CSE 373

Memory & Caching, B+ Trees

BEFORE WE START

Which of the following statements is true about an AVL Tree?

- a) It remains perfectly balanced after an insert
- b) The get operation has a better best-case runtime than get for a normal BST
- c) Rotations always happen at the tree's root
- d) At most one rotation (or double rotation) is needed to rebalance after an insert

pollev.com/uwcse373

Instructor Aaron Johnston

- TAs Timothy Akintilo Brian Chan Joyce Elauria Eric Fan Farrell Fileas
- Melissa Hovik Leona Kazi Keanu Vestil Siddharth Vaidyanathan Howard Xiao

Announcements

- EX2 (Due TONIGHT 11:59pm)
- P2 (Due next Wednesday)
- Mid-Quarter Survey out now
 - Let us know how the course is going!
- Exam I
 - Start forming groups if you haven't already! Consider posting on Discord's #find-a-partner channel
 - Practice exam released on Monday to help give you a picture of what to expect
 - Section next week will also be exam review
 - We highly recommend reviewing section problems, exercises, and postlecture review questions!

Learning Objectives

After this lecture, you should be able to...

- 1. Contrast the CPU, RAM, the cache, and Disk in terms of their storage space and the time to access them
- 2. Explain why arrays tend to lead to better performance than linked lists, in terms of spatial locality
- 3. Describe how B+ Trees help minimize disk accesses and trace a get() operation in a B+ Tree (*Non-objective:* Be able to construct, modify, or explain every detail of a B+ Tree)

INVARIANT

Review AVL Trees

AVL Invariant

For every node, the height of its left and right subtrees may only differ by at most 1

PROS

- All operations on an AVL Tree have a logarithmic worst case
 - Because these trees are always balanced!
- The act of rebalancing adds no more than a constant factor to insert and delete
- Asymptotically, just better than a normal BST!

Operation	Case	Runtime			
containsKey(key)	best	Θ(1)			
containskey(key)	worst	Θ(log n)			
<pre>insert(key)</pre>	best	Θ(log n)			
Insert(key)	worst	Θ(log n)			
doloto(kov)	best	Θ(log n)			
delete(key)	worst	Θ(log n)			

CONS

- Relatively difficult to program and debug (so many moving parts during a rotation)
- Additional space for the height field
- Though asymptotically faster, rebalancing *does* take some time
 - Depends how important every little bit of performance is to you

Review Fixing AVL Invariant

Review Fixing AVL Invariant: Left Rotation

- In general, we can fix the AVL invariant by performing rotations wherever an imbalance was created
- Left Rotation
 - Find the node that is violating the invariant (here, 1)
 - Let it "fall" left to become a left child

• Apply a left rotation whenever the newly inserted node is located under the **right child of the right child**

Review 4 AVL Rotation Cases

"Line" Cases Solve with 1 rotation "Kink" Cases Solve with 2 rotations

Review AVL insert(): Approach

- Our overall algorithm:
 - 1. Insert the new node as in a BST (a new leaf)
 - 2. For each node on the path from the root to the new leaf:
 - The insertion may (or may not) have changed the node's height
 - Detect height imbalance and perform a *rotation* to restore balance
- Facts that make this easier:
 - Imbalances can only occur along the path from the new leaf to the root
 - We only have to address the lowest unbalanced node
 - Applying a rotation (or double rotation), restores the height of the subtree before the insertion -- when everything was balanced!
 - Therefore, we need *at most one rebalancing operation*

(3) Since the rotation on 8 will restore **the subtree** to height 2, whole tree balanced again!

Lecture Outline

- Memory & Caching
 - How Memory Looks

- How Memory Is Used
- B+ Trees

So... What *is* a Computer?

- At the simplest level, think of a computer as being two components:
 - CPU: Central Processing Unit (The "brain". When any operation is run, it's running in the CPU. Takes in inputs and evaluates an output.)
 - RAM: Random Access Memory (The "notebook". Where data is kept track of, and stored between operations. Inputs are read from here and outputs are written here.)

