
Lecture 23: Intro to
Memory and Caching

CSE 373: Data Structures and
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Administrivia
P5 Seam Carving due June 12
- NO LATE DAYS
- Grade scope submissions limited to 1x hour
- Please please start early T_T

Exercise 5 More Graph Modeling due today

Exercise 6 goes out today, due

Post lecture questions coming, deadlines open until next week for extra credit

Midterm 2 Friday May 29th

- 1 week away!

2CSE 373 20 SP – CHAMPION & CHUN

Midterm 2
Midterm 2
- Same format as Midterm 1
- Canvas quiz
- Out on Friday morning 8:30am PDT
- Due Sunday morning 8:30am PDT
- NO LATE ASSIGNMENTS ACCEPTED
- ~1 hour of work
- Individual!

3CSE 373 20 SP – CHAMPION & CHUN

- Heaps
- Array Representations
- removeMin(), buildHeap()
- percolations

- Graph implementations
- Adjacency Matrix
- Adjacency List

- Graph Algorithms
- BFS
- DFS
- Dijkstra’s
- Prim’s
- Kruskal’s
- Topological sort

- Disjoint Sets
- Array representations
- Union, findSet
- Path compression optimization
- union by size optimization

- Sorting
- Insertion
- Selection
- Heap
- Merge
- Quick
- Best/worst case runtimes
- Memory usage
- stability

Topics

Big-takeaway question of the day
int sum = 0;
int i = 0;
while (i < array.length) {

sum += array[i];
i++;

}
return sum;

CSE 373 SP 19 - KASEY CHAMPION 5

int sum = 0;
Node current = front;
while (current != null) {

sum += current.data;
current = current.next;

}
return sum;

Assuming that the array is the same size as the linked list:

Which do you think is most efficient given what we know?
(we have some tools to estimate runtime / what will take
time, but we will learn more today)

A) Array code
B) Linked List code
C) Tied – both roughly equivalent

Goal for today:

connect your already existing programming knowledge to a newer understanding of memory and
how it works today.

- demo in IntelliJ and Activity Monitor (Task Manager on Windows)

CSE 373 SP 18 - KASEY CHAMPION 6

Roadmap
q RAM
q What is RAM?
q How do our programs interact with RAM? (visually)

q arrays
q linked lists

q caching

q design decisions with caching in consideration

q misc. vocabulary and setting up for next time

CSE 373 SP 18 - KASEY CHAMPION 7

RAM (Random-Access Memory)
- RAM is where data gets stored for the programs you run. Think
of it as the main memory storage location for your programs.

- RAM goes by a ton of different names: memory, main memory,
RAM are all names for this same thing.

CSE 373 SP 19 - KASEY CHAMPION 8

RAM can be represented as a huge array

CSE 373 SP 19 - KASEY CHAMPION 9

=

This is a main
takeaway

If you’re interested in deeper than this : https://www.youtube.com/watch?v=fpnE6UAfbtU or take some EE classes?

RAM:
- addresses, storing stuff at specific locations
- random access

Arrays
- indices, storing stuff at specific locations
- random access

https://www.youtube.com/watch%3Fv=fpnE6UAfbtU

Roadmap
q RAM
q What is RAM?
q How do our programs interact with RAM? (visually)

q arrays
q linked lists

q caching

q design decisions with caching in consideration

q misc. vocabulary and setting up for next time

CSE 373 SP 18 - KASEY CHAMPION 10

A rough view of int and char data

CSE 373 SP 19 - KASEY CHAMPION 11

int a = 5;
char letter = ‘z’

5 z

RAM

A rough view of arrays and linked lists

CSE 373 SP 19 - KASEY CHAMPION 12

int[] array = new int[3];
array[0] = 3;
array[1] = 7;
array[2] = 3;

Node front = new Node(3);
front.next = new Node(7);
front.next.next = new Node(3);

Activity (1 min in the chat)
Take 30 to think about what you remember about arrays and linked lists and how they relate
to memory. Then in the 2nd half of 30 seconds, paste anything you recalled in the chat and
we’ll go through some of them

If you have time, try to start thinking about what you recalled and how these data structures look
in memory.

