
Lecture 21: Introduction
to Sorting

CSE 373: Data Structures and
Algorithms

1

Administrivia
Assignment Reminders
- Project 4 due Wednesday May 20th

- Exercise 5 due Friday May 22nd

Emails
- Just FYI we’re still working through all the emails, so we know people haven’t

gotten a response yet. If it helps your sanity, feel free to re-ping just so you know
it’s somewhat recent. If you do… be sure to include both Kasey and Zach on the
email (if you email one of us it’s harder to track). Or better yet use the staff email
for general concerns / if you’re comfortable with it.
- chunz2@cs.washington.edu
- champk@cs.washington.edu

- please use staff mail for questions or notifications so things don't get missed
- cse373-staff@cs.washington.edu

2CSE 373 20 SP – CHAMPION & CHUN

http://cs.washington.edu
http://cs.Washington.edu
http://cs.washington.edu

Stress
§https://piazza.com/class/k8bbpvjzh055wj?cid=623
§ TLDR: if you’re spending a lot of time debugging / struggling (20+ hours per week) -- try taking breaks, utilizing Piazza, OH some more. We added

some weekend OH times (check the OH calendar). It’s really easy to struggle alone, but class size is an asset (we have a bunch of OH and
participation on Piazza) and we recommend trying to utilize the resources.

§ If you’re already doing those things and think things aren’t working still, let us know! We’re happy to chat and try to figure out where these are
coming from. There are some more tips and thoughts in the Piazza post itself

§ project feedback surveys
§ plots
§ interesting data but only half of the students filled it out (for extra credit T_T)

§ start early
§ you’ll have time to take breaks
§ and have time to visit OH when no one’s there = you can get a lot of help (project 5 is 3 weeks and you can imagine that OH will get busier closer

towards the due date)
§ p5 is definitely a multi-week assignment worth of work / thinking about

§ come talk to us!
§ anonymous feedback (thanks everyone who’s been participating (there’s been a bunch), sorry we haven’t had time to incorporate all the ideas, but

we do read all of them and try to do what we have time for).
§ meet us in real-time! Feel free to email us / piazza / let us know in Zoom that you want to schedule a separate meeting from OH and we can make

time for you. We’re happy to hear you out about any stressors or complaints and see how we can best help you moving forward – even if it seems like
it’s late in the quarter, there’s still time to make things work.

§ talk to your TAs! They are amazing humans/students as well and have a lot of empathy / would be happy to pass on your thoughts as anonymous to
Kasey/Zach and / or have discussions with you.

3CSE 373 20 SP – CHAMPION & CHUN

https://piazza.com/class/k8bbpvjzh055wj%3Fcid=623

Sorting

CSE 373 19 WI – KASEY CHAMPION 4

Where are we?
This course is “data structures and algorithms”

Data structures
- Organize our data so we can process it effectively

Algorithms
- Actually process our data!

We’re going to start focusing on algorithms

We’ll start with sorting
- A very common, generally-useful preprocessing step
- And a convenient way to discuss a few different ideas for designing algorithms.

CSE 373 19 SU - ROBBIE WEBER 5

Types of Sorts
Comparison Sorts

Compare two elements at a time

General sort, works for most types of elements

What does this mean? compareTo() works for
your elements
- And for our running times to be correct, compareTo

must run in 𝑂(1) time.

6

Niche Sorts aka “linear sorts”

Leverages specific properties about the
items in the list to achieve faster
runtimes

niche sorts typically run O(n) time

For example, we’re sorting small
integers, or short strings.

In this class we’ll focus on comparison
sorts

CSE 373 18 SP – KASEY CHAMPION

Sorting Goals
In Place sort

A sorting algorithm is in-place if it allocates 𝑂(1) extra memory

Modifies input array (can’t copy data into new array)

Useful to minimize memory usage

7

Stable sort

A sorting algorithm is stable if any equal items remain in the same relative
order before and after the sort

Why do we care?
- “data exploration” Client code will want to sort by multiple features and

“break ties” with secondary features

[(8, “fox”), (9, “dog”), (4, “wolf”), (8, “cow”)]

[(4, “wolf”), (8, “fox”), (8, “cow”), (9, “dog”)]

[(4, “wolf”), (8, “cow”), (8, “fox”), (9, “dog”)]

Stable

Unstable

Speed

Of course, we want our algorithms to
be fast.

Sorting is so common, that we often
start caring about constant factors.

CSE 373 18 SP – KASEY CHAMPION

SO MANY SORTS

Quicksort, Merge sort, in-place merge sort, heap sort,
insertion sort, intro sort, selection sort, timsort, cubesort,
shell sort, bubble sort, binary tree sort, cycle sort, library
sort, patience sorting, smoothsort, strand sort, tournament
sort, cocktail sort, comb sort, gnome sort, block sort,
stackoverflow sort, odd-even sort, pigeonhole sort, bucket
sort, counting sort, radix sort, spreadsort, burstsort,
flashsort, postman sort, bead sort, simple pancake sort,
spaghetti sort, sorting network, bitonic sort, bogosort,
stooge sort, insertion sort, slow sort, rainbow sort…

8CSE 373 18 SP – KASEY CHAMPION

Goals
Algorithm Design (like writing invariants) is more art than science.

