
CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 1 2

Priority Queues,
Heaps

BEFORE WE START

pollev.com/uwcse373

Rank the following code snippets: which would you
expect to exhibit the most “spatial locality”?

for (int i = 0; i < n; i++)
arr[i] += 1;

while (curr != null) {
curr.data += 1;
curr = curr.next;

}

for (int i = 0; i < 30; i++)
for (int j = 0; j < n; j += 30)

arr[i + j] += 1;

1.

2.

3.

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Announcements
• P2 due Wednesday 11:59pm PDT
• THANK YOU for filling out the mid-quarter feedback survey! 70% response

rate – you rock!
- We’ll examine thoroughly as a staff and implement feedback where possible
- Quick takeaways for now: PollEverywhere is J, long announcements are L

• Exam I
- Additional Review Materials (including a Practice Exam) for Exam I will be released

today
- Exam I is open-book and done in groups, but we still recommend reviewing the

material beforehand
- TAs would love to help you with reviewing concepts beforehand! (during the test, only

clarification questions)
- Helps make group work more efficient if you’re on the same page about the fundamentals

• Office Hours
- We’re exploring ways to make OH/Discord more effective for conceptual questions!

Usually big group video calls. Don’t be afraid to do the same with peers!

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Learning Objectives

1. Identify use cases where the PriorityQueue ADT is appropriate

2. Describe the invariants that make up a heap and explain their
relationship to the runtime of certain heap operations

3. Trace the removeMin(), and add() methods, including
percolateDown() and percolateUp()

4. Describe how a heap can be stored using an array, and compare
that implementation to one using linked nodes

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Review Cache Implications: Linked Lists
• Linked lists can be spread out all over the RAM array

- Do not exhibit strong spatial locality!

• Don’t get the same cache benefits – frequently the next list node is
far enough away that it’s not included on the same block

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

3 108 37 117

110 111 112 113 114 115 116 117

Cache

😭
RAM

“block”

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Review B+ Tree Example: get(23)

1 A

2 B

3 C

5 D

6 E

8 F

11 G

12 H

45

15 40

4 10 16 20 25

15 I 16 J

17 K

19 L

20 M

22 N

23 O

24 P

26 Q

38 R

40 S

41 T

43 U

44 V

46 W

112 X

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Review Why Are B+ Trees so Disk-Friendly?

1. We minimized the height of the tree by adding more keys/potential
children at every node. Because the nodes are more spread out at a
shallower place in the tree, it takes fewer nodes (disk-accesses) to
traverse to a leaf.

2. All relevant information about a single node fits in one page (If it’s an
internal node: all the keys it needs to determine which branch it should
go down next. If it’s a leaf: the relevant K/V pairs).

3. We use as much of the page as we can: each node contains many keys
that are all brought in at once with a single disk access, basically “for
free”.

4. The time needed to do a search within a node is insignificant compared
to disk access time, so looking within a node is also “free”.

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Lecture Outline
• PriorityQueues

- PriorityQueue ADT

- PriorityQueue Implementations

• Binary Heaps
- Binary Heap Idea & Invariants

- Binary Heap Implementation Details

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

An Important Use Case
• Imagine you’re managing food orders at a restaurant, which are normally first-

come-first-served.
- You keep track of this using a Queue ADT (see LEC 02).

• Suddenly, Ana Mari Cauce walks into the restaurant!

• Of course, you realize that you want to serve her as soon as possible, and other
celebrities (CSE 373 TAs) may not be far behind.

- You realize your food management system should have a way to rank customers base on
priority, to decide which food order to work on next (the most prioritized thing, not
necessarily the first or last thing).

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Priority Queue ADT
MIN PRIORITY QUEUE ADT

removeMin() – remove and return the
element with the smallest priority

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find and return, but do ot
remove, the element with the smallest
priority

add(value) – add a new element to
the collection

• An incredibly useful ADT
• Well-designed printers
• Huffman Coding (see last CSE 143 hw)
• Sorting algorithms (coming up: week 8)
• Graph algorithms (coming up: week 6)

• Example: route finding
• Represent a map as a

series of segments
• At each intersection, ask

which segment gets you
closest to the
destination
(ie, has max priority or
min distance)

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Priority Queue ADT

• If a Queue is “First-In-First-
Out” (FIFO), Priority
Queues are “Most-
Important-Out-First”

• Items in Priority Queue
must be comparable –
The data structure will
maintain some amount of
internal sorting, in a sort of
similar way to BSTs/AVLs

• We’ll talk about “Min
Priority Queues” (lowest
priority is most important),
but “Max Priority Queues”
are almost identical

