
B+ trees Data Structures and Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1

Administrivia
P6 - Seam Carving due Friday June 12th

- NO LATE ASSIGNMENTS

Exercise 6 due Monday June 1st

Midterm 2 goes out this Friday May 29th 8:30am PDT
- Due Sunday May 31st 8:30am PDT
- NO LATE ASSIGNMENTS
- No midterm topic questions during Office hours
- Piazza your questions – private post default
- Zach & Kasey will post some Midterm help zoom office hours

Start finding groups for final assessment
- Come to lecture on Friday for “group finding mixer”
- Come to final review session next week!
- Go to final section next week

2CSE 373 20 SP – CHAMPION & CHUN

Final Assessment Logistics
Released Friday June 5th 11:59pm

Due Wednesday June 10th 11:59PM
- 120 hours for ~2 hour assignment
- NO LATE ASSIGNMENTS ACCEPTED

Group assignment!
- No limit on group sizes. We recommend size 4

groups though
- Open note

Gradescope Assignment (like exercises)

No OH questions answered during
assessment
- Keep an eye on Piazza

3CSE 373 20 SP – CHAMPION & CHUN

Study resources

Design decision style questions from:
- section
- exercises
- post-lecture questions
- past finals

Review session next week
- Please fill out google survey!

Final Assessment Topics
- Code modeling (asymptotic analysis and case analysis)

- Some based on homework data structures

- Graph modeling & algorithms
- BFS/DFS
- MST

- (Prims vs Kruskals)
- Dijkstra’s
- Topological Sort

- Design decisions, choosing an implementation and a
design, explaining why that is optimal and the runtime
and memory implications of your design

- ADTs (core functionality, what functionality is it optimized
for, how do different implementations impact this ADT)
- List
- Stack
- Queue
- Deque
- Map
- Priority Queue
- Disjoint Set

4CSE 373 20 SP – CHAMPION & CHUN

- Sorting Algorithms (basic understanding of how algorithm
works,
- Selection
- Insertion
- Heap (in place as a memory optimization)
- Merge
- Quick (in place optimization)

- Data structures
- Array
- Linked Nodes
- BST
- AVL Tree
- Binary Heap
- Disjoint Set Implementations
- Homework implementations

- NOT ON
- Tries
- Tree method
- Simplifying summations

Final Assessment Questions

5CSE 373 20 SP – CHAMPION & CHUN

Possible Question Types (Super set)
- Code Modeling

- given a piece of code what is the best/worst runtimes

- Testing/Debugging
- Given a piece of code or a design - how would you approach testing it?
- What inputs would you select to exercise a given piece of code to expose possible bugs?

- Graph Modeling
- Given a scenario and data set, how would you represent it as a graph?

- How can you apply/adapt graph algorithms to find your desired outcome?

- Design Decisions
- Given a scenario which ADT is the best fit to optimize for the functionality you need?

- Given a scenario which data structure would you use to implement a solution, what are the implications of that
solution for runtime and memory usage?

- For a given design - how would you adapt the chosen data structures, algorithms to solve the problem? How
does this design perform in regards to runtime and memory usage

- Given a variation on an algorithm we talked about in class, compare and contrast by analyzing the differences
and recognizing when this variation is better or worse.

- Reductions
- How can you use an algorithm from class to solve a question about a given scenario by modifying the input

(reducing the current problem to the one the algorithm solves)?

Roadmap
- review Friday concepts of caching, memory hierarchy

- AVL trees and disk accesses

- M-ary search trees (a generalization of binary trees except you can have m number of children)

- B+ trees
- databases!
- file systems!
- when you have large amounts of data, consider using a B+ tree for its optimization for hardware.
- high level motivation/idea (not going to go deep into the algorithms for maintaining invariants)

CSE 373 SP 18 - KASEY CHAMPION 6

Memory Architecture

CSE 373 SP 18 - KASEY CHAMPION 7

Where we ended on Friday:

When trying to find a piece of data in memory, your
computer first looks in the smaller storage places
first.

Is the data I’m trying to look up in the register? No?
à Check the L1 Cache. No? -> Check the L2 cache.
Keep going until the data in question is actually
found.

Each level you go down in this memory hierarchy is
exponentially slower time-wise, so we want to
minimize how often we visit the bigger data storages
as much as possible.

