
CSE 373 Summer 2020LEC 14: Graphs

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 1 4

Graphs

BEFORE WE START

pollev.com/uwcse373

Head to PollEverywhere to let us know what you
thought of the exam and the online format!

1. How many hours did you spend?
2. Compared to your expectations, how difficult was

the exam?
3. Compared to other classes, how clear was the

link between course content and what we tested
you on?

4. What did you think of the logistics?

CSE 373 Summer 2020LEC 14: Graphs

You did it!
EXAM I out of the way!

• I know there can be a lot of anxiety surrounding exams!
• Hopefully the take-home format helped reduce time pressure, learning

objectives helped clarify our expectations, and group work helped you bounce
your ideas off someone!

• This class has a LOT of difficult content, so pat yourself on the back for reviewing so
much material

• Next steps:
• We’re hard at work grading your responses, expect feedback published by early

next week
• If there are concepts you felt shaky on, schedule a 1:1 to review!

CSE 373 Summer 2020LEC 14: Graphs

Announcements
• P2 late cutoff tonight at 11:59pm

- Exam days “free late days”, so submitting today will use
up 3 total late days

• P3 due in 1.5 weeks on Wednesday, 8/05
- Start early!
- Remember that changePriority and contains aren’t

efficient on a heap alone – you should use an extra
data structure!

- Recommendation: just get it working first, then analyze
where inefficiencies are – what data structure could
help?

• EX3 published this Friday, 7/31
- Focusing on post-Exam I content, especially this week

L E C 1 2

L E C 1 3

L E C 1 4

L E C 1 5

L E C 1 6

PQs & Heaps

Heaps II, Interviews

Graphs

BFS, DFS, SP

Dijkstra’s

P 3

E X 3

Heap

BFS/DFS/Dijkstra’s

CSE 373 Summer 2020LEC 14: Graphs

Announcements
• If you’re at all interested in careers in tech, now’s a great time to start thinking about

applying for internships or jobs!
- A+ Advice for Getting a Job (373-specific lecture recording!): Linked on calendar now, along with some

other fantastic resources (Job Guide & Resume Guide)!

• I’ve doubled available 1:1 slots this week! Come chat if you’re interested in
talking about how you might apply this class in industry (or grad school!) J

Job/Internship
Offer

InterviewingApplying1 2
Online
Apps

Career
Fairs Technical Behavioral

PR
EP

A
RA

TI
O

N

CSE 373
MATERIAL

• Putting together your resume
• Personal projects/other experience to

help you stand out
• Identifying where to apply, and when

• Practicing with interview problems &
design decisions

• Identifying common patterns in
interview questions

PR
O

CE
SS

CSE 373 Summer 2020LEC 14: Graphs

Learning Objectives

1. Categorize graph data structures based on which properties they
exhibit

2. Select which properties of a graph would be most appropriate to
model a scenario (e.g. Directed/Undirected, Cyclic/Acyclic, etc.)

3. Compare the runtimes of Adjacency Matrix and Adjacency List
graph implementations, and select the most appropriate one for a
particular problem

4. Describe the high-level algorithm for solving the s-t Connectivity
Problem, and be prepared to expand on it going forward

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 14: Graphs

Lecture Outline
• Graphs

- Definitions
- Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem

CSE 373 Summer 2020LEC 14: Graphs

Review Trees

0

1 7

3 8

• A tree is a collection of nodes where
each node has at most 1 parent and at
least 0 children

