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BEFORE WE START
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Rank the following code snippets: which would you 
expect to exhibit the most “spatial locality”?

for (int i = 0; i < n; i++) 
arr[i] += 1;

while (curr != null) {
curr.data += 1;
curr = curr.next;

}

for (int i = 0; i < 30; i++)
for (int j = 0; j < n; j += 30)

arr[i + j] += 1;

1.

2.

3.
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Announcements
• P2 due Wednesday 11:59pm PDT
• THANK YOU for filling out the mid-quarter feedback survey! 70% response 

rate – you rock!
- We’ll examine thoroughly as a staff and implement feedback where possible
- Quick takeaways for now: PollEverywhere is J, long announcements are L

• Exam I
- Additional Review Materials (including a Practice Exam) for Exam I will be released 

today
- Exam I is open-book and done in groups, but we still recommend reviewing the 

material beforehand
- TAs would love to help you with reviewing concepts beforehand! (during the test, only 

clarification questions)
- Helps make group work more efficient if you’re on the same page about the fundamentals

• Office Hours
- We’re exploring ways to make OH/Discord more effective for conceptual questions! 

Usually big group video calls. Don’t be afraid to do the same with peers!
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Learning Objectives

1. Identify use cases where the PriorityQueue ADT is appropriate

2. Describe the invariants that make up a heap and explain their 
relationship to the runtime of certain heap operations

3. Trace the removeMin(), and add() methods, including 
percolateDown() and percolateUp()

4. Describe how a heap can be stored using an array, and compare 
that implementation to one using linked nodes

After this lecture, you should be able to...
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Review Cache Implications: Linked Lists
• Linked lists can be spread out all over the RAM array

- Do not exhibit strong spatial locality!

• Don’t get the same cache benefits – frequently the next list node is 
far enough away that it’s not included on the same block

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

3 108 37 117

110 111 112 113 114 115 116 117

Cache

😭
RAM

“block”
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Review B+ Tree Example: get(23)
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Review Why Are B+ Trees so Disk-Friendly?

1. We minimized the height of the tree by adding more keys/potential 
children at every node.  Because the nodes are more spread out at a 
shallower place in the tree, it takes fewer nodes (disk-accesses) to 
traverse to a leaf.

2. All relevant information about a single node fits in one page (If it’s an 
internal node: all the keys it needs to determine which branch it should 
go down next. If it’s a leaf: the relevant K/V pairs). 

3. We use as much of the page as we can: each node contains many keys 
that are all brought in at once with a single disk access, basically “for 
free”. 

4. The time needed to do a search within a node is insignificant compared 
to disk access time, so looking within a node is also “free”.
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Lecture Outline
• PriorityQueues

- PriorityQueue ADT

- PriorityQueue Implementations

• Binary Heaps
- Binary Heap Idea & Invariants

- Binary Heap Implementation Details
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An Important Use Case
• Imagine you’re managing food orders at a restaurant, which are normally first-

come-first-served. 
- You keep track of this using a Queue ADT (see LEC 02).

• Suddenly, Ana Mari Cauce walks into the restaurant! 

• Of course, you realize that you want to serve her as soon as possible, and other 
celebrities (CSE 373 TAs) may not be far behind.

- You realize your food management system should have a way to rank customers base on 
priority, to decide which food order to work on next (the most prioritized thing, not 
necessarily the first or last thing).
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Priority Queue ADT
MIN PRIORITY QUEUE ADT

removeMin() – remove and return the 
element with the smallest priority

State

Behavior

Set of comparable values (ordered 
based on “priority”)

peekMin() – find and return, but do ot
remove, the element with the smallest
priority

add(value) – add a new element to 
the collection

• An incredibly useful ADT
• Well-designed printers
• Huffman Coding (see last CSE 143 hw)
• Sorting algorithms (coming up: week 8)
• Graph algorithms (coming up: week 6)

• Example: route finding
• Represent a map as a

series of segments
• At each intersection, ask

which segment gets you
closest to the 
destination
(ie, has max priority or
min distance)
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Priority Queue ADT

• If a Queue is “First-In-First-
Out” (FIFO), Priority 
Queues are “Most-
Important-Out-First”

• Items in Priority Queue 
must be comparable –
The data structure will 
maintain some amount of 
internal sorting, in a sort of 
similar way to BSTs/AVLs

• We’ll talk about “Min 
Priority Queues” (lowest 
priority is most important), 
but “Max Priority Queues” 
are almost identical 