MIN PRIORITY QUEUE ADT

removeMin() – returns the element with
the smallest priority, removes it from the
collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove the
element with the smallest priority

add(value) – add a new element to the
collection

MAX PRIORITY QUEUE ADT

removeMin() – returns the element with
the largest priority, removes it from the
collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove the
element with the largest priority

add(value) – add a new element to the
collection

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Lecture Outline
• PriorityQueues

- PriorityQueue ADT

- PriorityQueue Implementations

• Binary Heaps
- Binary Heap Idea & Invariants

- Binary Heap Implementation Details

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Implementing Priority Queues: Take 1

Implementation add removeMin Peek

Unsorted Array

Doubly Linked List
(sorted)

AVL Tree

Maybe we already know how to implement a priority queue.
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis.

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Implementing Priority Queues: Take 1

Implementation add removeMin Peek

Unsorted Array Θ(1) Θ(𝑛) Θ(𝑛)

Doubly Linked List
(sorted)

Θ(𝑛) Θ(1) Θ(1)

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Maybe we already know how to implement a priority queue.
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis.

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Implementing Priority Queues: Take 1.5

Implementation add removeMin Peek

Unsorted Array Θ(1) Θ(𝑛) Θ 𝑛 Θ(1)

Doubly Linked List
(sorted)

Θ(𝑛) Θ(1) Θ(1)

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛) Θ(1)

Maybe we already know how to implement a priority queue.
How long would removeMin and peek take with these data structures?

Simple improvement: add a field to keep track of the min.
Update on every insert or remove.

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Review Binary Trees vs. BSTs
• A Binary Tree has at most 2 children per node

• A Binary Search Tree adds the BST invariant:

class BinaryNode<Value> {
Value v;
BinaryNode left;
BinaryNode right;

}

9

5 17

8 311

Reminder: the BST ordering applies recursively to the entire subtree

Binary Search Tree Invariant:
For every node with key 𝑘:

• The left subtree has only keys smaller
than 𝑘.

• The right subtree has only keys greater
than 𝑘.

IN
VA

RI
A

N
T

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Heaps
• Intuition:

- In a BST, we organized the data to find anything quickly: go left or right to find
a value deeper in the tree

- Now we just want to find the smallest things fast, so let’s write a different
invariant (not on top of BST):

• In particular, the smallest node is at the root!
- Super easy to peek now!

• Do we need more invariants? 6 5

4

8 7373

4

5

6

7

Heap Invariant
Every node is less than or equal to all of its
children.IN

VA
R
IA

N
T

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Heaps
• We can still get degenerate trees. From our AVL exploration, we know limiting

height is important when we do have to search down through the tree
• In AVL, we saw that BST invariant was so strict we couldn’t also enforce a strict

structure invariant (e.g. exactly balanced)
- But heap invariant is looser!
- So we can do a stronger structure invariant

• A tree is complete if:
- Every row, except possibly the last, is completely full.
- The last row is filled from left to right (no “gap”)

2

58

46

9

5

4

98

6 5

4
Heap Structure Invariant

A heap is always a complete tree.

IN
VA

R
IA

N
T

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Lecture Outline
• PriorityQueues

- PriorityQueue ADT

- PriorityQueue Implementations

• Binary Heaps
- Binary Heap Idea & Invariants

- Binary Heap Implementation Details

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Binary Heap Invariants Summary
• One flavor of heap is a binary

heap, which is a Binary Tree
with the heap invariants (NOT a
Binary Search Tree)

8

9 10

2

9 4

3

6 7

1

22

36 47

2

4

8 9 10

3

1

5

Heap Invariant
Every node is less than or equal to all of its
children.IN

V
A
RI
A
N
T

Heap Structure Invariant
A heap is always a complete tree.

IN
V

A
R

IA
N

T

Binary Tree
Every node has at most 2 children

IN
V

A
R

IA
N

T

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

pollev.com/uwcse373

Self-Check: Are these valid heaps? Binary Heap Invariants:
1. Binary Tree
2. Heap
3. Structure (Complete)

2

3

5

7 8

4

9 11 10

7

9 8

5

6

4

3

7

1

6

INVALID
INVALID

VALID

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Heap Height
• A binary heap bounds our height at 𝜽(𝐥𝐨𝐠𝒏) because it’s complete

- Although asymptotically the same, a little stricter/better than AVL because no
leniency!

4

5 8

7

10

2

9

11 13

This means the runtime to
traverse from root to leaf or leaf
to root will be log(n) time.

Coming up, we’ll see why we
might need to do that.

