
CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 1 1

Memory &
Caching, B+ Trees

BEFORE WE START

pollev.com/uwcse373

Which of the following statements is true about
an AVL Tree?

a) It remains perfectly balanced after an insert
b) The get operation has a better best-case

runtime than get for a normal BST
c) Rotations always happen at the tree’s root
d) At most one rotation (or double rotation) is

needed to rebalance after an insert

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Announcements
• EX2 (Due TONIGHT 11:59pm)
• P2 (Due next Wednesday)
• Mid-Quarter Survey out now

- Let us know how the course is going!

• Exam I
- Start forming groups if you haven’t already! Consider posting on Discord’s

#find-a-partner channel
- Practice exam released on Monday to help give you a picture of what to

expect
- Section next week will also be exam review
- We highly recommend reviewing section problems, exercises, and post-

lecture review questions!

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Learning Objectives

1. Contrast the CPU, RAM, the cache, and Disk in terms of their
storage space and the time to access them

2. Explain why arrays tend to lead to better performance than linked
lists, in terms of spatial locality

3. Describe how B+ Trees help minimize disk accesses and trace a get()
operation in a B+ Tree (Non-objective: Be able to construct, modify,
or explain every detail of a B+ Tree)

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Review AVL Trees

• All operations on an AVL Tree have
a logarithmic worst case

- Because these trees are always
balanced!

• The act of rebalancing adds no
more than a constant factor to
insert and delete

ØAsymptotically, just better than a
normal BST!

• Relatively difficult to program and
debug (so many moving parts during
a rotation)

• Additional space for the height field
• Though asymptotically faster,

rebalancing does take some time
- Depends how important every little

bit of performance is to you

PROS CONS

Operation Case Runtime

containsKey(key)
best Θ(1)

worst Θ(log n)

insert(key)
best Θ(log n)

worst Θ(log n)

delete(key)
best Θ(log n)

worst Θ(log n)

AVL Invariant
For every node, the height of its left and right
subtrees may only differ by at most 1IN

VA
R
IA

N
T

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Review Fixing AVL Invariant

1

5

8

h:2

h:1

h:0h:0

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Review Fixing AVL Invariant: Left Rotation
• In general, we can fix the AVL invariant by performing rotations wherever

an imbalance was created
• Left Rotation

- Find the node that is violating the invariant (here,)
- Let it “fall” left to become a left child

1

5

8

h:2

h:1

h:0 1

5

8

h:1

h:0h:0

1

• Apply a left rotation whenever the newly inserted node is located
under the right child of the right child

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Review 4 AVL Rotation Cases

1

5

8

6

4

1

1

5

3

9

2

5

Left Rotation Right Rotation Right/Left Rotation Left/Right Rotation

”Line” Cases
Solve with 1 rotation

”Kink” Cases
Solve with 2 rotations

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Review AVL insert(): Approach
• Our overall algorithm:

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf:

- The insertion may (or may not) have changed the node’s height
- Detect height imbalance and perform a rotation to restore balance

• Facts that make this easier:
- Imbalances can only occur along the path from the new leaf

to the root
- We only have to address the lowest unbalanced node
- Applying a rotation (or double rotation), restores the height

of the subtree before the insertion -- when everything was
balanced!

- Therefore, we need at most one rebalancing operation

8

6

8

10

9 12

11

7

...

...

(1) Originally, whole tree
balanced, and this subtree
has height 2

(2) Insertion creates
imbalance(s), including
the subtree (8 is lowest
unbalanced node)

(3) Since the rotation on 8
will restore the subtree to
height 2, whole tree balanced
again!

2

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Lecture Outline
• Memory & Caching

- How Memory Looks

- How Memory Is Used

• B+ Trees

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

So... What is a Computer?
• At the simplest level, think of a computer as being two components:

- CPU: Central Processing Unit (The “brain”. When any operation is run, it’s
running in the CPU. Takes in inputs and evaluates an output.)

- RAM: Random Access Memory (The “notebook”. Where data is kept track of,
and stored between operations. Inputs are read from here and outputs are
written here.)

CPU RAM

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

RAM (Random-Access Memory)
• RAM is where the programs you run store their

data.
- Data structures, variables, method call frames, etc. all

stored here!

• Often just called “Memory” or “Main Memory”

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

372 373 374 375 376

Think of RAM as a Giant Array!

H I G H - L E V E L A B S T R A C T I O N

• RAM is really a physical chip in
your computer consisting of
complicated circuitry

L O W - L E V E L R E A L I T Y

• Fortunately, as programmers we
don’t need to understand the
circuitry below!