- A binary tree is a tree where each node has
at most 2 children

• Root node: the single node with no
parent, “top” of the tree
• Leaf node: a node with no children
• Subtree: a node and all its descendants
• Edge: connection between parent and a

child

10

2

CSE 373 Summer 2020LEC 14: Graphs

Review Trees We’ve Seen So Far

14

8 21

3 16 22

15

5

6 7

9 8 311 A

2 B

3 C

5 D

6 E

8 F

194 13

16

15 I

Binary Search Trees
• And variant: AVL Trees

B+ Trees Binary Min-Heaps

CSE 373 Summer 2020LEC 14: Graphs

Inter-data Relationships

• Elements only store pure
data, no connection info

• Only relationship
between data is order

0 1 2

A B C

Arrays

• Elements store data and
connection info

• Directional relationships
between nodes; limited
connections

Trees Graphs

• Elements AND
connections can store
data

• Relationships dictate
structure; huge freedom
with connections

B

A C

B

A

C

CSE 373 Summer 2020LEC 14: Graphs

Everything is Graphs
• Everything is graphs.
• Most things we’ve studied this quarter can be

represented by graphs.
- BSTs are graphs
- Linked lists? Graphs.
- Heaps? Also can be represented as graphs.
- Those trees we drew in the tree method? Graphs.

• But it’s not just data structures that we’ve discussed…
- Google Maps database? Graph.
- Facebook? They have a “graph search” team. Because it’s a graph
- Gitlab’s history of a repository? Graph.
- Those pictures of prerequisites in your program? Graphs.
- Family tree? That’s a graph

CSE 373 Summer 2020LEC 14: Graphs

Applications
• Physical Maps

- Airline maps
- Vertices are airports, edges are flight paths

- Traffic
- Vertices are addresses, edges are streets

• Relationships
- Social media graphs

- Vertices are accounts, edges are follower relationships
- Code bases

- Vertices are classes, edges are usage

• Influence
- Biology

- Vertices are cancer cell destinations, edges are migration paths

• Related topics
- Web Page Ranking

- Vertices are web pages, edges are hyperlinks
- Wikipedia

- Vertices are articles, edges are links

So many more:
www.allthingsgraphed.com

http://www.allthingsgraphed.com/

CSE 373 Summer 2020LEC 14: Graphs

(,)

Graphs
• A Graph consists of two sets, V and E:

- V: Set of vertices (aka nodes)
- E: Set of edges (pairs of vertices)
- |V|: Size of V (also called n)
- |E|: Size of E (also called m)

a

b

d

c

f

e
g

a

b

d

c

e

h

a

b

c

V: Set of vertices E: Set of edges

a b

(,)a c

(,)c d

CSE 373 Summer 2020LEC 14: Graphs

Directed vs Undirected; Acyclic vs Cyclic

a

b

d

c

a

b

d

c

e

a

b

d

c

a

b

d

c

Acyclic:

Cyclic:

Directed: Undirected:

CSE 373 Summer 2020LEC 14: Graphs

Vertex & Edge
Labels

Labeled and Weighted Graphs
Edge Labels

a

b

c

d

Vertex Labels

b

d

c

e

a

Numeric Edge Labels
(Edge Weights)

1

2

3

1

2

3

4

5

1

a

b

c

d

CSE 373 Summer 2020LEC 14: Graphs

More Graph Terminology
• A Simple Graph has no self-loops

or parallel edges
- In a simple graph, |E| is O(|V|2)
- Unless otherwise stated, all graphs

in this course are simple

• Vertices with an edge between them are
adjacent

- Vertices or edges may have optional labels
- Numeric edge labels are sometimes called weights

a

b

f

parallel edges

self-loop

CSE 373 Summer 2020LEC 14: Graphs

More More Graph Terminology
• Two vertices are connected if there is a path

between them
- If all the vertices are connected, we say the graph

is connected
- The number of edges leaving a vertex is its degree

• A path is a sequence of vertices connected by
edges

- A simple path is a path without repeated vertices
- A cycle is a path whose first and last edges are the

same
- A graph with a cycle is cyclic

a

b

c

f

e

g

d

j

p

m

n

i

o

p

m

n

i

o

CSE 373 Summer 2020LEC 14: Graphs

Lecture Outline
• Graphs

- Definitions
- Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem

CSE 373 Summer 2020LEC 14: Graphs

pollev.com/uwcse373

This schematic map of the Paris Métro is a
graph. Which of the following characteristics
make sense here?

