
Lecture 21: Introduction 
to Sorting

CSE 373: Data Structures and 
Algorithms

1



Announcements
P4 due today

P5 out later today

Exercise 5 due on Friday

Exercise 6 out on Friday

Midterm 2 topics coming on Friday

2CSE 373 20 SP – CHAMPION & CHUN



Principle 3: Divide and Conquer
1. Divide your work into smaller pieces recursively
- Pieces should be smaller versions of the larger problem

2. Conquer the individual pieces
- Recursion!
- Until you hit the base case

3. Combine the results of your recursive calls

CSE 373 19 SU - ROBBIE WEBER 3

divideAndConquer(input) {
if (small enough to solve)

conquer, solve, return results
else

divide input into a smaller pieces
recurse on smaller piece
combine results and return

}



Merge Sort

4

https://www.youtube.com/watch?v=XaqR3G_NVoo

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine

Sort the pieces through the magic of recursionmagic

CSE 373 18 SP – KASEY CHAMPION

https://www.youtube.com/watch%3Fv=XaqR3G_NVoo


Merge Sort Divide

5

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

CSE 373 18 SP – KASEY CHAMPION

0 1

2 8

0

8
0

2

Base case – list of 1

0

91
0

22

0

57

Recombine sorted lists, maintaining sort

0 1

22 91



Merge Sort Combine

6

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

Combine

CSE 373 18 SP – KASEY CHAMPION

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Recombination step compares two sorted arrays and combines them to maintain sorted order
Starting at the front of each list two values are compared to decide which is smallest 
Smallest is added to combined array
Pointer to “front” of smaller array who's value was just chosen is updated to consider next value
Repeat until all values from smaller arrays are added to combined array



Merge Sort

7

mergeSort(input) {
if (input.length == 1)

return
else

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

Worst case runtime?

Best case runtime?

In Practice runtime?

Stable?

In-place?

1 if n<= 1
2T(n/2) + n otherwise

Yes

No

T(n) = =Θ(𝑛 log 𝑛)

Same

Same

CSE 373 18 SP – KASEY CHAMPION



Divide and Conquer
There’s more than one way to divide!

Mergesort:

Split into two arrays. 
- Elements that just happened to be on the left and that happened to be on the right.

Quicksort:

Split into two arrays.
- Elements that are “small” and elements that are “large”
- What do I mean by “small” and “large” ?

Choose a “pivot” value (an element of the array)

One array has elements smaller than pivot, other has elements larger than pivot.

CSE 373 19 SU - ROBBIE WEBER 8



Quick Sort v1
Divide

Combine (no extra work if in-place)

9

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

0 1 2 3 4

2 1 6 7 4
0 1 2 3

91 22 57 10

0

8

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

https://www.youtube.com/watch?v=ywWBy6J5gz8

0 1 2 3 4

1 2 4 6 7
0 1 2 3

10 22 57 91

0

8

Sort the pieces through the magic of recursionmagic

https://www.youtube.com/watch%3Fv=ywWBy6J5gz8


Quick Sort v1

10

0 1 2 3 4 5 6

20 50 70 10 60 40 30

0 1 2 3 4

50 70 60 40 30

0

10

0 1

40 30

0 1

70 60

0

30

0

60

0 1

30 40

0 1

60 70

0 1 2 3 4

30 40 50 60 70

0 1 2 3 4 5 6

10 20 30 40 50 60 70

quickSort(input) {
if (input.length == 1)

return
else

pivot = getPivot(input)
smallerHalf = quickSort(getSmaller(pivot, input))
largerHalf = quickSort(getBigger(pivot, input))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

1 if n<= 1
n + T(n - 1) otherwiseT(n) = 

1 if n<= 1
n + 2T(n/2) otherwise

T(n) = 

No

Can be done

=Θ 𝑛!

=Θ(𝑛 log 𝑛)

Just trust meΘ(𝑛 log 𝑛)

CSE 373 18 SP – KASEY CHAMPION



Quick Sort v2 (in-place) 

CSE 373 19 SU - ROBBIE WEBER 11

0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8



Quick Sort v2 (in-place)

12

quickSort(input) {
if (input.length == 1)

return
else

pivot = getPivot(input)
smallerHalf = quickSort(getSmaller(pivot, input))
largerHalf = quickSort(getBigger(pivot, input))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

1 if n<= 1
n + 2T(n/2) otherwiseT(n) = 

No

Yes

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

T(n) = 
1 if n<= 1
n + T(n - 1) otherwise

Just trust me

CSE 373 18 SP – KASEY CHAMPION

= 𝜃(𝑛!)

= 𝜃(𝑛 log 𝑛)
= 𝜃(𝑛 log 𝑛)



Can we do better?
We’d really like to avoid hitting the worst case.

Key to getting a good running time, is always cutting the array (about) in half. 

How do we choose a good pivot?

Here are four options for finding a pivot. What are the tradeoffs?
- Just take the first element
- Take the median of the first, last, and middle element
- Take the median of the full array
- Pick a random element as a pivot 

CSE 373 19 SU - ROBBIE WEBER 13



Pivots
Just take the first element

- fast to find a pivot
- But (e.g.) nearly sorted lists get Ω 𝑛! behavior overall

Take the median of the first, last, and middle element
- Guaranteed to not have the absolute smallest value.
- On real data, this works quite well…
- But worst case is still Ω(𝑛!)

Take the median of the full array
- Can actually find the median in 𝑂(𝑛) time (google QuickSelect). It’s complicated.
- 𝑂(𝑛 𝑙𝑜𝑔 𝑛) even in the worst case….but the constant factors are awful. No one does quicksort this way.

Pick a random element as a pivot 
- somewhat slow constant factors
- Get 𝑂(𝑛 log 𝑛) running time with probability at least 1 − 1/𝑛!
- “adversaries” can’t make it more likely that we hit the worst case.

CSE 373 19 SU - ROBBIE WEBER 14

Median of three is a common 
choice in practice



Summary

15CSE 373 20 SP – CHAMPION & CHUN

Best-Case Worst-Case Space / 
Memory

Stable

Selection Sort Θ(n2) Θ(n2) Θ(1) No

Insertion Sort Θ(n) Θ(n2) Θ(1) Yes

Heap Sort Θ(n) Θ(nlogn) Θ(n) No

In-Place Heap Sort Θ(n) Θ(nlogn) Θ(1) No

Merge Sort Θ(nlogn) Θ(nlogn) Θ(nlogn)
Θ(n)* 

optimized

Yes

Quick Sort Θ(nlogn) Θ(n2) Θ(n) No

In-place quick sort Θ(nlogn) Θ(n2) Θ(1) No

What does Java do?
For Objects – merge sort

For primitives – Dual Pivot Quick Sort
• When array is “reasonably short” 

(fewer than 48 elements) uses 
Insertion Sort

https://www.toptal.com/developers/sorting-algorithms

https://www.toptal.com/developers/sorting-algorithms

