
Lecture 20: Topological 
sort, reductions Data Structures and Algorithms
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Roadmap
- topological sort

- CSE373 20su creation, 2-Sat

- reductions, 2 color 

- seam carving
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Problem 1: Ordering Dependencies
Today’s (first) problem: Given a bunch of courses with prerequisites, find an order to take the 
courses in.
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Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417



Problem 1: Ordering Dependencies
Given a directed graph G, where we have an edge from u to v if u must happen before v.

We can only do things one at a time, can we find an order that respects dependencies?
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Given: a directed graph G
Find: an ordering of the vertices so all edges go from left to right (all the 
dependency arrows are satisfied and the vertices can be processed left to 
right with no problems) . 

Topological Sort (aka Topological Ordering)



Topological Ordering

A course prerequisite chart and a possible topological ordering.
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CSE 417
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Given: a directed graph G
Find: an ordering of the vertices so all edges go from left to right (all the 
dependency arrows are satisfied and the vertices can be processed left to 
right with no problems) . 

Topological Sort (aka Topological Ordering)



Problem 1: Ordering Dependencies
Given a directed graph G, where we have an edge from u to v if u must happen before v.

We can only do things one at a time, can we find an order that respects dependencies?
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Given: a directed graph G
Find: an ordering of the vertices so all edges go from left to right (all the 
dependency arrows are satisfied and the vertices can be processed left to 
right with no problems) . 

Topological Sort (aka Topological Ordering)

Uses: 
Graduating
Cooking
Organizing TODO-lists
Compiling multiple files



Can we always order a graph?
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A graph has a topological ordering if and only if it is a DAG.

A directed graph without any cycles.
Directed Acyclic Graph (DAG)

A

B C

Can you topologically order this graph?

Where do I start?

No



Ordering a DAG

Does this graph have a topological ordering? If so find one.
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E

D

If a vertex doesn’t have any edges going into it, we can add it to the ordering.
More generally, if the only incoming edges are from vertices already in the ordering, it’s safe to add. 
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How Do We Find a Topological Ordering?
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TopologicalSort(Graph G, Vertex source) 
count how many incoming edges each vertex has
Collection toProcess = new Collection()
foreach(Vertex v in G){

if(v.edgesRemaining == 0)
toProcess.insert(v)

}
topOrder = new List() 
while(toProcess is not empty){

u = toProcess.remove()
topOrder.insert(u)
foreach(edge (u,v) leaving u){

v.edgesRemaining--
if(v.edgesRemaining == 0)

toProcess.insert(v)
}

}

[B/D]FS
Graph linear
+ V + EPick something with

!(1) insert / removal

+&
Runs as most once per edge

+'

(() + *)



Roadmap
- topological sort

- CSE373 20su creation, 2-Sat, 

- reductions, 2 color

- seam carving
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Example Problem: CSE 373 20su creation problem

Every quarter we send out an additional anonymous survey about reflecting on the course and 

improving the course for future quarters (rather than evaluating the instructors)

- We list out each of the topics we’ve covered: Heap insertions, big-O problems, tree method, 

graph modeling… and ask you: what should we keep or throw away from the course? 

- To try to make y’all and future students happy and satisfied, we ask for your preferences. In this 

problem, we’re going to have each of you list two preferences of the form “I [do/don’t] want [] 

topic to be in CSE 373 20su version” 

We’ll assume you’ll be happy if you get at least one of your two preferences.
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Given: A list of 2 preferences per student.

Find: A set of topics so that every student gets at least one of their 

preferences (or accurately report no such topic set exists).

CSE373 20su Creation Problem



Example Problem: CSE 373 20su creation problem
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Given: A list of 2 yes/no preferences per student.

Find: A set of topics so that every student gets at least one of their 

preferences (or accurately report no such topic set exists).

CSE373 20su Creation Problem

Student A:

- no tree method  OR

- yes graph modeling

Student B:

- yes tree method  OR

- yes hash maps

Some things to note:

- example solution/thought: if there is no tree method, Student A is 

happy, but Student B would be happy just yet.  To make Student B happy 

as well (make sure at least one preference is satisfied), we would make 

sure to include hash maps as a topic.