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Lecture Outline
• PriorityQueues

- PriorityQueue ADT

- PriorityQueue Implementations

• Binary Heaps
- Binary Heap Idea & Invariants

- Binary Heap Implementation Details

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Implementing peekMin()

4

5 8

7

10

2

9

11 13

Runtime: 𝚯(1) Simply return the value at the root!
That’s a constant-time operation if
we’ve ever seen one J

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Implement removeMin()

4

5 8

7

10

2

9

11 13

4

5 8

7

10

13

9

11

Structure Invariant
restored, but Heap
Invariant now broken

1) Remove min to return
2) Structure Invariant broken:

replace with bottom level
right-most node (the only
one that can be moved)

Heap Invariant
Every node is less than or equal to all of its
children.IN

V
A
RI
A
N
T

Heap Structure Invariant
A heap is always a complete tree.

IN
V

A
R

IA
N

T

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Implement removeMin(): percolateDown

4

5 8

7

10

13

9

11

4

135

13

13

11

Recursively swap parent with
smallest child until parent is
smaller than both children
(or at a leaf).

3) percolateDown()

Structure invariant restored, heap invariant restored

What’s the worst-case
running time?
• Find last element
• Move it to top spot
• Swap until invariant

restored

This is why we want to keep the
height of the tree small! The height
of these tree structures (BST, AVL,
heaps) directly correlates with the
worst case runtimes

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

pollev.com/uwcse373

Practice removeMin()
10

17 14

9

11

5

13

20 2216 15 2419 18

18

18

9

18

11

1) Remove min node
2) Replace with bottom level right-most node
3) percolateDown - Recursively swap parent with smallest child
until parent is smaller than both children (or we’re at a leaf).

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

percolateDown(): Why Smallest Child?
• Why does percolateDown swap with the smallest child instead of just

any child?

• If we swap 13 and 7, the heap invariant isn’t restored!
• 7 is greater than 4 (it’s not the smallest child!) so it will violate the

invariant.

4

5 8

7

10

13

9

11

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Implementing add() • add() Algorithm:
- Insert a node on the bottom

level that ensure no gaps
- Fix heap invariant by new

method: percolateUp()
- Swap with parent, until your

parent is smaller than you (or
you’re the root).4

5 8

7

10

2

9

11 13 3

3

8

3

4

Worst case runtime is similar to removeMin and percolateDown – might have to do log(n) swaps, so
the worst-case runtime is Theta(log(n))

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

MinHeap Runtimes
removeMin():

- remove root node
- Find last node in tree and swap to top level
- Percolate down to fix heap invariant

add():
- Insert new node into next available spot
- Percolate up to fix heap invariant

• Finding the last node/next available spot is the hard part.
• You can do it in Θ(log 𝑛) time on complete trees, with some extra class variables, but it’s not fun

• Fortunately, there’s a much better way!

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Implement Heaps with an Array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

We map our binary-tree
representation of a heap into an
array implementation where you fill
in the array in level-order from left to
right.

The array implementation of a heap
is what people actually implement,
but the tree drawing is how to think
of it conceptually. Everything we’ve
discussed about the tree
representation is still true!

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Implement Heaps with an Array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖 − 1
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 2

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[0]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 − 1]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Implement Heaps with an Array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

/ A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[1]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 + 1]

CO R R ECT ED
A FT ER LECT UR E

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

Heap Implementation Runtimes

E

A

B

D

C

F

0 1 2 3 4 5 6 7

A B C D E F

Implementation add removeMin Peek

Array-based heap worst: Θ(log 𝑛)
in-practice: Θ(1)

worst: Θ(log 𝑛)
in−praccce: Θ(log 𝑛)

Θ(1)

We’ve matched the asymptotic worst-case behavior of
AVL trees.

But we’re actually doing better!

- The constant factors for array accesses are better.
- The tree can be a constant factor shorter because of
stricter height invariants.
- In-practice case for add is really good.
- A heap is MUCH simpler to implement.

CSE 373 Summer 2020LEC 12: PriorityQueues, Heaps

AVL vs Heaps: Good For Different Situations
• - The really amazing things about heaps over AVL implementations are the

constant factors (e.g. 1.2n instead of 2n) and the sweet sweet Theta(1) in-
practice `add` time.

• - The really amazing things about AVL implementations over heaps is that
AVL trees are absolutely sorted, and they guarantee worst-case be able to
find (contains/get) in Theta(log(n)) time.

• If heaps have to implement methods like contains/get/ (more generally:
finding a particular value inside the data structure) – it pretty much just has
to loop through the array and incur a worst case Theta(n) runtime.
• Heaps are stuck at Theta(n) runtime and we can’t do anything more

clever…. aha, just kidding.. unless…?

