
CSE 373 Summer 2020LEC 13: Heaps II, Interviews

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 1 3

Heaps II,
Interviews

BEFORE WE START

pollev.com/uwcse373

If removeMin() always returns the root node, why do
we still care about keeping the heap's height small?

a) To maintain a quick runtime for
percolateDown() when restoring the
invariants

b) To run contains() and look up an arbitrary key
c) To minimize the amount of space the heap

takes up

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Announcements
• P2 due TONIGHT 11:59pm PDT

- Don’t forget to fill out the P2 Project Survey! Worth 1 point, due tonight as well
• EX1 & P1 Grades released

- If you think we made a mistake, 2 weeks for submitting a regrade request on
Gradescope

• Exam I Review Materials were released Monday
- Find under “Exams” on the website sidebar
- Resources available to you:

- 373 20su-specific Practice Problems Set (w/ Solutions)
- Section Exam Review handout
- Post-lecture review questions
- Previous section worksheets (problems we didn’t get to)
- 20wi Midterm & Practice Midterm (both w/ Solutions, less specific)

• Section tomorrow will emphasize Exam I review
- Come prepared with your questions for maximum effectiveness

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Exam I Logistics

• Released Friday morning (7/24 12:01am PDT), due Saturday night (7/25 11:59pm PDT). Total: 48
hour window, work whenever!

- No late submissions accepted. You cannot use late days on Exam I!
- Written for 1-2 hours

• You’ll submit on Gradescope, just like the exercises. You can add up to 8 total people to your
submission.

• During those 48 hours, we will only help with clarification questions during office hours – no
review of course concepts.

• Email cse373-staff@cs or post on Piazza ASAP with any technical problems
• Don’t forget to BREATHE – you have plenty of time, no need to panic

WED THU FRI SAT

OH: Only
Clarifications

OH: Only
Clarifications

DUE (NO LATE
SUBMISSIONS)

LECTURE:
Extra OH (same
Zoom meeting)

• Lecture on Friday is extra
OH for the exam! Join the
same Zoom call

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Learning Objectives

1. (Continued) Trace the removeMin(), and add() methods, including
percolateDown() and percolateUp()

2. Describe how a heap can be stored using an array, and compare
that implementation to one using linked nodes

3. Recall the runtime to build a heap with Floyd’s buildHeap algorithm,
and describe how the algorithm proceeds

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Lecture Outline
• Heaps II

- Operations & Implementation
- Building a Heap

• Technical Interviews

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Review Priority Queue ADT

• If a Queue is “First-In-First-
Out” (FIFO), Priority
Queues are “Most-
Important-Out-First”

• Items in Priority Queue
must be comparable –
The data structure will
maintain some amount of
internal sorting, in a sort of
similar way to BSTs/AVLs

• We’ll talk about “Min
Priority Queues” (lowest
priority is most important),
but “Max Priority Queues”
are almost identical

MIN PRIORITY QUEUE ADT

removeMin() – returns the element with
the smallest priority, removes it from the
collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove the
element with the smallest priority

add(value) – add a new element to the
collection

MAX PRIORITY QUEUE ADT

removeMin() – returns the element with
the largest priority, removes it from the
collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove the
element with the largest priority

add(value) – add a new element to the
collection

We’ll assume this one in 373!

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Review Binary Heap Invariants Summary
• One flavor of heap is a binary

heap, which is a Binary Tree
with the heap invariants (NOT a
Binary Search Tree)

8

9 10

2

9 4

3

6 7

1

22

36 47

2

4

8 9 10

3

1

5

Heap Invariant
Every node is less than or equal to all of its
children.IN

V
A
RI
A
N
T

Heap Structure Invariant
A heap is always a complete tree.