CPU
Register

L1 Cache

L2 Cache

RAM

Disk

big idea: disk accesses is slow,
so we want to minimize how

often we look things up in disk

Memory Architecture

CSE 373 SP 18 - KASEY CHAMPION 8

CPU
Register

L1 Cache

L2 Cache

RAM

Disk

What is it? Typical Size Time

The brain of the computer! 32 bits ≈free

Extra memory to make
accessing it faster 128KB 0.5 ns

Extra memory to make
accessing it faster 2MB 7 ns

Working memory, what
your programs need 8GB 100 ns

Large, longtime storage 1 TB 8,000,000 ns

Questions? Review
anything?

CSE 373 SP 18 - KASEY CHAMPION 9

Thought Experiment
Suppose we have an AVL tree of height 50 (looooots of data – 2^50 nodes). What is the best case
scenario for number of disk accesses to access a leaf? What is the worst case when accessing a
leaf?

CSE 373 SP 18 - KASEY CHAMPION 10

RAM

Disk

Worst-case everything is disk and log(n)
disk accesses (one for each node we
look at).

best case:

worst case:

Recall that for object node-based structures
(linked lists, binary trees, etc.) they are
stored not contiguously in memory.

It’s true that your computer will pull in a
bunch of extra data from disk (called a page)
just like we do for RAM going to the caches,
when we access our current node, but
because of how objects are stored in
memory it’s very unlikely we’d pull in any
other nodes in the tree.

Thought Experiment
Suppose we have an AVL tree of height 50 (looooots of data – 2^50 nodes). What is the best case
scenario for number of disk accesses to access a leaf? What is the worst case when accessing a
leaf?

CSE 373 SP 18 - KASEY CHAMPION 11

RAM

Disk

Worst-case everything is disk and log(n)
disk accesses (one for each node we
look at).

best case:

worst case:

Recall that for object node-based structures
(linked lists, binary trees, etc.) they are
stored not contiguously in memory.

It’s true that your computer will pull in a
bunch of extra data from disk (called a page)
just like we do for RAM going to the caches,
when we access our current node, but
because of how objects are stored in
memory it’s very unlikely we’d pull in any
other nodes in the tree.

Takeaway: It is inevitable that some data will be stored on disk that we have to
look up when we have so much data that it can’t all fit in RAM.

We’re going to try to optimize a dictionary/database data structure to make
as few disk accesses as possible (ideal for large amounts of data)

Minimizing # of Disk Accesses
Idea: Node sizes of our AVL trees / binary trees is usually small and the amount of data (a page)
we move from Disk to RAM is bigger than that. If we can stuff more useful information in each
node maybe we can decrease the height of the tree and decrease the # of disk accesses
required.

Instead of each node having 2 children (binary tree), let’s generalize this and let it have M
children.
- Each node contains a sorted array of children

Pick a size M big enough so that the node fills an entire page of disk data.

CSE 373 SP 18 - KASEY CHAMPION 12

M-ary search trees
Instead of each node having 2 children (a binary tree), let it have M children and call it a M-ary
tree.
- Each node contains a sorted array of children

Pick a size M so that fills an entire page of disk data

Assuming the M-ary search tree is balanced, what is its height?

What is the worst case runtime of get() for this tree?

CSE 373 SP 18 - KASEY CHAMPION 13

logm(n)

log2(m) to pick a child with binary search
logm(n) * log2(m) to find a leaf node (from
binary searching at each level)

note: the details of M-ary search trees are vague (it’s not
well-defined and is just a transition into B+ trees, so

don’t worry an actual example. It turns out we need the
ideas from B+ trees to make this feasible.)

M-ary search trees

CSE 373 SP 18 - KASEY CHAMPION 14

How many disk accesses are we potentially making? Should be fewer but there’s still some
inefficiency:

If we focus on 1 node trying to find which child branch to go down … the keys are stored inside
each node. So if we want to see what the keys of the children are we have to make another disk
access! Every time we go down a level in the tree, we’re potentially making a bunch of disk
accesses (log2(m) of them).

note: the details of M-ary search trees are vague (it’s not
well-defined and is just a transition into B+ trees, so

don’t worry an actual example. It turns out we need the
ideas from B+ trees to make this feasible.)

Questions? Review
anything?