We’ll do a little bit of designing our own algorithms
- Take CSE 417 (usually runs in Winter) for more

Mostly we’ll understand how existing algorithms work

Understand their pros and cons
- Design decisions!

Practice how to apply those algorithms to solve problems

CSE 373 19 SU - ROBBIE WEBER 9

Algorithm Design Patterns
Algorithms don’t just come out of thin air.

There are common patterns we use to design new algorithms.

Many of them are applicable to sorting (we’ll see more patterns later in the quarter)

Invariants/Iterative improvement
- Step-by-step make one more part of the input your desired output.

Using data structures
- Speed up our existing ideas

Divide and conquer
- Split your input
- Solve each part (recursively)
- Combine solved parts into a single

CSE 373 19 SU - ROBBIE WEBER 10

Principle 1
Invariants/Iterative improvement
- Step-by-step make one more part of the input your desired output.

We’ll write iterative algorithms to satisfy the following invariant:

After 𝑘 iterations of the loop, the first 𝑘 elements of the array will be sorted.

CSE 373 19 SU - ROBBIE WEBER 11

Selection Sort
0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

12

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted ItemsCurrent Item

https://www.youtube.com/watch?v=Ns4TPTC8whw

https://www.youtube.com/watch%3Fv=Ns4TPTC8whw

Selection Sort

13

public void selectionSort(collection) {
for (entire list)

int newIndex = findNextMin(currentItem);
swap(newIndex, currentItem);

}
public int findNextMin(currentItem) {

min = currentItem
for (unsorted list)

if (item < min)
min = currentItem

return min
}
public int swap(newIndex, currentItem) {

temp = currentItem
currentItem = newIndex
newIndex = currentItem

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛2)

Θ(𝑛2)

No

Yes

Θ(𝑛2)

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

CSE 373 18 SP – KASEY CHAMPION

Selection Sort Stability

14CSE 373 20 SP – CHAMPION & CHUN

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

✓

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

…

*Swapping non-adjacent items can result in instability of sorting algorithms

Insertion Sort
0 1 2 3 4 5 6 7 8 9

2 3 6 7 5 1 4 10 2 8

15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch%3Fv=ROalU379l3U

Insertion Sort

16

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

public void insertionSort(collection) {
for (entire list)

if(currentItem is smaller than largestSorted)
int newIndex = findSpot(currentItem);
shift(newIndex, currentItem);

}
public int findSpot(currentItem) {

for (sorted list going backwards)
if (spot found) return

}
public void shift(newIndex, currentItem) {

for (i = currentItem > newIndex)
item[i+1] = item[i]

item[newIndex] = currentItem
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛2)

Θ(𝑛)

Yes

Yes

Θ(𝑛2)

CSE 373 18 SP – KASEY CHAMPION

Insertion Sort Stability

17CSE 373 20 SP – CHAMPION & CHUN

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

✓

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

3 5a 4 5b 2 6 8

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

✓

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

Insertion sort is stable
- All swaps happen between

adjacent items to get current
item into correct relative position
within sorted portion of array

- Duplicates will always be
compared against one another in
their original orientation, thus it
can be maintained with proper if
logic

Principle 2
Selection sort:

After 𝑘 iterations of the loop, the 𝑘 smallest elements of the array are (sorted) in indices
0,… , 𝑘 − 1

Runs in Θ 𝑛- time no matter what.

Using data structures
- Speed up our existing ideas

If only we had a data structure that was good at getting the smallest item remaining in
our dataset…
- We do!

CSE 373 19 SU - ROBBIE WEBER 18

Heap Sort
1. run Floyd’s buildHeap on your data

2. call removeMin n times

19

public void heapSort(input) {
E[] heap = buildHeap(input)
E[] output = new E[n]
for (n)

output[i] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Θ(𝑛 log 𝑛)

https://www.youtube.com/watch?v=Xw2D9aJRBY4

CSE 373 18 SP – KASEY CHAMPION

If we get clever…

https://www.youtube.com/watch%3Fv=Xw2D9aJRBY4

In Place Heap Sort

20

0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

CSE 373 18 SP – KASEY CHAMPION

In Place Heap Sort

21

public void inPlaceHeapSort(input) {
buildHeap(input) // alters original array
for (n : input)

input[n – i - 1] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Yes

Θ(𝑛 log 𝑛)

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed! Lots of fixes:
- Run reverse afterwards (𝑂(𝑛))
- Use a max heap
- Reverse compare function to emulate max heap

CSE 373 18 SP – KASEY CHAMPION