IN
V

A
R

IA
N

T

Binary Tree
Every node has at most 2 children

IN
V

A
R

IA
N

T

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Review Implementing peekMin()

4

5 8

7

10

2

9

11 13

Runtime: 𝚯(1) Simply return the value at the root!
That’s a constant-time operation if
we’ve ever seen one J

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Review Implement removeMin()

4

5 8

7

10

2

9

11 13

4

5 8

7

10

13

9

11

Structure Invariant
restored, but Heap
Invariant now broken

1) Remove min to return
2) Structure Invariant broken:

replace with bottom level
right-most node (the only
one that can be moved)

Heap Invariant
Every node is less than or equal to all of its
children.IN

V
A
RI
A
N
T

Heap Structure Invariant
A heap is always a complete tree.

IN
V

A
R

IA
N

T

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Review Implement removeMin(): percolateDown

4

5 8

7

10

13

9

11

4

135

13

13

11

Recursively swap parent with
smallest child until parent is
smaller than both children
(or at a leaf).

3) percolateDown

Structure invariant restored, heap invariant restored

What’s the worst-case
running time?
• Find last element
• Move it to top spot
• Swap until invariant

restored

This is why we want to keep the
height of the tree small! The height
of these tree structures (BST, AVL,
heaps) directly correlates with the
worst case runtimes

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

percolateDown: Why Smallest Child?
• Why does percolateDown swap with the smallest child instead of just

any child?

• If we swap 13 and 7, the heap invariant isn’t restored!
• 7 is greater than 4 (it’s not the smallest child!) so it will violate the

invariant.

4

5 8

7

10

13

9

11

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Implement add(key): percolateUp!

• Insert node on the
bottom level to ensure
no gaps (Heap Structure
Invariant)

• Fix Heap Invariant with
new technique:
percolateUp

- Swap with parent,
until your parent is
smaller than you (or
you’re the root).

4

5 8

7

10

2

9

11 13 3

3

8

3

4

Worst case runtime similar to removeMin and percolateDown
• might have to do log(n) swaps, so the worst-case runtime is Θ(log(n))

ADD ALGORITHM

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

MinHeap Runtimes

removeMin():
1. Remove root node
2. Find last node in tree and swap to top level
3. Percolate down to fix heap invariant

add(key):
1. Find next available spot and insert new node
2. Percolate up to fix heap invariant

• Finding the ”end” of the heap is hard!
• Can do it in Θ(log 𝑛) time on complete trees with extra class variables by walking down
• Fortunately, there’s a better way J

Operation Case Runtime

removeMin()
best Θ(1)

worst Θ(log n)

add(key)
best Θ(1)

worst Θ(log n)

log n

log n

log n

log n

1

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Implementing Heaps with an Array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

• Map our binary tree heap
representation into an array
• Fill in the array in level order

from left to right
• Remember, heaps are

complete trees – very
predictable number of nodes
on each level!

• Note: array implementation is
how people almost always
implement a heap
• But tree drawing is good way

to think of it conceptually!
• Everything we’ve discussed

about the tree is still true –
these are just different ways
of looking at the same thing

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Implementing Heaps with an Array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖 − 1
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 2

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[0]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 − 1]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

Calculations to navigate array:

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Implementing Heaps with an Array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

/ A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[1]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 + 1]

Simplified calculations to
navigate array, if we skip

index 0:

CO R R ECT ED
A FT ER LECT UR E

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Array-Implemented MinHeap Runtimes

E

A

B

D

C

F

0 1 2 3 4 5 6 7

/ A B C D E F

Operation Case Runtime

removeMin()

best Θ(1)

worst Θ(log n)

in practice Θ(log n)

add(key)

best Θ(1)

worst Θ(log n)

in practice Θ(1)

peekMin() all cases Θ(1)

• With array implementation, heaps match runtime of finding
min in AVL trees

• But better in many ways!
• Constant factors: array accesses give contiguous

memory/spatial locality, tree constant factor shorter
due to stricter height invariant

• In practice, add doesn’t require many swaps
• WAY simpler to implement!

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

AVL vs Heaps: Good For Different Situations

HEAPS AVL TREES

• removeMin: much better
constant factors than AVL
Trees, though
asymptotically the same

• add: in-practice, sweet
sweet Θ(1) (few swaps
usually required)

• get, containsKey: worst-
case (log n) time (unlike
Heap, which has to do a
linear scan of the array)

PriorityQueue Map/Set

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Lecture Outline
• Heaps II

- Operations & Implementation
- Building a Heap

• Design Decisions

• Technical Interviews

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Building a Heap

• Idea 1: Call add 𝑛 times.
- Worst case runtime?