CSE 373 SP 18 - KASEY CHAMPION 13

Arrays Linked Lists

A rough view of arrays and linked lists

Arrays Linked Lists

- Contiguous in memory

- Simple

- Each node is linked to the next, so not
contiguous in memory

- Each node takes up more space than just
the data itself – also stores pointers to
the next (and prev if it’s doubly-linked)

- More flexible with memory / maybe can
squeeze in nodes in places where we
couldn’t have a full contiguous array of
that size

CSE 373 SP 19 - KASEY CHAMPION 14

A rough view of arrays and linked lists

CSE 373 SP 19 - KASEY CHAMPION 15

int[] array = new int[3];
array[0] = 3;
array[1] = 7;
array[2] = 3;

Node front = new Node(3);
front.next = new Node(7);
front.next.next = new Node(3);

3 7 3

37 3

(drawing singly linked list instead of doubly
because drawings are hard / the two are
similar)

A rough view of some other types
(not the main focus but nice to know)

Binary trees?

- they look similar to linked lists: each tree node object is going to be created randomly
somewhere in memory

Strings?

- Strings are really a bunch of characters in a particular order. Could probably use either, but
many languages choose to implement a String as an array of characters (Java)

Objects?

-An object in memory stores its fields all right next to each other (contiguous in memory) so the
shape of it is like an array. There a couple of extra things objects also store, like a reference to its
method instructions.

CSE 373 SP 19 - KASEY CHAMPION 16

Roadmap
q RAM
q What is RAM?
q How do our programs interact with RAM? (visually)

q arrays
q linked lists

q caching

q design decisions with caching in consideration

q misc. vocabulary and setting up for next time

CSE 373 SP 18 - KASEY CHAMPION 17

How memory is used and moves around

CSE 373 SP 19 - KASEY CHAMPION 18

CSE 373 SP 19 - KASEY CHAMPION 19

CSE 373 SP 19 - KASEY CHAMPION 20

CSE 373 SP 19 - KASEY CHAMPION 21

CSE 373 SP 19 - KASEY CHAMPION 22

CSE 373 SP 19 - KASEY CHAMPION 23

CSE 373 SP 19 - KASEY CHAMPION 24

CSE 373 SP 19 - KASEY CHAMPION 25

CSE 373 SP 19 - KASEY CHAMPION 26

CSE 373 SP 19 - KASEY CHAMPION 27

CSE 373 SP 19 - KASEY CHAMPION 28

CSE 373 SP 19 - KASEY CHAMPION 29

CSE 373 SP 19 - KASEY CHAMPION 30

CSE 373 SP 19 - KASEY CHAMPION 31

CSE 373 SP 19 - KASEY CHAMPION 32

CSE 373 SP 19 - KASEY CHAMPION 33

CSE 373 SP 19 - KASEY CHAMPION 34

Solution to Mercy’s traveling problem

If we know Mercy is going to keep eating tuna . . . Why not buy a bunch
during a single trip and save them all somewhere closer than the store?

Let’s get Mercy a refrigerator!

CSE 373 SP 19 - KASEY CHAMPION 35

CSE 373 SP 19 - KASEY CHAMPION 36

CSE 373 SP 19 - KASEY CHAMPION 37

CSE 373 SP 19 - KASEY CHAMPION 38

Recap + connecting analogy back to computer

CSE 373 SP 19 - KASEY CHAMPION 39

CSE 373 SP 19 - KASEY CHAMPION 40

RAM

CPU CPU – kind of like the home /
brain of your computer. Pretty
much all computation is done
here and data needs to move
here to do anything significant
with it (math, if checks, normal
statement execution).

Data travels between RAM and
the CPU, but it’s slow

Before

CSE 373 SP 19 - KASEY CHAMPION 41

RAM

CPU

Cache!
Bring a bunch of data
back when you go all the
way to RAM

Bring a bunch of food back when
you go all the way to the store

After

Cache
-Rough definition: a place to store some memory that’s smaller and closer to the
CPU compared to RAM. Because caches are closer to the CPU (where your data
generally needs to go to be computed / modified / acted on) getting data from
cache to CPU is a lot quicker than from RAM to CPU. This means we love when
the data we want to access is conveniently in the cache.

-Generally we always store some data here in hopes that it will be used in the
future and that we save ourselves the distance / time it takes to go to RAM.