CSE 373 SP 18 - KASEY CHAMPION 15

Roadmap
- review Friday concepts of caching, memory hierarchy

- AVL trees and disk accesses

- M-ary search trees (a generalization of binary trees except you can have m number of children)

- B+ trees
- databases!
- file systems!
- when you have large amounts of data, consider using a B+ tree for its optimization for hardware.
- high level motivation/idea (not going to go deep into the algorithms for maintaining invariants)

CSE 373 SP 18 - KASEY CHAMPION 16

B+ trees
If each child is at a different location in disk memory – expensive!
What if we construct an M-ary search tree that:
§ stores keys together in branch nodes
§ all the values in leaf nodes (so we can really maximize stuffing useful information in each node)

CSE 373 SP 18 - KASEY CHAMPION 17

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

<- internal nodes

leaf nodes ->

K K K K K

K V

K V

K V

K V

Node Invariant
Internal nodes contain M pointers to children and M-1 sorted keys

A leaf node contains L key-value pairs, sorted by key

CSE 373 SP 18 - KASEY CHAMPION 18

K K K K K

K V

K V

K V

K V

M = 6

L = 3

Order Invariant
For any given key k, all subtrees to the left may only contain keys x that satisfy x < k. All subtrees
to the right may only contain keys x that satisfy k >= x

CSE 373 SP 18 - KASEY CHAMPION 19

3 7 12 21

X < 3 3 <= X < 7 7 <= X < 12 12 <= X < 21 21 <= x

B+ tree example: get(46)

CSE 373 SP 18 - KASEY CHAMPION 20

40
44

Why are B+ trees so disk-friendly? Summary

1. We minimized the height of the tree by adding more keys/potential children at every node.
Because the nodes are more spread out at a shallower place in the tree, it takes fewer nodes
(disk-accesses) to traverse to a leaf.

2. All relevant information about a single node fits in one page (if it’s an internal node: all the
keys it needs to determine which branch it should go down next or if it’s a leaf: the relevant
K/V pairs).

3. We use as much of the page we can: each node contains many keys that are all brought in at
once with a single disk access, basically “for free”.

4. The time needed to do a binary search within a node is insignificant compared to disk access
time.

CSE 373 SP 18 - KASEY CHAMPION 21

What about the implementation details? for
adding/removing/etc. ?
It’s fine – more details than we want to focus on atm. We have enough details about B+ trees to
be able to use them / figure out good use cases for them, and that’s all we’re going to take away
from this class.

Takeaways:

§ disk lookups are slow, so if you have large amounts of data (so some or a lot of it is on disk),
consider using a B+ trees!

§ B+ trees minimize the # of disk accesses by stuff as much data into each node so that the height
of tree is short, and every time we visit a node it’s only one disk access

§ if you ever have scenarios where you have large amounts of data (large databases, file systems,
etc.) and need a choice of map: consider B+ trees!

CSE 373 SP 18 - KASEY CHAMPION 22

B+ Trees
Has 3 invariants that define it

1. B+ trees must have two different types of nodes: internal nodes and leaf nodes

2. B+ trees must have an organized set of keys and pointers at each internal node

3. B+ trees must start with a leaf node, then as more nodes are added they must stay at least half
full

CSE 373 SP 18 - KASEY CHAMPION 23

B-Trees
Has 3 invariants that define it

1. B+ trees must have two different types of nodes: internal nodes and leaf nodes
- An internal node contains M pointers to children and M – 1 sorted keys.
- M must be greater than 2
- Leaf Node contains L key-value pairs, sorted by key.

2. B+ trees order invariant
- For any given key k, all subtrees to the left may only contain keys that satisfy x < k
- All subtrees to the right may only contain keys x that satisfy k >= x

3. B+ trees structure invariant
- If n<= L, the root is a leaf
- If n >= L, root node must be an internal node containing 2 to M children
- All nodes must be at least half-full

CSE 373 SP 18 - KASEY CHAMPION 24

get() in B+ Trees
get(6)

get(39)

CSE 373 SP 18 - KASEY CHAMPION 25

6 4

8 5

9 6

10 7

12 8

14 9

16 10

17 11

20 12

22 13

24 14

34 18

38 19

39 20

41 21

12 44

27 15

28 16

32 17

6 20 27 34 50

1 1

2 2

3 3

Worst case run time = logm(n)log2(m)
Disk accesses = logm(n) = height of tree