- Each call takes logarithmic time, and there are n calls
- Θ(n log n)
- (Technically, the worst case is not this simple – you’re

not always going to hit logarithmic runtime because
many insertions happen in a pretty empty tree – but
this intuition is good enough)

- Could we do better?

Operation Case Runtime

removeMin()

best Θ(1)

worst Θ(log n)

in practice Θ(log n)

add(key)

best Θ(1)

worst Θ(log n)

in practice Θ(1)

peekMin() all cases Θ(1)

• buildHeap(elements 𝑒(, … , 𝑒)) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Can We Do Better?
• What’s causing the 𝑛 add strategy to take so long?

- Most nodes are near the bottom, and might need to percolate all the way up.

• Idea 2: Dump everything in the array, and percolate things down until
the heap invariant is satisfied

- Intuition: this could be faster!
- The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes
- Maybe we can make “most of the nodes” go only a constant distance

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Floyd’s buildHeap algorithm

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Floyd’s buildHeap algorithm

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

7

10

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Floyd’s buildHeap algorithm

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 102 9

7

10

2

11

3

5 6

11

keep percolating down
like normal here and swap 5 and 4

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Floyd’s buildHeap algorithm

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9

7

10

23

4

2

12

6

11

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Floyd’s buildHeap algorithm

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 1576

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9

7

10

23

4

2

6

1112

6

11

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Is It Really Faster?
• percolateDown() has worst case log n in general, but for most of these

nodes, it has a much smaller worst case!
- n/2 nodes in the tree are leaves, have 0 levels to travel
- n/4 nodes have at most 1 level to travel
- n/8 nodes have at most 2 levels to travel
- etc…

• worst-case-work(n) ≈ !
"
⋅ 1 + !

#
⋅ 2 + !

$
⋅ 3 + ⋯+ 1 ⋅ (log 𝑛)

• Intuition: Even though there are log n levels, each level does a smaller and
smaller amount of work. Even with infinite levels, as we sum smaller and
smaller values (think %

"!
) we converge to a constant factor of n.

++

Floyd’s buildHeap runs in O(n) time!

much of
the work

a little
less

a little
less

barely
anything

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Optional Slide Floyd’s buildHeap Summation
• 𝑛/2⋅ 1 +𝑛/4⋅ 2 +𝑛/8⋅ 3 +⋯+1⋅(log 𝑛)

factor out n

work(n) ≈𝑛 !
"
+ "

#
+ $

%
+⋯+ &'()

)

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛L
*+!

?
𝑖
2*

𝑤𝑜𝑟𝑘 𝑛 ≤ 𝑛L
*+!

&'(- 3
2

*

2*
𝑖𝑓 − 1 < 𝑥 < 1 𝑡ℎ𝑒𝑛L

*+.

/

𝑥* =
1

1 − 𝑥 = 𝑥

Infinite geometric series

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛 L
*+!

&'(-
𝑖
2*
≤ 𝑛L

*+.

/
3
4

*

= 𝑛 ∗ 4

find a pattern -> powers of 2 work(n) ≈ 𝑛 !
"!
+ "

""
+ $

"#
+⋯+ &'()

"$%& '

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Project 3
• Build a heap! Alongside hash maps, heaps

are one of the most useful data structures
to know – and pop up many more times
this quarter!

- You’ll also get practice using multiple data
structures together to implement an ADT!

- Directly apply the invariants we’ve talked so
much about in lecture! Even has an invariant
checker to verify this (a great defensive
programming technique!)

MIN PRIORITY QUEUE ADT

removeMin() – returns the element with
the smallest priority, removes it from the
collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove the
element with the smallest priority

add(value) – add a new element to the
collection

changePriority(item, priority) – update
the priority of an element
contains(item) – check if an element
exists in the priority queue

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Project 3 Tips
• Project 3 adds changePriority and
contains to the PriorityQueue ADT, which
aren’t efficient on a heap alone
• You should utilize an extra data structure for
changePriority!