RAM (Random-Access Memory)

- RAM is where the programs you run store their data.
 - Data structures, variables, method call frames, etc. all stored here!
- Often just called "Memory" or "Main Memory"

kernel_task	1 10 00		
	1.19 GB	0 bytes	144
🔛 IntelliJ IDEA	1,018.0 MB	194.7 MB	56
📴 Microsoft PowerPoint	545.1 MB	238.9 MB	18
WindowServer	330.7 MB	170.9 MB	8
nsurlsessiond	320.8 MB	239.4 MB	З
Mattermost Helper	315.4 MB	32.0 MB	19
💿 Google Chrome	291.7 MB	17.5 MB	31
Google Chrome Helper (Rend.	243.4 MB	91.5 MB	14
💶 zoom.us	239.7 MB	61.8 MB	20
Google Chrome Helper (Rend.	236.6 MB	26.7 MB	14
Google Chrome Helper (GPU) 235.2 MB	19.7 MB	10
Google Chrome Helper (Rend.	203.4 MB	27.9 MB	16
🗾 Sublime Text	186.5 MB	170.9 MB	1:
spindump	158.4 MB	80.0 MB	3
属 SystemUIServer	148.5 MB	24.9 MB	4
🛂 Finder	139.9 MB	56.3 MB	4
java	128.2 MB	61.3 MB	24
java	126.3 MB	110.3 MB	23
java	124.4 MB	27.8 MB	28
mds_stores	115.5 MB	36.2 MB	4
🙆 Mattermost	112.3 MB	37.5 MB	44
Cold Turkey Blocker	109.1 MB	49.2 MB	ç
Google Chrome Helper (Rend.	102.8 MB	33.0 MB	16
風 Mail	91.4 MB	25.6 MB	7
Google Chrome Helper (Rend.	90.1 MB	62.4 MB	13
Google Chrome Helper (Rend.	88.1 MB	54.8 MB	13
Mattermost Helper	82.5 MB	44.8 MB	Ę
Google Chrome Helper (Rend.	77.4 MB	32.5 MB	13
Google Chrome Helper (Rend	72.7 MB	51.4 MB	13
	SURE	Physical Memory:	16.00 GB

Physical Memory:	16.00 GB	
Memory Used:	9.81 GB	<
Cached Files:	1.94 GB	
Swap Used:	628.0 MB	
	Memory Used: Cached Files:	Memory Used: 9.81 GB Cached Files: 1.94 GB

Think of RAM as a Giant Array!

 RAM is really a physical chip in your computer consisting of complicated circuitry • Fortunately, as programmers we don't need to understand the circuitry below!

- We think about RAM through the **abstraction** of a giant array:
 - Stores data in specific locations
 - Indices to describe those locations (we call them addresses for memory)
 - We can jump to any index ("random access")

LOW-LEVEL REALITY HIGH-LEVEL ABSTRACTION

Simple Data in RAM

a: refers to address 107 letter: refers to address 113

int a = 5; char letter = 'z'

100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
							5						٢z،						

Data Structures in RAM

- An array is a contiguous block of memory (a bunch of slots next to each other)
- A linked list is a series of nodes, with references to each other
 - How to reference? Simply store the address!
 - Nodes do not need to be contiguous, or even in order

Lecture Outline

- Memory & Caching
 - How Memory Looks
 - How Memory Is Used
- B+ Trees

Buying Bubble Tea

- Suppose there's some treat essential grocery you need every few hours
- As soon as you realize you're thirsty, you:
 - (1) Walk to the store (2) Buy a bubble tea (3) Walk back home (4) Enjoy
- But you repeat this multiple times a day! It takes so long to walk to the store, and that's a lot of time spent away from 373 lecture...

Buying Bubble Tea: Planning Ahead

- Could this be more efficient?
- Since you know it's likely you'll want another bubble tea in a few hours, what if you do what any reasonable person would: buy a bubble tea minifridge and store a handful closer to home!