• We think about RAM through the
abstraction of a giant array:
• Stores data in specific

locations
• Indices to describe those

locations (we call them
addresses for memory)

• We can jump to any index
(“random access”)

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Simple Data in RAM

int a = 5;
char letter = ‘z’

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

5 ‘z’

a: refers to address 107
letter: refers to address 113

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Data Structures in RAM

int[] array = new int[3];
array[0] = 3;
array[1] = 7;
array[2] = 3;

Node front = new Node(3);
front.next = new Node(7);
front.next.next = new Node(3);

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

3 108 37 1173 37

• An array is a contiguous block of memory (a bunch of slots next to each other)
• A linked list is a series of nodes, with references to each other
• How to reference? Simply store the address!
• Nodes do not need to be contiguous, or even in order

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Lecture Outline
• Memory & Caching

- How Memory Looks

- How Memory Is Used

• B+ Trees

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Buying Bubble Tea
• Suppose there’s some treat essential grocery you need every few

hours
• As soon as you realize you’re thirsty, you:

- (1) Walk to the store (2) Buy a bubble tea (3) Walk back home (4) Enjoy

• But you repeat this multiple times a day! It takes so long to walk to
the store, and that’s a lot of time spent away from 373 lecture...

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Buying Bubble Tea: Planning Ahead
• Could this be more efficient?
• Since you know it’s likely you’ll want another bubble tea in a few

hours, what if you do what any reasonable person would: buy a
bubble tea minifridge and store a handful closer to home!

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Cache
• Pronounced “cash”
• Intermediate storage between the CPU and RAM

- RAM takes a long time to access, but is gigantic. Cache is much faster (closer
to the CPU where data gets processed), but smaller.

• Store a copy of some data here
- When we’re about to go grab an address from RAM, we check the cache first

– and we love when the data’s there, because it’s much faster!

CPU RAMCache

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Bringing More Data Back
• If we need to go all the way to RAM, might as well make it count!
• Your computer automatically grabs a whole chunk of data around

each address from RAM when you access it
- That chunk of data is then copied to the cache
- Your computer knows its’s likely you’ll want a nearby address soon
- Bringing back multiple addresses of data costs nothing: the hardware is

designed to grab many at a time

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

110 111 112 113 114 115 116 117• Say you go to access address 114
• Addresses 110 - 117 might be

brought back with you!
Cache

RAM

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Cache Implications: Arrays
• This has a major impact on programming with arrays!

- Suppose we’re looping through everything in an array. When we access index
0, we grab a whole chunk of the array and put it in the cache – now the next
(block size) accesses are much faster!

- For a short array, we might even grab the whole thing and bring it into the
cache

110 111 112 113 114 115 116 117

Cache

The chunk of memory that gets
brought back is a “block”

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Characterizing Cache-Friendly Programs

• Spatial locality: tendency for
programs to access locations
nearby to recent locations

- Plenty of our programs exhibit
spatial locality: e.g. looping
through an array

• Temporal locality: tendency
for programs to access data
that was recently accessed

- Plenty of our programs exhibit
temporal locality: e.g. adding to
sum variable over and over

• Programs with spatial and temporal
locality benefit the most from
caching!

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Cache Implications: Linked Lists
• Linked lists can be spread out all over the RAM array

- Do not exhibit strong spatial locality!

• Don’t get the same cache benefits – frequently the next list node is
far enough away that it’s not included on the same block

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

3 108 37 117

110 111 112 113 114 115 116 117

Cache

😭
RAM

“block”

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Memory Architecture
• Typically multiple caches

(progressively smaller and faster:
L1, L2, & L3)
• Beyond RAM is the disk, which is

way, way, WAY slower – but much
bigger, & disk memory persists
when the computer is off (RAM
gets cleared)

- Similar idea: chunk of data gets
pulled into RAM when accessed
on disk (called a “page”)

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Asymptotic Analysis, Meet The Real World
• Asymptotic analysis tells us iterating

through an array and a linked list are the
same complexity class (linear)

- This is still true: growth rates are the same,
and asymptotic analysis is a helpful tool to
capture that

- But arrays are frequently a significant
constant factor faster due to cache
performance! One area asymptotic analysis
isn’t a good tool for

• https://repl.it/repls/MistyroseLinedTransf
ormation (~15 sec to run)

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 100 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 10,000 ns 0.01 ms

Send 1K bytes over 1 Gbps network 10,000 ns 0.01 ms

Read 1 MB sequentially from memory 250,000 ns 0.25 ms

Round trip within same datacenter 500,000 ns 0.5 ms

Disk seek 10,000,000 ns 10 ms

Read 1 MB sequentially from network 10,000,000 ns 10 ms

Read 1 MB sequentially from disk 30,000,000 ns 30 ms

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

Where
1 ns = 10-9 seconds
1 ms = 10-3 seconds

“Latency Numbers Everyone Should Know” from
Jeff Dean, Senior Fellow at Google and UW Alum!

https://repl.it/repls/MistyroseLinedTransformation
https://www.newyorker.com/magazine/2018/12/10/the-friendship-that-made-google-huge

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Lecture Outline
• Memory & Caching

- How Memory Looks

- How Memory Is Used

• B+ Trees

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Minimizing Disk Accesses

6

3 8

2 4 10

9 1151

7

A laptop these days might have:
8 GB of RAM
250 GB of Disk space

6

RAM

Disk

38

“page”

...