MIN PRIORITY QUEUE ADT

removeMin() – returns the element with 
the smallest priority, removes it from the 
collection

State

Behavior

Set of comparable values (ordered 
based on “priority”)

peekMin() – find, but do not remove the 
element with the smallest priority

add(value) – add a new element to the 
collection

MAX PRIORITY QUEUE ADT

removeMin() – returns the element with 
the largest priority, removes it from the 
collection

State

Behavior

Set of comparable values (ordered 
based on “priority”)

peekMin() – find, but do not remove the 
element with the largest priority

add(value) – add a new element to the 
collection
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Lecture Outline
• PriorityQueues

- PriorityQueue ADT

- PriorityQueue Implementations

• Binary Heaps
- Binary Heap Idea & Invariants

- Binary Heap Implementation Details
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Implementing Priority Queues: Take 1

Implementation add removeMin Peek

Unsorted Array

Doubly Linked List
(sorted)

AVL Tree

Maybe we already know how to implement a priority queue. 
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis.
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Implementing Priority Queues: Take 1

Implementation add removeMin Peek

Unsorted Array Θ(1) Θ(𝑛) Θ(𝑛)

Doubly Linked List
(sorted)

Θ(𝑛) Θ(1) Θ(1)

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Maybe we already know how to implement a priority queue. 
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis.
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Implementing Priority Queues: Take 1.5

Implementation add removeMin Peek

Unsorted Array Θ(1) Θ(𝑛) Θ 𝑛 Θ(1)

Doubly Linked List
(sorted)

Θ(𝑛) Θ(1) Θ(1)

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛) Θ(1)

Maybe we already know how to implement a priority queue. 
How long would removeMin and peek take with these data structures?

Simple improvement: add a field to keep track of the min. 
Update on every insert or remove. 
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Review Binary Trees vs. BSTs
• A Binary Tree has at most 2 children per node

• A Binary Search Tree adds the BST invariant:

class BinaryNode<Value> {
Value v;
BinaryNode left;
BinaryNode right;

}

9

5 17

8 311

Reminder: the BST ordering applies recursively to the entire subtree

Binary Search Tree Invariant:
For every node with key 𝑘:

• The left subtree has only keys smaller 
than 𝑘.

• The right subtree has only keys greater 
than 𝑘.
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Heaps
• Intuition:

- In a BST, we organized the data to find anything quickly: go left or right to find 
a value deeper in the tree

- Now we just want to find the smallest things fast, so let’s write a different 
invariant (not on top of BST):

• In particular, the smallest node is at the root!
- Super easy to peek now!

• Do we need more invariants? 6 5

4

8 7373

4

5

6

7

Heap Invariant
Every node is less than or equal to all of its 
children.IN

VA
R
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N
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Heaps
• We can still get degenerate trees. From our AVL exploration, we know limiting 

height is important when we do have to search down through the tree
• In AVL, we saw that BST invariant was so strict we couldn’t also enforce a strict 

structure invariant (e.g. exactly balanced)
- But heap invariant is looser!
- So we can do a stronger structure invariant

• A tree is complete if:
- Every row, except possibly the last, is completely full.
- The last row is filled from left to right (no “gap”)

2
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46
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4
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4
Heap Structure Invariant

A heap is always a complete tree.
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Lecture Outline
• PriorityQueues

- PriorityQueue ADT

- PriorityQueue Implementations

• Binary Heaps
- Binary Heap Idea & Invariants

- Binary Heap Implementation Details
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Binary Heap Invariants Summary 
• One flavor of heap is a binary

heap, which is a Binary Tree 
with the heap invariants (NOT a 
Binary Search Tree)
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Heap Invariant
Every node is less than or equal to all of its 
children.IN

V
A
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Heap Structure Invariant
A heap is always a complete tree.
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Binary Tree
Every node has at most 2 children
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pollev.com/uwcse373

Self-Check: Are these valid heaps? Binary Heap Invariants:
1. Binary Tree
2. Heap
3. Structure (Complete)
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INVALID
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Heap Height
• A binary heap bounds our height at 𝜽(𝐥𝐨𝐠𝒏) because it’s complete

- Although asymptotically the same, a little stricter/better than AVL because no 
leniency!

4
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2

9

11 13

This means the runtime to 
traverse from root to leaf or leaf 
to root will be log(n) time. 

