Announcements

P4 due today
P5 out later today
Exercise 5 due on Friday
Exercise 6 out on Friday
Midterm 2 topics coming on Friday
Principle 3: Divide and Conquer

1. Divide your work into smaller pieces recursively
 - Pieces should be smaller versions of the larger problem

2. Conquer the individual pieces
 - Recursion!
 - Until you hit the base case

3. Combine the results of your recursive calls

```java
divideAndConquer(input) {
    if (small enough to solve)
        conquer, solve, return results
    else
        divide input into a smaller pieces
        recurse on smaller piece
        combine results and return
}
```
Merge Sort

https://www.youtube.com/watch?v=XaqR3G_NVoo

Sort the pieces through the magic of recursion

Divide

Combine
Merge Sort Divide

Divide
0 1 2 3 4 5 6 7 8 9
8 2 91 22 57 1 10 6 7 4

0 1 2 3 4
8 2 91 22 57

Base case – list of 1
0 0 0 0 0
8 2 91 22 57

Recombine sorted lists, maintaining sort
0 1 0 1
2 8 22 91
Recombination step compares two sorted arrays and combines them to maintain sorted order.
Starting at the front of each list two values are compared to decide which is smallest.
Smallest is added to combined array.
Pointer to “front” of smaller array who's value was just chosen is updated to consider next value.
Repeat until all values from smaller arrays are added to combined array.
mergeSort(input) {
 if (input.length == 1)
 return
 else
 smallerHalf = mergeSort(new [0, ..., mid])
 largerHalf = mergeSort(new [mid + 1, ...])
 return merge(smallerHalf, largerHalf)
}

Worst case runtime? T(n) = \begin{cases} 1 & \text{if } n \leq 1 \\ 2T(n/2) + n & \text{otherwise} \end{cases} = \Theta(n \log n)

Best case runtime? Same

In Practice runtime? Same

Stable? Yes

In-place? No
Divide and Conquer

There’s more than one way to divide!

Mergesort:

Split into two arrays.
- Elements that just happened to be on the left and that happened to be on the right.

Quicksort:

Split into two arrays.
- Elements that are “small” and elements that are “large”
- What do I mean by “small” and “large”?

Choose a “pivot” value (an element of the array)

One array has elements smaller than pivot, other has elements larger than pivot.
Quick Sort v1

Sort the pieces through the magic of recursion

Combine (no extra work if in-place)

https://www.youtube.com/watch?v=ywWBly6J5gZ8
Quick Sort v1

```java
quickSort(input) {
    if (input.length == 1)
        return
    else
        pivot = getPivot(input)
        smallerHalf = quickSort(getSmaller(pivot, input))
        largerHalf = quickSort(getBigger(pivot, input))
        return smallerHalf + pivot + largerHalf
}
```

Worst case runtime? \(T(n) = \begin{cases} 1 \text{ if } n \leq 1 \\ n + T(n - 1) \text{ otherwise} \end{cases} = \Theta(n^2) \)

Best case runtime? \(T(n) = \begin{cases} 1 \text{ if } n \leq 1 \\ n + 2T(n/2) \text{ otherwise} \end{cases} = \Theta(n \log n) \)

In-practice runtime? Just trust me \(\Theta(n \log n) \)

Stable? No

In-place? Can be done
Quick Sort v2 (in-place)

0 1 2 3 4 5 6 7 8 9
8 1 4 9 0 3 5 2 7 6

6 1 4 9 0 3 5 2 7 8

Low X < 6

High X >= 6

5 1 4 2 0 3 6 9 7 8
Quick Sort v2 (in-place)

```java
quickSort(input) {
  if (input.length == 1)
    return
  else
    pivot = getPivot(input)
    smallerHalf = quickSort(getSmaller(pivot, input))
    largerHalf = quickSort(getBigger(pivot, input))
  return smallerHalf + pivot + largerHalf
}
```

Worst case runtime? \(T(n) = \begin{cases} 1 & \text{if } n \leq 1 \\ n + T(n - 1) & \text{otherwise} \end{cases} = \theta(n^2) \)

Best case runtime? \(T(n) = \begin{cases} 1 & \text{if } n \leq 1 \\ n + 2T(n/2) & \text{otherwise} \end{cases} = \theta(n \log n) \)

In-practice runtime? \(= \theta(n \log n) \text{ Just trust me} \)

Stable? No

In-place? Yes
Can we do better?

We’d really like to avoid hitting the worst case.

Key to getting a good running time, is always cutting the array (about) in half.

How do we choose a good pivot?

Here are four options for finding a pivot. What are the tradeoffs?
- Just take the first element
- Take the median of the first, last, and middle element
- Take the median of the full array
- Pick a random element as a pivot
Pivots

Just take the first element
- fast to find a pivot
- But (e.g.) nearly sorted lists get \(\Omega(n^2) \) behavior overall

Take the median of the first, last, and middle element
- Guaranteed to not have the absolute smallest value.
- On real data, this works quite well...
- But worst case is still \(\Omega(n^2) \)

Take the median of the full array
- Can actually find the median in \(O(n) \) time (google QuickSelect). It’s complicated.
- \(O(n \log n) \) even in the worst case....but the constant factors are awful. No one does quicksort this way.

Pick a random element as a pivot
- somewhat slow constant factors
- Get \(O(n \log n) \) running time with probability at least \(1 - 1/n^2 \)
- “adversaries” can’t make it more likely that we hit the worst case.

Median of three is a common choice in practice

Median of three is a common choice in practice
Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Best-Case</th>
<th>Worst-Case</th>
<th>Space / Memory</th>
<th>Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(1)$</td>
<td>No</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(1)$</td>
<td>Yes</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n\log n)$</td>
<td>$\Theta(n)$</td>
<td>No</td>
</tr>
<tr>
<td>In-Place Heap Sort</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n\log n)$</td>
<td>$\Theta(1)$</td>
<td>No</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$\Theta(n\log n)$</td>
<td>$\Theta(n\log n)$</td>
<td>$\Theta(n\log n)$</td>
<td>Yes</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>$\Theta(n\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n)$</td>
<td>No</td>
</tr>
<tr>
<td>In-place quick sort</td>
<td>$\Theta(n\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(1)$</td>
<td>No</td>
</tr>
</tbody>
</table>

What does Java do?

For Objects – merge sort

For primitives – Dual Pivot Quick Sort
- When array is “reasonably short” (fewer than 48 elements) uses Insertion Sort

https://www.toptal.com/developers/sorting-algorithms