A. Undirected / Connected / Cyclic / Vertex-labeled
B. Directed / Connected / Cyclic / Vertex-labeled
C. Undirected / Connected / Cyclic / Edge-labeled
D. Directed / Connected / Cyclic / Edge-labeled
E. I’m not sure …

CSE 373 Summer 2020LEC 14: Graphs

pollev.com/uwcse373

Some examples
• For each of the following: what

should you choose for vertices
and edges? Directed?
• Webpages on the Internet

• Ways to walk between UW
buildings

• Course Prerequisites

CSE 373 Summer 2020LEC 14: Graphs

Some examples
• For each of the following: what should you choose for vertices and

edges? Directed?
• Webpages on the Internet

- Vertices: webpages. Edges from a to b if a has a hyperlink to b.
- Directed, since hyperlinks go in one direction

• Ways to walk between UW buildings
- Vertices: buildings. Edges: from parent to child, maybe for marriages too?
- Undirected, since each route can be walked both ways

• Course Prerequisites
- Vertices: courses. Edge: from a to b if a is a prereq for b.
- Directed, since one course comes before the other

CSE 373 Summer 2020LEC 14: Graphs

Lecture Outline
• Graphs

- Definitions
- Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem

CSE 373 Summer 2020LEC 14: Graphs

Multi-Variable Analysis
• So far, we thought of everything as being in terms of some single

argument “n” (sometimes its own parameter, other times a size)
- But there’s no reason we can’t do reasoning in terms of multiple inputs!

• Why multi-variable?
- Remember, algorithmic analysis is just a tool to help us understand code.

Sometimes, it helps our understanding more to build a Oh/Omega/Theta bound
for multiple factors, rather than handling those factors in case analysis.

• With graphs, we usually do our reasoning in terms of:
- n (or |V|): total number of vertices (sometimes just call it V)
- m (or |E|): total number of edges (sometimes just call it E)
- deg(u): degree of node u (how many outgoing edges it has)

CSE 373 Summer 2020LEC 14: Graphs

Multi-Variable Analysis

CODE

BEST CASE
FUNCTION

f(n, m) = …

TIGHT
BIG-OH2

TIGHT
BIG-OMEGA

BIG-THETA

O(n*m)

Ω(1)

1 Asymptotic
Analysis

WORST CASE
FUNCTION

OTHER CASE
FUNCTION

Case
Analysis

f(n, m) = …

f(n, m) = …
Only difference: let multiple sources of variation
be represented as variables in runtime functions,
instead of wrapping them up into cases!

Sources of Variation:
n (size of list 1)
m (size of list 2)
k (position of element)

CSE 373 Summer 2020LEC 14: Graphs

Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get out-neighbors of v

(Space Complexity)

Adjacency Matrix

0 1 2 3 4 5 6
0 0 1 1 0 0 0 0
1 1 0 0 1 0 0 0
2 1 0 0 1 0 0 0
3 0 1 1 0 0 1 0
4 0 0 0 0 0 1 0
5 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0

• Create a 2D matrix that is |V| x |V|
• In an adjacency matrix, a[u][v] is 1 if there

is an edge (u,v), and 0 otherwise.
• Symmetric for undirected graphs

𝚯(𝟏)
𝚯(𝟏)
𝚯(𝒏)
𝚯(𝒏)
𝚯(𝒏𝟐)

0
1

326
5

4

𝚯(𝟏)

(|V| = n, |E| = m)

CSE 373 Summer 2020LEC 14: Graphs

Adjacency List

Linked Lists

0

1

2

3

A

B

C

D A

B C

B D

A
B

CD• Create a Map from V to some Collection of E
• In an adjacency list, if (u,v) ∈ E, then v is found in the

collection under key u
• Since each node maps to a list of its neighbors, in

undirected graph every edge will be included twice
• In directed graph, every edge from u is in list

associated with key u.

Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get out-neighbors of v

(Space Complexity)

𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏 +𝒎)
𝚯(𝒏 +𝒎)

𝚯(𝟏)

(|V| = n, |E| = m)

CSE 373 Summer 2020LEC 14: Graphs

Adjacency List
A

B

CD• Create a Map from V to some Collection of E
• In an adjacency list, if (u,v) ∈ E, then v is found in the

collection under key u
• Since each node maps to a list of its neighbors, in

undirected graph every edge will be included twice
• In directed graph, every edge from u is in list

associated with key u.

Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get out-neighbors of v

(Space Complexity)

𝚯(𝟏)
𝚯(𝟏)

𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏)

𝚯(𝒏 +𝒎)

𝚯(𝟏)

(|V| = n, |E| = m)

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4
Hash Tables

0

1

2

3

A

B

C

D

C

D

A

B

B

CSE 373 Summer 2020LEC 14: Graphs

Tradeoffs
• Adjacency Matrices take more space, and have slower Θ() bounds, why

would you use them?
- For dense graphs (where 𝑚 is close to 𝑛!), the running times will be close
- And the constant factors can be much better for matrices than for lists.
- Sometimes the matrix itself is useful (“spectral graph theory”)

• What’s the tradeoff between using linked lists and hash tables for the list
of neighbors?

- A hash table still might hit a worst-case
- And the linked list might not

- Graph algorithms often just need to iterate over all the neighbors, so you might get a better guarantee
with the linked list.

CSE 373 Summer 2020LEC 14: Graphs

373: Graph Implementations
• For this class, unless we say otherwise, we’ll assume the hash tables

operations on graphs are all 𝑂 1 .
- Because you can probably control the keys.

• Unless we say otherwise, assume we’re using an adjacency list with
hash tables for each list.

CSE 373 Summer 2020LEC 14: Graphs

Lecture Outline
• Graphs

- Definitions
- Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem

CSE 373 Summer 2020LEC 14: Graphs

s-t Connectivity Problem
• s-t connectivity problem

- Given source vertex s and a target
vertex t, does there exist a path
between s and t?

• Try to come up with an algorithm
for connected(s, t)

1

2

3

4

5

6

7

8

0s
t

CSE 373 Summer 2020LEC 14: Graphs

s-t Connectivity Problem: Proposed Solution

connected(Node s, Node t) {
if (s == t) {
return true;

} else {
for (Node n : s.neighbors) {
if (connected(n, t)) {
return true;

}
}
return false;

}
}

1

2

3

4

5

6

7

8

0s
t

CSE 373 Summer 2020LEC 14: Graphs

pollev.com/uwcse373

What’s wrong with this proposal?
connected(Node s, Node t) {
if (s == t) {
return true;

} else {
for (Node n : s.neighbors) {
if (connected(n, t)) {
return true;

}
}
return false;

}
} 1

2

3

4

5

6

7

8

0s
t

CSE 373 Summer 2020LEC 14: Graphs

What’s wrong with this proposal?
connected(Node s, Node t) {
if (s == t) {
return true;

} else {
for (Node n : s.neighbors) {
if (connected(n, t)) {
return true;

}
}
return false;

}
}

1

2

3

4

5

6

7

8

0s
t

Does 0 == 7? No; if(connected(1, 7) return true;
Does 1 == 7? No; if(connected(0, 7) return true;
Does 0 == 7?

CSE 373 Summer 2020LEC 14: Graphs

s-t Connectivity Problem: Better Solution
• Solution: Mark each node as visited!

connected(Node s, Node t) {
if (s == t) {
return true;

} else {
s.visited = true;
for (Node n : s.neighbors) {
if (n.visited) {
continue;

}
if (connected(n, t)) {
return true;

}
}
return false;

}
}

1

2

3

4

5

6

7

8

0s
t

• This general approach to crawl
through everything in a graph is
going to be the basis for a LOT of
algorithms

• Come back Wednesday to see an
application