- just with 2 student preferences, there’s already some constraints on our 

possible solutions!  Because there’s disagreement on including the tree 

method in future versions, it means that whoever doesn’t get what they 

want for that question MUST have their other preference satisfied to 

complete this problem.  



Example Problem: CSE 373 20su creation problem
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Given: A list of 2 yes/no preferences per student.

Find: A set of topics so that every student gets at least one of their 

preferences (or accurately report no such topic set exists).

CSE373 20su Creation Problem

Student A:

- no tree method OR

- yes graph modeling

Student B:

- yes tree method OR

- yes hash maps

Student C:

- no asymptotic analysis OR

- no heaps

Some example solutions:

- A) 

- no tree method

- yes hash maps

- no asymptotic analysis

- B)

- yes tree method

- yes graph modeling

- no heaps
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Given: A list of 2 yes/no preferences per student.
Find: A set of topics so that every student gets at least one of their 
preferences (or accurately report no such topic set exists).

CSE373 20su Creation Problem

- You can thing of these student preferences as 
parameters to our problem where each 
student’s preference is a boolean statement 
of a specific form.  The student preferences 
above would be:

- !treeMethod || graphModeling
- treeMethod || hashMaps
- !asymptoticAnalysis || !heaps

Rephrased problem statement: go through these 
list of boolean conditions (preferences) where each 
is of the form (someVar || someOtherVar), and 
make sure they all preference entries evaluate to 
true for your proposed solution

This problem (with a more general 
context 373 topics) is called the 2-
satisfiability problem (2-SAT).

Given: A set of Boolean variables, and a list of 
requirements, each of the form: 

variable1==[True/False] || 
variable2==[True/False]

Find: A setting of variables to “true” and “false” so 
that all of the requirements evaluate to “true”

2-Satisfiability (“2-SAT”)

Student A:
- no tree method
- yes graph modeling
Student B:
- yes tree method
- yes hash maps

Student C:
- no asymptotic analysis
- no heaps



20su Creation (2-SAT) algorithm
We have T kinds of topics and S students.
What if we try/loop through every possible combination of questions and then loop over the 
solution to make sure it works? If it does work then we can stop there, but in the worst case we’ll 
have to try every single combination.
generate all the possible solution lists of T/F for each topic

for each proposed solution of topics:

loop over the preferences input list and check that every
entry has at least one of their preferences satisfied

How long does this take? O(2"#)
- there are 2^T possible proposed solutions, since there are T topics that could be included/not 
included. 
- the input list is always of size S since there are S student preferences
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O(2"#) is pretty slow but at least it’s something.  You never know when these types of things 
are going to come in handy.

If you want to see a more efficient way to solve this problem (S + T time) check out the end of 
this slide deck for an algorithm that will not be tested in this class. It uses a graph and topological 
sort (if you think about the last problem you could sort of see the fact that if some topic is 
chosen, it implies that something else has to be chose/not chosen, and we can represent those 
dependencies with a graph and topological sort to help us figure out what order to assign the 
problems in)

CSE 373 SP 18 - KASEY CHAMPION 16



Roadmap
- topological sort

- CSE373 20su creation, 2-Sat

- reductions, 2-color

- seam carving
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Reductions: Take 2

We reduced weighted shortest paths to unweighted shortest paths

Using an algorithm for Problem B to solve Problem A.

Reduction (informally)
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Weighted Graphs: A Reduction
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Transform Input

Unweighted Shortest Paths

Transform Output
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Reductions
It might not be too surprising that we can solve one shortest path problem 
with the algorithm for another shortest path problem.
The real power of reductions is that you can sometimes reduce a problem 
to another one that looks very very different.
We’re going to reduce a graph problem to 2-SAT. 
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Given an undirected, unweighted graph !, color each vertex “red” 
or “blue” such that the endpoints of every edge are different colors 
(or report no such coloring exists).

2-Coloring



2-Coloring
Can these graphs be 2-colored? If so find a 2-coloring. If not try to explain 
why one doesn’t exist.
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Given an undirected, unweighted graph !, color each vertex “red” 
or “blue” such that the endpoints of every edge are different colors 
(or report no such coloring exists).

