n+m)$
(Space Complexity)	$\Theta(n+m)$

(|V| = n, |E| = m)

Adjacency List

- Create a Map from V to some Collection of E
- In an adjacency list, if (u,v) ∈ E, then v is found in the collection under key u
- Since each node maps to a list of its neighbors, in undirected graph every edge will be included twice
 - In directed graph, every edge from u is in list associated with key u.

Add Edge	Θ(1)
Remove Edge	Θ(1)
Check if edge (u, v) exists	Θ(1)
Get out-neighbors of u	$\Theta(\deg(u))$
Get out-neighbors of v	O (n)
(Space Complexity)	$\Theta(n+m)$

(|V| = n, |E| = m)

Tradeoffs

- Adjacency Matrices take more space, and have slower $\Theta()$ bounds, why would you use them?
 - For **dense** graphs (where m is close to n^2), the running times will be close
 - And the constant factors can be much better for matrices than for lists.
 - Sometimes the matrix itself is useful ("spectral graph theory")
- What's the tradeoff between using linked lists and hash tables for the list of neighbors?
 - A hash table still *might* hit a worst-case
 - And the linked list might not
 - Graph algorithms often just need to iterate over all the neighbors, so you might get a better guarantee with the linked list.

373: Graph Implementations

- For this class, unless we say otherwise, we'll assume the hash tables operations on graphs are all O(1).
 - Because you can probably control the keys.
- Unless we say otherwise, assume we're using an adjacency list with hash tables for each list.

Lecture Outline

- Graphs
 - Definitions
 - Choosing Graph Types
- Graph Implementations

s-t Connectivity Problem

- s-t connectivity problem
 - Given source vertex s and a target vertex t, does there exist a path between s and t?
- Try to come up with an algorithm for connected(s, t)

s-t Connectivity Problem: Proposed Solution

```
connected(Node s, Node t) {
  if (s == t) {
    return true;
  } else {
    for (Node n : s.neighbors) {
      if (connected(n, t)) {
        return true;
    return false;
}
```


pollev.com/uwcse373

What's wrong with this proposal?

What's wrong with this proposal?

What's wrong with this proposal?

```
connected(Node s, Node t) {
    if (s == t) {
        return true;
    } else {
        for (Node n : s.neighbors) {
            if (connected(n, t)) {
               return true;
            }
        }
        return false;
    }
}
```


Does 0 == 7? No; if(connected(1, 7) return true; Does 1 == 7? No; if(connected(0, 7) return true; Does 0 == 7?

s-t Connectivity Problem: Better Solution

• Solution: Mark each node as visited!

```
connected(Node s, Node t) {
  if (s == t) {
    return true;
  } else {
    s.visited = true;
    for (Node n : s.neighbors) {
      if (n.visited) {
        continue;
      if (connected(n, t)) {
        return true;
    return false;
```


- This general approach to crawl through everything in a graph is going to be the basis for a LOT of algorithms
- Come back Wednesday to see an application