Cache

- Pronounced "cash"
- Intermediate storage between the CPU and RAM
 - RAM takes a long time to access, but is gigantic. Cache is much faster (closer to the CPU where data gets processed), but smaller.
- Store a copy of some data here
 - When we're about to go grab an address from RAM, we check the cache first
 - and we love when the data's there, because it's much faster!

100

101

102

103

Bringing More Data Back

- If we need to go all the way to RAM, might as well make it count!
- Your computer *automatically* grabs a whole chunk of data around each address from RAM when you access it
 - That chunk of data is then copied to the cache
 - Your computer knows its's likely you'll want a nearby address soon
 - Bringing back multiple addresses of data costs nothing: the hardware is designed to grab many at a time
- Say you go to access address 114
- Addresses 110 117 might be brought back with you!

104

105

106

107

108

Cache Implications: Arrays

- This has a major impact on programming with arrays!
 - Suppose we're looping through everything in an array. When we access index 0, we grab a whole chunk of the array and put it in the cache now the next (block size) accesses are much faster!
 - For a short array, we might even grab the whole thing and bring it into the cache

Characterizing Cache-Friendly Programs

- Spatial locality: tendency for programs to access locations nearby to recent locations
 - Plenty of our programs exhibit spatial locality: e.g. looping through an array
- Temporal locality: tendency for programs to access data that was recently accessed
 - Plenty of our programs exhibit temporal locality: e.g. adding to sum variable over and over

 Programs with spatial and temporal locality benefit the most from caching!

Cache Implications: Linked Lists

- Linked lists can be spread out all over the RAM array
 - Do not exhibit strong spatial locality!
- Don't get the same cache benefits frequently the next list node is far enough away that it's not included on the same block

LEC 11: Memory & Caching, B+ Trees

Memory Architecture

- Typically multiple caches (progressively smaller and faster: L1, L2, & L3)
- Beyond RAM is the disk, which is way, way, WAY slower – but *much* bigger, & disk memory persists when the computer is off (RAM gets cleared)
 - Similar idea: chunk of data gets pulled into RAM when accessed on disk (called a "page")

Asymptotic Analysis, Meet The Real World

- Asymptotic analysis tells us iterating through an array and a linked list are the same complexity class (linear)
 - This is still true: *growth rates* are the same, and asymptotic analysis is a helpful tool to capture that
 - But arrays are frequently a *significant* constant factor faster due to cache performance! One area asymptotic analysis isn't a good tool for
- <u>https://repl.it/repls/MistyroseLinedTransf</u> <u>ormation (~15 sec to run)</u>

"Latency Numbers Everyone Should Know" from <u>Jeff Dean</u>, Senior Fellow at Google and UW Alum!

L1 cache reference	0.5 ns	
Branch mispredict	5 ns	
L2 cache reference	7 ns	
Mutex lock/unlock	100 ns	
Main memory reference	100 ns	
Compress 1K bytes with Zippy	10,000 ns	0.01 ms
Send 1K bytes over 1 Gbps network	10,000 ns	0.01 ms
Read 1 MB sequentially from memory	250,000 ns	0.25 ms
Round trip within same datacenter	500,000 ns	0.5 ms
Disk seek	10,000,000 ns	10 ms
Read 1 MB sequentially from network	10,000,000 ns	10 ms
Read 1 MB sequentially from disk	30,000,000 ns	30 ms
Send packet CA->Netherlands->CA	150,000,000 ns	150 ms
	Where	

Where 1 ns = 10^{-9} seconds 1 ms = 10^{-3} seconds

Lecture Outline

- Memory & Caching
 - How Memory Looks
 - How Memory Is Used
- B+ Trees

Minimizing Disk Accesses

- Let's consider a truly massive amount of data – too much data to fit in RAM (some has to be stored on disk)
 - This is very common! For example, a database
- What will happen if we store it in a giant AVL tree? Say height 40, so 2⁴⁰ = 1.1 * 10¹² nodes
 - Similar problem as before, just with disk this time: nodes are too spread out to be captured on a single disk read ("page")