2-Coloring



2-Coloring
Can these graphs be 2-colored? If so find a 2-coloring. If not try to explain 
why one doesn’t exist.
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Given an undirected, unweighted graph !, color each vertex “red” 
or “blue” such that the endpoints of every edge are different colors 
(or report no such coloring exists).

2-Coloring



2-Coloring
Why would we want to 2-color a graph?
-We need to divide the vertices into two sets, and edges represent vertices 
that can’t be together.

You can modify [B/D]FS to come up with a 2-coloring (or determine none 
exists)
-This is a good exercise!
But coming up with a whole new idea sounds like work.
And we already came up with that a 2-SAT algorithm. 
-Maybe we can be lazy and just use that!
-Let’s reduce 2-Coloring to 2-SAT!
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Use a 2-SAT algorithm 
to solve 2-Coloring



A Reduction

We need to describe 2 steps

1. How to turn a graph for a 2-color problem into an input to 2-SAT

2. How to turn the ANSWER for that 2-SAT input into the answer for the original 2-

coloring problem.

How can I describe a two coloring of my graph? 

-Have a variable for each vertex – is it red?

How do I make sure every edge has different colors? I need one red endpoint and 

one blue one, so this better be true to have an edge from v1 to v2:

(v1IsRed || v2isRed) && (!v1IsRed || !v2IsRed)
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AisRed = True
BisRed = False
CisRed = True
DisRed = False
EisRed = True

B

D
EA

C

B

D EA

C
(AisRed||BisRed)&&(!AisRed||!BisRed)
(AisRed||DisRed)&&(!AisRed||!DisRed)
(BisRed||CisRed)&&(!BisRed||!CisRed)
(BisRed||EisRed)&&(!BisRed||!EisRed)
(DisRed||EisRed)&&(!DisRed||!EisRed)
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Transform Input

2-SAT Algorithm

Transform Output



Other examples of reductions
solving list.contains(item) can be reduced to solving list.indexOf(item) and then checking what 
the index was (if -1 false, true otherwise)

finding the minimum value in a list can be reduced to sorting your array/ turning it into a min-
heap / and then just looking up the min value afterwards.  

reductions are all about realizing that a specific problem you have is actually a specific version of 
a general problem you already know about / have solved.  Turn your specific version (with 
whatever formatting / processing is required) into a form your general problem can solve!
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More thoughts on reductions
we can’t teach you the solution to every single problem out there… it’s also unrealistic to come 
up with new ideas and solutions to each problem.. a lot of the time reusing existing tools / 
solutions is a common go to! In computer science / programming: try reducing your problem to 
an already solved one if you’re stuck. Ask yourself: how can I frame this in a different / simpler 
way /format that I’m more familiar with?

you already do this all the time in a less formal way with frameworks/libraries/looking up already 
implemented solutions — all we’re doing here is explicitly calling out this reduction process as a 
tool for designing algorithms.
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Roadmap
- topological sort

- CSE373 20su creation

- reductions, 2-color 

- seam carving
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Content-Aware Image Resizing

Seam carving: A distortion-free technique for resizing an image by removing “unimportant 
seams”

29

Seam carving for content-aware image resizing (Avidan, Shamir/ACM); Broadway Tower (Newton2, Yummifruitbat/Wikimedia)

Original Photo
Horizontally-

Scaled
(castle and person

are distorted)

Seam-Carved
(castle and person are undistorted; 

“unimportant” sky removed instead)
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Demo: https://www.youtube.com/watch?v=vIFCV2spKtg

https://www.youtube.com/watch?v=vIFCV2spKtg


Seam Carving Reduces to Dijkstra’s algorithm
1. Transform the input so that it can be 

solved by the standard algorithm
- Formulate the image as a graph

- Vertices: pixel in the image
- Edges: connects a pixel to its 3 downward 

neighbors
- Edge Weights: the “energy” (visual 

difference) between adjacent pixels

2. Run the standard algorithm as-is on the 
transformed input

- Run Dijkstra’s algorithm to find the shortest 
path (sum of weights) from top row to 
bottom row