- Doesn’t affect correctness of PQ, just runtime.
Please use a built-in Java collection instead of
implementing your own (although you could in
theory).

• changePriority Implementation Strategy:
- implement without regards to efficiency (without

the extra data structure) at first
- analyze your code’s runtime and figure out which

parts are inefficient
- reflect on the data structures we’ve learned and see

how any of them could be useful in improving the
slow parts in your code

MIN PRIORITY QUEUE ADT

removeMin() – returns the element with
the smallest priority, removes it from the
collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove the
element with the smallest priority

add(value) – add a new element to the
collection

changePriority(item, priority) – update
the priority of an element
contains(item) – check if an element
exists in the priority queue

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Lecture Outline
• Heaps II

- Operations & Implementation
- Building a Heap

• Technical Interviews

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Beyond CSE 373: Industry
• Many people take CSE 373 because they’re interested in a career

related to software engineering or more broadly CS
- If not, that’s totally okay too! There are so many good reasons to take this

class and ways to apply it; you don’t have to be interested in software
engineering specifically

- Perhaps you’ve become more interested over the course of the quarter

• If this sounds like you, it’s never too early to start thinking about
preparing for a job/internship hunt!

- We’ll send an announcement after the exam with a ton of resources for you
to get started with

- We’ll talk about this a few more times throughout the course
- But a few highlights now to get you thinking!

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

The Technical Interview Process

Job/Internship
Offer

InterviewingApplying1 2

Online
Apps

Career
Fairs Technical Behavioral

PR
EP

A
RA

TI
O

N

CSE 373
MATERIAL• Putting together your resume

• Personal projects/other
experience to help you stand
out

• Identifying where to apply,
and when

• Practicing with interview
problems & design decisions

• Identifying common patterns
in interview questions

PR
O

CE
SS

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

Applying

• http://bit.ly/csestorycrafting – how to turn your experience into a cohesive
story that stands out to recruiters
• UW Career & Internship Center – tons of helpful articles, especially for

online job hunting!
• College of Engineering Career Center – schedule an appointment to talk to

a career counselor

1

Start Here:
http://bit.ly/cseresumeguide

An incredibly useful guide to fleshing out your resume, highlighting
your experience to make you stand out, Do’s and Don’ts of what to

include

http://bit.ly/csestorycrafting
https://careers.uw.edu/
https://www.engr.washington.edu/current/careercenter
http://bit.ly/cseresumeguide

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

• Leetcode and Hackerrank – tons of practice interview questions. If you’re feeling
nervous, it always helps to practice J

- Check out #career-prep on Discord! Your amazing TA Joyce has been highlighting example
interview problems, and more and more options available as we learn more this quarter!

• The Secrets No One Told You About Technical Interviews – fantastic article (& by previous
373 instructor Kasey Champion!)

• Approaching Technical Interview Questions – when you get asked a question that stumps
you, what should you do?

Interviewing2

This is where CSE 373 comes in!
• Technical interviews love to ask about maps, trees, heaps,

recursive algorithms, and especially algorithmic analysis!
• Making design decisions and determining tradeoffs between

data structures is a crucial skill! Fortunately, you’ve been
practicing all quarter J

https://leetcode.com/
https://www.hackerrank.com/
https://medium.com/@techie4good/the-secrets-no-one-told-you-about-technical-interviews-5294fed0da9a
https://www.linkedin.com/pulse/nervous-during-your-technical-coding-interview-tebow-sarpangal

CSE 373 Summer 2020LEC 13: Heaps II, Interviews

A+ Advice for Getting a Software Job
• A guest lecture by the amazing Kim Nguyen, former Career Coach for

UW CSE, specifically for 373 students!
- Back when a “lecture” was something that happened in person…
- Look for an announcement with the recording! If you’re overwhelmed with all

these resources, highly recommend you start here