A laptop these days might have: 8 GB of RAM 250 GB of Disk space

Minimizing Disk Accesses

- Let's consider a truly massive amount of data – too much data to fit in RAM (some has to be stored on disk)
 - This is very common! For example, a database
- What will happen if we store it in a giant AVL tree? Say height 40, so 2⁴⁰ = 1.1 * 10¹² nodes
 - Similar problem as before, just with disk this time: nodes are too spread out to be captured on a single disk read ("page")

A laptop these days might have: 8 GB of RAM 250 GB of Disk space

Our goal:

A data structure optimized to make **as few disk accesses as possible**! (suitable for large amounts of data)

RAM

"page"

Minimizing Disk Accesses: Idea 1/3

- Idea: Node size of our BSTs/AVL Trees is small, but we move a whole page at a time in from disk
 - What if we could stuff more useful information in each node?
- First, let's generalize the number of children: while a Binary Tree has at most 2 children, an "M-ary" Tree has at most M children

• This is incomplete: How do we keep these children organized? What happens to the key?

Minimizing Disk Accesses: Idea 2/3

- How do we keep these children organized? What happens to the key?
- In a Binary Search Tree, the key divides the contents of the child subtrees
 - Same principle: in our tree, we have a **sorted** array of M-1 keys, which divide the contents of child subtrees

• Suppose we want to store values too (implement the Map ADT, useful for a database)? Where should we put those?

Minimizing Disk Accesses: Idea 3/3

- We can pack all the key/value pairs into the leaf nodes, to really maximize stuffing in useful information
- This is a **B+ Tree**: a disk-friendly data structure[™]
 - Internal nodes become "fenceposts" that guide us to the leaves, leaves have all the data
 - Both types of nodes sized to fit on a single page!

67

pollev.com/uwcse373

B+ Tree Example: get(23)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

B+ Tree Example: get(23)

Why Are B+ Trees so Disk-Friendly? (Summary)

- 1. We **minimized the height** of the tree by adding more keys/potential children at every node. Because the nodes are more spread out at a shallower place in the tree, it takes fewer nodes (disk-accesses) to traverse to a leaf.
- 2. All relevant information about a single node **fits in one page** (If it's an internal node: all the keys it needs to determine which branch it should go down next. If it's a leaf: the relevant K/V pairs).
- 3. We use **as much of the page as we can**: each node contains many keys that are all brought in at once with a single disk access, basically "for free".
- 4. The time needed to do a search within a node is **insignificant** compared to disk access time, so looking within a node is also "free".

What About Inserting/Removing?

- Beyond the scope of this class
- Our goal in 373: to learn enough about B+ Tree usage so you know when to consider using one in your program! You don't need to be able to implement.
- Takeaways:
 - Disk lookups are slow, so if you have large amounts of data (enough that it spills over onto the disk), consider using a B+ trees!
 - Databases use these *all* the time! Even the very core file system in your computer makes use of B+ trees
 - B+ trees minimize the # of disk accesses by stuff as much data into each node so that the height of tree is short, and every node requires just one disk access

B+ Tree Invariants

- Defined by 3 different invariants:
 - 1. B+ trees must have two different types of nodes: internal nodes and leaf nodes
 - An Internal Node contains M pointers to children and M-1 sorted keys. (M must be greater than 2)
 - A Leaf Node contains *L* key-value pairs, <u>sorted</u> by key.
 - 2. B+ trees order invariant
 - For any given key k, all subtrees to the left may only contain keys that satisfy x < k
 - All subtrees to the right may only contain keys x that satisfy k >= x
 - 3. B+ trees structure invariant
 - If n <= L, the root is a leaf
 - If n >= L, root node must be an internal node containing 2 to M children
 - All nodes must be at least half-full

Diving Deeper into the Computer

- In CSE 373, we only need to know enough about the computer's workings to understand how it could impact performance
- But there's *so* much more to learn if you're interested! A really cool topic to explore
- Great place to get started: <u>https://www.youtube.com/watch?v=fpnE6UAfbtU</u>
- There are plenty of <u>UW ECE courses</u> that go into these details!