3. Transform the output of the algorithm to 
solve the original problem

- Interpret the path as a removable 
“seam” of unimportant pixels
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Shortest Paths (Robert Sedgewick, Kevin Wayne/Princeton)



Formal Problem Statement
Using DijkstraShortestPathFinder, find the 
seam from any top vertex to any bottom 
vertex

Given a graph with positive edge weights 
and two distinguished subsets of vertices S 
and T, find a shortest path from any vertex in 
S to any vertex in T

32

Shortest Paths (Robert Sedgewick, Kevin Wayne/Princeton)

S

T



An Incomplete Reduction
DijkstraShortestPathFinder starts 
with a single vertex S and ends 
with a single vertex T
- This problem specifies sets of vertices

for the start and end

Your turn: brainstorm how to 
transform this graph into 
something Dijkstra’s knows how to 
operate on

33

Shortest Paths (Robert Sedgewick, Kevin Wayne/Princeton)

S

T



Content 
beyond this 
point is all 
optional
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Connected Components (undirected graphs)

A connected component (or just “component”) is a “piece” of an undirected graph.
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A set ! of vertices is a connected component (of an undirected graph) if:

1. It is connected, i.e. for all vertices ", $ in !: there is a walk from " to $
2. It is maximal:

- Either it’s the entire set of vertices, or

- For every vertex u that’s not in S, ! ∪ {"} is not connected.

Connected component [undirected graphs]



Find the connected components
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A

B

D

E

C

F

A

B

D

E

C

{A,B,C,E}, {D,F} are the two components {A,B,C,E}, {D} are the two components



Directed Graphs
In directed graphs we have two different notions of “connected”

One is “I can get there from here OR here from there”
The other is “I can get there from here AND here from there”

Weakly Connected/Weakly Connected Components:
- Pretend the graph is undirected (ignore the direction of the arrows)
- Find the components of the undirected graph.

Strongly connected components
- Want to get both directions
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Strongly Connected Components

Note: the direction of the edges matters!
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A subgraph C such that every pair of vertices in C is connected via 
some path in both directions, and there is no other vertex which is 
connected to every vertex of C in both directions.

Strongly Connected Component

D

B C

A E



Your turn: Find Strongly Connected Components
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D

C F

B EA K

J

{A}, {B}, {C,D,E,F}, {J,K}

A subgraph C such that every pair of vertices in C is connected via 
some path in both directions, and there is no other vertex which is 
connected to every vertex of C in both directions.

Strongly Connected Component



Finding SCC Algorithm
Ok. How do we make a computer do this?

You could: 
- run a BFS from every vertex
- For each vertex record what other vertices it can get to 
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D

C F

B EA K

J



Finding SCC Algorithm

Ok. How do we make a computer do this?

You could: 

- run a BFS from every vertex

- For each vertex record what other vertices it can get to 

But you can do better!

We’re recomputing a bunch of information, going from back to front skips recomputation.

- Run a DFS first to do initial processing

- While running DFS, run a second DFS to find the components based on the ordering you pull from the stack

- Just two DFSs!

- (see appendix for more details)

Know two things about the algorithm: 

- It is an application of depth first search 

- It runs in linear time
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Why Find SCCs?
Graphs are useful because they encode relationships between arbitrary objects.

We’ve found the strongly connected components of G.

Let’s build a new graph out of them! Call it H
- Have a vertex for each of the strongly connected components
- Add an edge from component 1 to component 2 if there is an edge from a vertex inside 1 to one inside 2.
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Why Find SCCs?

That’s awful meta. Why?

This new graph summarizes reachability information of the original graph. 
- I can get from A (of G) in 1 to F (of G) in 3 if and only if I can get from 1 to 3 in H. 
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Takeaways
Finding SCCs lets you collapse your graph to the meta-structure.
If (and only if) your graph is a DAG, you can find a topological sort of your graph.

Both of these algorithms run in linear time.

Just about everything you could want to do with your graph will take at least as long.

You should think of these as “almost free” preprocessing of your graph. 
- Your other graph algorithms only need to work on 

- topologically sorted graphs and 
- strongly connected graphs. 
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A Longer Example
The best way to really see why this is useful is to do a bunch of examples. 

