
Lecture 19: Array Disjoint
Sets and more Graphs

CSE 373: Data Structures and
Algorithms

CSE 373 19 SP – ZACHARY CHUN 1

Administrivia
Project 4 due Wednesday May 20th

- Please start now
- Last assignment to use late days on
- Will use Dijkstra’s code for last programming project

Exercise 4 due Friday May 15th

2CSE 373 20 SP – CHAMPION & CHUN

Roadmap
- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)!
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees
3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees
5. ArrayQuickUnionBySizeCompressing

CSE 373 SP 18 - KASEY CHAMPION 3

Disjoint Sets in computer science
In computer science, disjointsets can refer to this ADT/data structure that
keeps track of the multiple “mini” sets that are disjoint (confusing naming, I know)

CSE 373 SP 18 - KASEY CHAMPION 4

Kevin

Aileen
Keanu

Sherdil

Leona

Set #1 Set #2

This overall grey blob thing is the actual
disjoint sets, and it’s keeping track of any
number of mini-sets, which are all disjoint
(the mini sets have no overlapping
values).

Note: this might feel really different than ADTs we’ve
run into before. The ADTs we’ve seen before

(dictionaries, lists, sets, etc.) just store values directly.
But the Disjoint Set ADT is particularly interested in
letting you group your values into sets and
keep track of which particular set your values are in.

new ADT!

2. QuickUnionTrees implementation:
findSet(valueA)
findSet has to be different though …

They all have access to the root node because all the links point up – we can use
the root node as our id / representative.

findSet(valueA) {

jump to valueA node

travel upwards till root

return ID for set (in this case the node itself)

}

findSet(5) == 1 node

findSet(9) == 9 node

they’re in the same set because they have the same representative!

CSE 373 SP 18 - KASEY CHAMPION 5

1

6

3 4

2

105 7

98

jumping to nodes:

6

d

ac

e

b

a b c d e

You can use a Map<T, Node> to jump to each node easily (so even though it’s not drawn on the future slides,
assume we can just jump to any node)

2. QuickUnionTrees implementation:
union(valueA, valueB)
union(valueA, valueB) -- the method with the problem runtime from before -- should look a lot
easier in terms of updating the data structure – all we have to do is change one pointer so
they’re connected!

What should we change? If we change the root of one to point to the other tree, then all the
lower nodes in the tree will be updated to be in the same set. It turns out it will be most efficient
if we have the root point to the other tree’s root so we can connect all of the values at once and
keep a low height (for findSet)

CSE 373 SP 18 - KASEY CHAMPION 7

1

6

3 4

2

105 7

98

11

15

13 14

12

1716

18

union(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to rootB

}

3. QuickUnionBySizeTrees
Problem: Trees can be unbalanced (and look linked-list-like) so our findSet runtime can be linear
runtime in the worst case (if it’s linked-list like and we findSet a node towards the bottom of the
linked list)

Solution: When union’ing, choose the parent to be the bigger tree
- have the root of each mini-set tree store that tree’s size
- When union’ing make the tree with larger size the root (If it’s a tie, pick one arbitrarily)
- increase the size of the new mini-set as appropriate

CSE 373 SP 18 - KASEY CHAMPION 8

3. QuickUnionBySizeTrees
Solution: When union’ing, choose the parent to be the bigger tree
- have the root of each mini-set tree store that tree’s size
- When union’ing make the tree with larger size the root (If it’s a tie, pick one arbitrarily)
- increase the size of the new mini-set as appropriate

CSE 373 SP 18 - KASEY CHAMPION 9

b

d

e

c

a

size = 1 size = 4

b

d

e

c

size = 5
height = 2

a
union(b,a)

b

d

e

c

a

size = 1 size = 4

b

d

e

c

size = 5
height = 3

a

union(b,a)

possible without union by size with union by size

3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a

nodes height

1 0

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a
b

nodes height

1 0

2 1

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a
b

c
d

nodes height

1 0

2 1

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a
b c

d

nodes height

1 0

2 1

4 2

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a
b c

d

e
f g

h

nodes height

1 0

2 1

4 2

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a
b c

d
e
f g

h

nodes height

1 0

2 1

4 2

8 3

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible
for the number of nodes it has
Worst case tree height is Θ(log N)

a
b c

d

nodes height

1 0

2 1

4 2

8 3

16 4

e
f g

h

i
j k

l
m
n o

p

CSE 373 WI 20 – HANNAH TANG

reminder: this is the worst case height since we’re trying to increase the height of the tree as much as possible. The best
case height can just be at constant height with n nodes if all of them are at level 2 except for the root.