- Analogy from earlier: The refrigerator (a cache) in your house to store food closer
to you than the store. Walking to your fridge is much quicker than walking to the
store!

CSE 373 SP 19 - KASEY CHAMPION 42

CSE 373 SP 19 - KASEY CHAMPION 43

RAM

CPU

Cache!
Bring a bunch of data
back when you go all the
way to RAM

Bring a bunch of food back when
you go all the way to the store

After

This is a big
idea!

How is a bunch of memory taken from RAM?

CSE 373 SP 19 - KASEY CHAMPION 44

• Imagine you want to retrieve the 1 at index 4 in
RAM

• Your computer is smart enough to know to grab
some of the surrounding data because computer
designers think that it’s reasonably likely you’ll
want to access that data too.
• (You don’t have to do anything in your code

for this to happen – it happens automatically
every time you access data!)

• To answer the title question, technically the term /
units of transfer is in terms of ‘blocks’.

This is a big idea
(continued)!

How is a bunch of memory taken from RAM?
(continued)

CSE 373 SP 19 - KASEY CHAMPION 45

cache

original data (the 1) we wanted to look up gets passed back to the cpu

CPU

all the data from the
block gets brought to
the cache

How does this pattern of memory grabbing affect
our programs?
- This should have a major impact on programming with arrays. Say we access an index of an
array that is stored in RAM. Because we grab a whole bunch of contiguous memory even when
we just access one index in RAM, we’ll probably be grabbing other nearby parts of our array and
storing that in our cache for quick access later.

Imagine that the below memory is just an entire array of length 13, with some data in it.

CSE 373 SP 19 - KASEY CHAMPION 46

Just by accessing one element we bring the nearby
elements back with us to the cache. In this case, it’s almost
all of the array!

Activity (3 min in the pollev)
#1) Come up with a scenario (pseudocode or a situation) where you’d immediately benefit from
caching (grabbing a bulk amount of data and bringing all of it to be cached) when using arrays.

#2) Come up with 1 scenario where you might not benefit from caching when using arrays.

CSE 373 SP 19 - KASEY CHAMPION 47

How does caching / your answer to the 2nd question affect Linked Lists or node data
structures in general?

possible answer: Looping through a loop starting at index 0, and just incrementing the index by 1 each
time

possible answer: Jumping around in the array outside of the block of memory grabbed from the
recent trip to RAM or only ever accessing the array in RAM once

possible answer: The data of a Linked list is inherently spread out in memory so grabbing nearby
data probably won’t grab any other nodes in the linked list than the intended one – only by rare
chance would we benefit and get another node close enough nearby.

Another demo, but timed
https://repl.it/repls/MistyroseLinedTransformation

(takes about 15 seconds to run)

CSE 373 SP 19 - KASEY CHAMPION 48

https://repl.it/repls/MistyroseLinedTransformation

Questions?

CSE 373 SP 18 - KASEY CHAMPION 49

Roadmap
q RAM
q What is RAM?
q How do our programs interact with RAM? (visually)

q arrays
q linked lists

q caching

q design decisions with caching in consideration

q misc. vocabulary and setting up for next time

CSE 373 SP 18 - KASEY CHAMPION 50

ArrayMap vs LinkedListMap
(before (lecture 3) and now)

CSE 373 SP 19 - KASEY CHAMPION 51

ArrayMap LinkedMap

- put O(n)
- get O(n)
- containsKey O(n)
- remove O(n)

- put O(n)
- get O(n)
- containsKey O(n)
- remove O(n)

Both asymptotic runtimes are the same but we know all those
methods have to loop through all the pairs.. which are either

stored in a array or a linked list. So which is better? In terms of
who benefits from caching, ArrayMap.

Java uses separate chaining for their hash tables…

… but Python uses a variant on probing (open addressing)!

Why? It turns out that if you use open addressing, you can gain more caching benefits than if you
use separate chaining.

(Note: there are plenty of reasonable motives to still use chaining, don’t worry.)

CSE 373 SP 19 - KASEY CHAMPION 52

Hashing: Separate chaining vs
Open addressing / Probing
in the context of caching

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java
https://stackoverflow.com/questions/12019434/why-did-the-language-designers-of-java-preferred-chaining-over-open-addressing-f

Summary of caching benefits
- Helps arrays in many typical use cases (especially just looping through it
normally) because we grab a bunch of the array data at once, and can look
up that saved data quicker in the future.