Take CSE 417 for that. The second best way is to see one example right now...

This problem doesn’t look like it has anything to do with graphs 
- no maps
- no roads
- no social media friendships

Nonetheless, a graph representation is the best one.

I don’t expect you to remember the details of this algorithm.

I just want you to see 
- graphs can show up anywhere.
- SCCs and Topological Sort are useful algorithms.
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Example Problem: Final Review
We have a long list of types of problems we might want to review for the final. 
- Heap insertion problem, big-O problems, finding closed forms of recurrences, graph 
modeling…

- What should the TAs cover in the final review – what if we asked you?

To try to make you all happy, we might ask for your preferences. Each of you gives us two 
preferences of the form “I [do/don’t] want a [] problem on the review” *
We’ll assume you’ll be happy if you get at least one of your two preferences.
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*This is NOT how the TAs are making the final review.

Given: A list of 2 preferences per student.
Find: A set of questions so every student gets at least one of their 
preferences (or accurately report no such question set exists).

Review Creation Problem



Review Creation: Take 1
We have Q kinds of questions and S students.

What if we try every possible combination of questions.

How long does this take? O(2"#)
If we have a lot of questions, that’s really slow.

Instead we’re going to use a graph. 

What should our vertices be?
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Review Creation: Take 2
Each student introduces new relationships for data:

Let’s say your preferences are represented by this table:
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If we don’t include a big-O proof, can you still be happy?
If we do include a recurrence can you still be happy?

Yes! 
Big-O

NO 
recurrence

Yes! 
recurrence

NO 
Graph

NO 
Big-O

Yes!
Graph

NO 
Heaps

Yes! 
Heaps

Problem YES NO

Big-O X

Recurrence X 

Graph

Heaps

Problem YES NO

Big-O

Recurrence X

Graph X

Heaps

Pollev.com/cse373su19
What edges are added for the 
second set of preferences?



Review Creation: Take 2
Each student introduces new relationships for data:

Let’s say your preferences are represented by this table:
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If we don’t include a big-O proof, can you still be happy?
If we do include a recurrence can you still be happy?

Yes! 
Big-O

NO 
recurrence

Yes! 
recurrence

NO 
Graph

NO 
Big-O

Yes!
Graph

NO 
Heaps

Yes! 
Heaps

Problem YES NO

Big-O X

Recurrence X 

Graph

Heaps

Problem YES NO

Big-O

Recurrence X

Graph X

Heaps



Review Creation: Take 2
Hey we made a graph!

What do the edges mean? 

Each edge goes from something making someone unhappy, to the only thing that could make 
them happy.
-We need to avoid an edge that goes TRUE THING à FALSE THING
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NO 
recurrence

NO 
Big-O



We need to avoid an edge that goes TRUE THING à FALSE THING
Let’s think about a single SCC of the graph. 

Can we have a true and false statement in the same SCC?

What happens now that Yes B and NO B are in the same SCC?
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NO 
C

Yes
A

NO 
BYes

B

NO 
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Final Creation: SCCs
The vertices of a SCC must either be all true or all false.
Algorithm Step 1: Run SCC on the graph. Check that each question-type-
pair are in different SCC.
Now what? Every SCC gets the same value. 
-Treat it as a single object! 
We want to avoid edges from true things to false things. 
-“Trues” seem more useful for us at the end. 

Is there some way to start from the end?
YES! Topological Sort 
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Making the Final
Algorithm:
Make the requirements graph.

Find the SCCs.

If any SCC has including and not including a problem, we can’t make the final.

Run topological sort on the graph of SCC. 

Starting from the end:
- if everything in a component is unassigned, set them to true, and set their opposites to false.

This works!!

How fast is it? 

O(Q + S). That’s a HUGE improvement.
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Some More Context
The Final Making Problem was a type of “Satisfiability” problem.

We had a bunch of variables (include/exclude this question), and needed to satisfy everything in 
a list of requirements. 

The algorithm we just made for Final Creation works for any 2-SAT problem. 
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Given: A set of Boolean variables, and a list of requirements, each of the form: 
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements 
evaluate to “true”

2-Satisfiability (“2-SAT”)