3. QuickUnionBySizeTrees bad situations are still
bounded by the worst case heights
union(a, e) – which one becomes the parent when doing union-by-size?

a will point to e because a’s tree size is 4, but e’s tree size is 6. The height increases by one even though it
didn’t need to! If we had e point to a the height (the max distance) would have stayed the same.

CSE 373 WI 20 – CHAMPION/ CHUN 17

a
b c

d

f g

e

i jh

main point of this slide: QuickUnionBySizeTrees produces a suboptimal structures, such as this one, in specific
cases. But for the most part it works out as you increase the number of nodes towards infinity. It’s still bounded
by the example we did before to show that the height of the tree grows logarithmically in the worst case. If you
try to come up with example union calls to create situations like above where union-by-size does the suboptimal
thing, you’ll see that the height is still bounded by log(n) – the proof / practice is left as an exercise for the reader
J.

a
b c

d

f g

e

i jh a
b c

d f g

e

i
j

h

original disjoint sets
after union by size what should happen instead/optimally

size = 10, height = 3 size = 10, height = 2

small aside (just to satisfy curiosity):

CSE 373 SP 18 - KASEY CHAMPION 18

why not use the height of the tree?
- QuickUnionByHeightTrees runtime is asymptotically the same: Θ(log(N))

- It’s easier to track weights than heights

Questions break

CSE 373 SP 18 - KASEY CHAMPION 19

QuickUnionBySizeCompressingTrees

Roadmap
- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)!
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees
3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees
5. ArrayQuickUnionBySizeCompressing

CSE 373 SP 18 - KASEY CHAMPION 20

Modifying Data Structures To Preserve Invariants

Thus far, the modifications we’ve studied are designed to preserve
invariants (aka “repair the data structure”)
- Tree rotations: preserve AVL height invariant so we guarantee log(n) height and log(n)

runtime for worst case if we need to traverse to the bottom of the tree
- heap percolations: preserve heap sorted invariants so we can find Min/Max still in

constant time

Notably, the modifications don’t improve runtime between identical
method calls.

Path compression is entirely different: we are modifying the tree
structure to improve future performance of related method calls.

21

4. QuickUnionBySizeCompressingTrees
Path Compression: Idea
This is the worst-case structure / height if we use QuickUnionBySize

a
b c

d
e
f g

h

i
j k

l
m
n o

p

Idea: When we do findSet(p), move all visited nodes to directly
point to the root

Additional cost is insignificant (same order of growth to
visit all of these nodes one more time)

4. QuickUnionBySizeCompressingTrees
Path Compression: Example
This is the worst-case structure / height if we use WeightedQuickUnion

Idea: When we do findSet(p), move all visited nodes under the root
- Doesn’t meaningfully change runtime for this invocation of findSet(p), but subsequent findSet(p)s

(and subsequent findSet(o)s and findSet(m)s and …) will be faster

a
b c

d
e
f g

h

i
j k

l

m
n

o p

4. QuickUnionBySizeCompressingTrees
Path Compression: Details and Runtime

Run path compression on every findSet()!

a
b c d e

f
g
h

i
j

k l m
n

o p

Understanding the performance of more than 1 operations requires amortized analysis

We won’t go into it here, but we’ve sort of seen this before
It’s how we can actually say that appending to an array is “O(1) on average” if we
double whenever we resize. You can google it more if you’re curious!

4. QuickUnionBySizeCompressingTrees
Subtleties of Path Compression
Path compression is an optimization written into the findSet code.

It does not appear directly in the union code.
- It’s not worth it; you’d have to rewrite the entire findSet code inside union to make it

happen.

But union does make two findSet calls,
- So path compression will happen when you do a union call, just indirectly.

CSE 373 SU 19 - ROBBIE WEBER 26

makeSet findSet Union

Worst-Case Θ(1) Θ(log 𝑛) Θ(log 𝑛)
Best-Case Θ(1) Θ(1) Θ(1)
In-Practice Θ(1) Θ 1 * Θ 1 ∗

* can be thought of as Θ 1 but technically incorrect notation … it’s bounded by a function called the inverse
Ackermann function, 𝛼(𝑛), that outputs < 5 for any value of n that can be written in this physical universe, so the
disjoint-sets operations take place in essentially constant time.