- Doesn’t especially help linked list use cases, as grabbing nearby memory
probably won’t include the next node or any of the other nodes.

Whenever you consider data structure implementations for your ADTs,
arrays almost always have a plus because they have caching benefits. This is
one of the most common points made online to support array
implementations of ADTs.

CSE 373 SP 19 - KASEY CHAMPION 53

this is a big
takeaway!

Roadmap
q RAM
q What is RAM?
q How do our programs interact with RAM? (visually)

q arrays
q linked lists

q caching

q design decisions with caching in consideration

q misc. vocabulary and setting up for next time

CSE 373 SP 18 - KASEY CHAMPION 54

Some new but related vocabulary
Spatial locality – the tendency for programs/processors to access data in nearby locations to
previously accessed locations

Most of our programs do have spatial locality, just because they do things like looping through an
array going index by index.

Programs that exhibit spatial locality will benefit from the caching that happens by your
computer automatically (the programmer doesn’t have to do anything to make this happen).

CSE 373 SP 19 - KASEY CHAMPION 55

Some new but related vocabulary
Temporal locality – tendency for program / processor to access one piece of data repeatedly

Just like they did with spatial locality, programs that exhibit temporal locality will benefit from the caching
that happens by your computer automatically (the programmer doesn’t have to do anything to make this
happen). Because you accessed data ‘recently’, it should be in the cache for you to access quickly the
second time around.

Many programs exhibit temporal locality:
int result = someMethodCall(…);
for (int i = 0; i < 10; i++) {

System.out.println(result);

}

CSE 373 SP 19 - KASEY CHAMPION 56

Here the variable ‘result’ is accessed
repeatedly so after the first time it is loaded
it’s put into the cache, and afterwards the
lookups can just look in the cache

Activity: (3 min) why m2 would be faster than m1? What
changes could you make to m1 to make it faster? Discuss!

CSE 373 SP 19 - KASEY CHAMPION 57

public void m1(String[] strings) {
for (int i = 0; i < strings.length; i++) {

strings[i] = strings[i].trim();
}
for (int i = 0; i < strings.length; i++) {

strings[i] = strings[i].toLowerCase();
}

}

public void m2(String[] strings) {
for (int i = 0; i < strings.length; i++) {

strings[i] = strings[i].trim();
strings[i] = strings[i].toLowerCase();

}
}

Remember that caches are small,
and so not everything fits into the
cache forever. When caches get full
and want to store new data, they
will evict old data. Often, it’s the
least recently used data that gets
pushed out – see LRU caching

M2 exhibits good temporal locality,
because we access strings[i]
repeatedly so we know strings[i] is in
the cache for when we call
toLowerCase on the next line. M1 on
the other hand … doesn’t have a
guarantee strings[i] is still in the cache
and easy to access.

Memory hierarchy, slowness + size increase,going
towards RAM and DISK

CSE 373 SP 19 - KASEY CHAMPION 58

There are actually multiple caches, and a whole hierarchy
of places to store data on your computer. The more
memory a layer can store, the slower it is to access.

In a sense, RAM is even a cache for Disk storage.

Main Idea Recap
Main ideas:

- RAM / memory is like an array and knowing how data looks inside RAM

- data needs to go to CPU to be processed

- caches help speed up CPU’s need for data from RAM by serving as a closer resource of data

- caching bonuses are usually just for arrays instead of linked lists/node data structures

CSE 373 SP 19 - KASEY CHAMPION 59

References / other reading
CSE 351 Caching Slides

Wikipedia pages on CPU, RAM, and Locality

Another useful metaphor for locality and caching: https://medium.com/@adamzerner/spatial-
and-temporal-locality-for-dummies-b080f2799dd

https://www.youtube.com/watch?v=fpnE6UAfbtU

CSE 373 SP 19 - KASEY CHAMPION 60

https://medium.com/@adamzerner/spatial-and-temporal-locality-for-dummies-b080f2799dd
https://www.youtube.com/watch%3Fv=fpnE6UAfbtU