Coming up, we’ll see why we 
might need to do that.
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Lecture Outline
• PriorityQueues

- PriorityQueue ADT

- PriorityQueue Implementations

• Binary Heaps
- Binary Heap Idea & Invariants

- Binary Heap Implementation Details
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Implementing peekMin()

4

5 8

7

10

2

9

11 13

Runtime: 𝚯(1) Simply return the value at the root! 
That’s a constant-time operation if 
we’ve ever seen one J
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Implement removeMin()
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Structure Invariant 
restored, but Heap 
Invariant now broken

1) Remove min to return
2) Structure Invariant broken: 

replace with bottom level 
right-most node (the only 
one that can be moved)

Heap Invariant
Every node is less than or equal to all of its 
children.IN

V
A
RI
A
N
T

Heap Structure Invariant
A heap is always a complete tree.
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Implement removeMin(): percolateDown

4
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Recursively swap parent with 
smallest child until parent is 
smaller than both children 
(or at a leaf).

3) percolateDown()

Structure invariant restored, heap invariant restored

What’s the worst-case 
running time?
• Find last element
• Move it to top spot
• Swap until invariant 

restored

This is why we want to keep the 
height of the tree small! The height 
of these tree structures (BST, AVL, 
heaps) directly correlates with the 
worst case runtimes
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pollev.com/uwcse373

Practice removeMin()
10
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1) Remove min node
2) Replace with bottom level right-most node
3) percolateDown - Recursively swap parent with smallest child
until parent is smaller than both children (or we’re at a leaf).
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percolateDown(): Why Smallest Child?
• Why does percolateDown swap with the smallest child instead of just 

any child?

• If we swap 13 and 7, the heap invariant isn’t restored! 
• 7 is greater than 4 (it’s not the smallest child!) so it will violate the 

invariant.
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Implementing add() • add() Algorithm:
- Insert a node on the bottom 

level that ensure no gaps
- Fix heap invariant by new 

method: percolateUp()
- Swap with parent, until your 

parent is smaller than you (or 
you’re the root).4

5 8
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Worst case runtime is similar to removeMin and percolateDown – might have to do log(n) swaps, so 
the worst-case runtime is Theta(log(n))
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MinHeap Runtimes
removeMin():

- remove root node
- Find last node in tree and swap to top level
- Percolate down to fix heap invariant

add():
- Insert new node into next available spot
- Percolate up to fix heap invariant

• Finding the last node/next available spot is the hard part.
• You can do it in Θ(log 𝑛) time on complete trees, with some extra class variables, but it’s not fun

• Fortunately, there’s a much better way!
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Implement Heaps with an Array

I
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

We map our binary-tree 
representation of a heap into an 
array implementation where you fill 
in the array in level-order from left to 
right.

The array implementation of a heap 
is what people actually implement, 
but the tree drawing is how to think 
of it conceptually. Everything we’ve 
discussed about the tree 
representation is still true!
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Implement Heaps with an Array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖 − 1
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 2

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[0]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 − 1]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]
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Implement Heaps with an Array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

/ A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[1]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 + 1]

CO R R ECT ED
A FT ER  LECT UR E
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Heap Implementation Runtimes

E

A

B

D

C

F

0 1 2 3 4 5 6 7

A B C D E F

Implementation add removeMin Peek

Array-based heap worst: Θ(log 𝑛)
in-practice: Θ(1)

worst: Θ(log 𝑛)
in−praccce: Θ(log 𝑛)

Θ(1)

We’ve matched the asymptotic worst-case behavior of 
AVL trees. 

But we’re actually doing better!

- The constant factors for array accesses are better.
- The tree can be a constant factor shorter because of 
stricter height invariants.
- In-practice case for add is really good.
- A heap is MUCH simpler to implement. 
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AVL vs Heaps: Good For Different Situations
• - The really amazing things about heaps over AVL implementations are the 

constant factors (e.g. 1.2n instead of 2n) and the sweet sweet Theta(1) in-
practice `add` time.

• - The really amazing things about AVL implementations over heaps is that 
AVL trees are absolutely sorted, and they guarantee worst-case be able to 
find (contains/get) in Theta(log(n)) time.

• If heaps have to implement methods like contains/get/ (more generally: 
finding a particular value inside the data structure) – it pretty much just has 
to loop through the array and incur a worst case Theta(n) runtime. 
• Heaps are stuck at Theta(n) runtime and we can’t do anything more 

clever…. aha, just kidding.. unless…?