4. QuickUnionBySizeCompressingTrees
Runtimes

findSet(value):
1. jump to the node of value and traverse up to get to the root (representative)
2. after finding the representative do path compression (point every node from the path you visited to the root directly)
3. return the root (representative) of the set value is in
union(valueA, valueB):
1. call findSet(valueA) and findSet(valueB) to get access to the root (representative) of both
2. merge by setting one root to point to the other root (one root becomes the parent of the other root). Have the smaller

sized tree’s root point to the bigger tree’s root
if treeA’s rank == treeB’s size, It doesn’t matter which is the parent so choose arbitrarily

4. QuickUnionBySizeCompressingTrees methods
recap
findSet(value):

1. jump to the node of value and traverse up to get to the root (representative)
2. after finding the representative do path compression (point every node from

the path you visited to the root directly)
3. return the root (representative) of the set value is in
union(valueA, valueB):
1. call findSet(valueA) and findSet(valueB) to get access to the root

(representative) of both
2. merge by setting one root to point to the other root (one root becomes the

parent of the other root). Have the smaller sized tree’s root point to the bigger
tree’s root

- if treeA’s rank == treeB’s size, It doesn’t matter which is the parent so choose arbitrarily

CSE 373 SP 19 - ZACH CHUN 27

Questions break

CSE 373 SP 18 - KASEY CHAMPION 28

QuickUnionBySizeCompressingTrees

Roadmap
- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)!
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees
3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees
5. ArrayQuickUnionBySizeCompressing

CSE 373 SP 18 - KASEY CHAMPION 29

Instead of nodes, let’s use an array implementation!

Just like heaps, the trees and node objects will exist in our mind, but not in our programs. So
everything we learned about the tree versions conceptually will still exist, we’ll just store the
data a little differently.

It won’t be asymptotically faster, but check out all these benefits:

- this will be more memory compact

- get better caching benefits because we’ll be using arrays

- simplify the implementation

CSE 373 SP 19 - ZACH CHUN 30

5. ArrayQuickUnionBySizeCompressing
Array implementation motivation

5. ArrayQuickUnionBySizeCompressing
What are we going to put in the array and what is
it going to mean?
One of the most common things we do with Disjoint Sets is: go to a node and
traverse upwards to the root (go to your parent, then go to your parent’s parent,
then go to your parent’s parent’s parent, etc.).

A couple of ideas:
• represent each node as a position in our array

• at each node’s position, store the index of the parent node. This will let us jump
to the parent node position in the array, and then we can look up our parent’s
parent node position, etc.

• if we’re storing indices, this mean this is an array of ints

CSE 373 SP 19 - ZACH CHUN 31

This is a big idea!

CSE 373 SP 19 - ZACH CHUN 32

ea

b c d

0 1 2 3 4 5

- - 1 1 0 ?
index

value

5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index
of the parent node

a e d c b f

f

CSE 373 SP 19 - ZACH CHUN 33

ea

b c d

0 1 2 3 4 5

- - 1 1 0 2
index

value

5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index
of the parent node

a e d c b f

f

CSE 373 SP 19 - ZACH CHUN 34

uv

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the
parent node (practice)

z y t x w

z y

0 1 2 3 4 5 6

? ? ? ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 35

uv

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the
parent node

z y t x w

z y

0 1 2 3 4 5 6

3 ? ? ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 36

uv

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the
parent node

z y t x w

z y

0 1 2 3 4 5 6

3 3 ? ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 37

uv

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the
parent node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 38

uv

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the
parent node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 ? - -

v u

CSE 373 SP 19 - ZACH CHUN 39

uv

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the
parent node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

CSE 373 SP 19 - ZACH CHUN 40

uv

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
findSet()

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

example : findSet(y)
- look up the index of y in our array (index 1)
- keep traversing till we get to the root / no more parent indices

available
- path compression (set everything to point to the index of the

root - in this case set everything on the path to 5)
- return the index of the root (in this case return 5). Instead of the

actual node itself, we now have access to an index which is a
simpler, but still unique ID

CSE 373 SP 19 - ZACH CHUN 41

uv

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
findSet(): (Looking up the index for a given value)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

In findSet we have to figure out where to start traversing upwards from …
so what index do we use and how do we keep track of the values indices?
(In the above example) basically, how would we map each letter to a position?

Whenever you add new values into your disjoint set,
keep track of what index you stored it at with a dictionary of value to index!
This is similar to the thing as what we did in our heap project.

This is a big idea!