• Let’s consider a truly massive amount of
data – too much data to fit in RAM (some
has to be stored on disk)

- This is very common! For example, a database
• What will happen if we store it in a giant

AVL tree? Say height 40, so
240 = 1.1 * 1012 nodes

- Similar problem as before, just with disk this
time: nodes are too spread out to be captured
on a single disk read (“page”)

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Minimizing Disk Accesses
• Let’s consider a truly massive amount of

data – too much data to fit in RAM (some
has to be stored on disk)

- This is very common! For example, a database
• What will happen if we store it in a giant

AVL tree? Say height 40, so
240 = 1.1 * 1012 nodes

- Similar problem as before, just with disk this
time: nodes are too spread out to be captured
on a single disk read (“page”)

A laptop these days might have:
8 GB of RAM
250 GB of Disk space

6

RAM

Disk

38

“page”

?
Our goal:
A data structure optimized to
make as few disk accesses as
possible! (suitable for large
amounts of data)

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Minimizing Disk Accesses: Idea 1/3
• Idea: Node size of our BSTs/AVL Trees is small, but we move a whole

page at a time in from disk
- What if we could stuff more useful information in each node?

• First, let’s generalize the number of children: while a Binary Tree has
at most 2 children, an “M-ary” Tree has at most M children

3

• This is incomplete: How do we keep these children organized? What
happens to the key?

4

Binary Search Tree M-ary Tree

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Minimizing Disk Accesses: Idea 2/3
• How do we keep these children organized? What happens to the key?
• In a Binary Search Tree, the key divides the contents of the child

subtrees
- Same principle: in our tree, we have a sorted array of M-1 keys, which divide

the contents of child subtrees

4 7 9 123Binary Search Tree

<3 >3
<4 ≥4,<7 ≥7,<9 ≥9,<12 ≥12

M-ary Tree

• Suppose we want to store values too (implement the Map ADT, useful
for a database)? Where should we put those?

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Minimizing Disk Accesses: Idea 3/3
• We can pack all the key/value pairs into the leaf nodes, to really

maximize stuffing in useful information
• This is a B+ Tree: a disk-friendly data structure™

- Internal nodes become “fenceposts” that guide us to the leaves, leaves have
all the data

- Both types of nodes sized to fit on a single page!

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

leaf nodes

K K K K K

K V

K V

K V

K V

internal nodes

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

pollev.com/uwcse373

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

B+ Tree Example: get(23)

1 A

2 B

3 C

5 D

6 E

8 F

11 G

12 H

45

15 40

4 10 16 20 25

15 I 16 J

17 K

19 L

20 M

22 N

23 O

24 P

26 Q

38 R

40 S

41 T

43 U

44 V

46 W

112 X

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Why Are B+ Trees so Disk-Friendly? (Summary)

1. We minimized the height of the tree by adding more keys/potential
children at every node. Because the nodes are more spread out at a
shallower place in the tree, it takes fewer nodes (disk-accesses) to
traverse to a leaf.

2. All relevant information about a single node fits in one page (If it’s an
internal node: all the keys it needs to determine which branch it should
go down next. If it’s a leaf: the relevant K/V pairs).

3. We use as much of the page as we can: each node contains many keys
that are all brought in at once with a single disk access, basically “for
free”.

4. The time needed to do a search within a node is insignificant compared
to disk access time, so looking within a node is also “free”.

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

What About Inserting/Removing?
• Beyond the scope of this class
• Our goal in 373: to learn enough about B+ Tree usage so you know

when to consider using one in your program! You don’t need to be
able to implement.

• Takeaways:
§ Disk lookups are slow, so if you have large amounts of data (enough that it

spills over onto the disk), consider using a B+ trees!
§ Databases use these all the time! Even the very core file system in your computer makes

use of B+ trees
§ B+ trees minimize the # of disk accesses by stuff as much data into each node

so that the height of tree is short, and every node requires just one disk
access

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

B+ Tree Invariants
• Defined by 3 different invariants:

1. B+ trees must have two different types of nodes: internal nodes and leaf
nodes

- An Internal Node contains M pointers to children and M – 1 sorted keys. (M must be
greater than 2)

- A Leaf Node contains L key-value pairs, sorted by key.
2. B+ trees order invariant

- For any given key k, all subtrees to the left may only contain keys that satisfy x < k
- All subtrees to the right may only contain keys x that satisfy k >= x

3. B+ trees structure invariant
- If n <= L, the root is a leaf
- If n >= L, root node must be an internal node containing 2 to M children
- All nodes must be at least half-full

CSE 373 Summer 2020LEC 11: Memory & Caching, B+ Trees

Diving Deeper into the Computer
• In CSE 373, we only need to know enough about the computer’s

workings to understand how it could impact performance
• But there’s so much more to learn if you’re interested! A really cool

topic to explore
• Great place to get started:

https://www.youtube.com/watch?v=fpnE6UAfbtU
• There are plenty of UW ECE courses that go into these details!

https://www.youtube.com/watch?v=fpnE6UAfbtU
https://www.ece.uw.edu/academics/bs/courses/