CSE 373 SP 19 - ZACH CHUN 42

uv

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
findSet(): (What do we store at the root position so we know when to stop?)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

We just mentioned for findSet that we need to traverse starting from a node
(like y) to its parent and then its parent’s parent until we get to a root. What
type of int could we put there as a sign that we’ve reached the root?

CSE 373 SP 19 - ZACH CHUN 43

uv

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
findSet(): (What do we store at the root position so we
know when to stop?)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 -4 -3

v u

We just mentioned for findSet that we need to traverse starting from a node
(like y) to its parent and then its parent’s parent until we get to a root. What
type of int could we put there as a sign that we’ve reached the root?

A negative number! (since valid array indices are only 0 and positive numbers)

We’re going to actually be extra clever and store a strictly negative version of
the size for our root nodes. This is a big idea!

CSE 373 SP 19 - ZACH CHUN 44

uv

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
findSet(): full details

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 -4 -3

v u

example : findSet(y)
- look up the index of y in our array with index dictionary (index 1)
- keep traversing till we get to the root, signified by negative

numbers
- path compression (set everything to point to the index of the

root - in this case set everything on the path to 5)
- return the index of the root (in this case return 5). Instead of the

actual node itself, we now have access to an index which is a
simpler, but still unique ID

CSE 373 SP 19 - ZACH CHUN 45

u

x w

t

index

value

5. ArrayQuickUnionBySizeCompressing
practice: findSet(s)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 5 -7 2

s

- look up the index of value in our array with index dictionary keep
traversing till we get to the root, signified by negative numbers

- path compression (set everything to point to the index of the
root)

- return the index of the root (in this case return 5). Instead of the
actual node itself, we now have access to an index which is a
simpler, but still unique ID

u

s

CSE 373 SP 19 - ZACH CHUN 46

u

x w t

index

value

5. ArrayQuickUnionBySizeCompressing
practice: findSet(s)

z y t x w

z y

0 1 2 3 4 5 6

3 3 5 5 5 -7 5

s

- look up the index of value in our array with index dictionary keep
traversing till we get to the root, signified by negative numbers

- path compression (set everything to point to the index of the
root)

- return the index of the root (in this case return 5). Instead of the
actual node itself, we now have access to an index which is a
simpler, but still unique ID

u

s

returns 5

CSE 373 SP 19 - ZACH CHUN 47

index

value

5. ArrayQuickUnionBySizeCompressing
union

0 1 2 3

/ / / /

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size

CSE 373 SP 19 - ZACH CHUN 48

uindex

value

5. ArrayQuickUnionBySizeCompressing
union

u

0 1 2 3

-1 / / /

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size

CSE 373 SP 19 - ZACH CHUN 49

uindex

value

5. ArrayQuickUnionBySizeCompressing
union

u

0 1 2 3

-1 -1 / /

v
v

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size

CSE 373 SP 19 - ZACH CHUN 50

u

index

value

5. ArrayQuickUnionBySizeCompressing
union

u

0 1 2 3

1 -1 / /

v
v

makeSet(u)
makeSet(v)
union(u, v)

union – almost the same as before
• update one of the roots to point to the

other root (in this case we had node u’s
position in the array store index 1, as v is
now its parent)

note: formula to store in root nodes is negative size

CSE 373 SP 19 - ZACH CHUN 51

u

index

value

5. ArrayQuickUnionBySizeCompressing
union

u

0 1 2 3

1 -2 / /

v
v

makeSet(u)
makeSet(v)
union(u, v)

union – almost the same as before
• update one of the roots to point to the

other root (in this case we had node u’s
position in the array store index 1, as v is
now its parent)

• Note: calculate the new size and then
multiply it by -1 to turn it into the
negative version.

note: formula to store in root nodes is negative size

5. ArrayQuickUnionBySizeCompressing
union (practice)

a b c d e f g

already set up all the makeSet calls in the area
-union(a, b)
-union(c, d)
-union(e, f)
-union(a, g)
-union(c, e)
-union(a, c)

CSE 373 SP 18 - KASEY CHAMPION 52

0 1 2 3 4 5 6
-1 -1 -1 -1 -1 -1 -1

5. ArrayQuickUnionBySizeCompressing
big ideas summary
• each node is represented by a position in the int array

• each position stores either:
• the index of its parent, if not the root node
• -1 * size if the root node

• keep track of a dictionary of value to index to be able to jump to a node’s position in the array

• apply all the same high level ideas of how the Disjoint Set methods work (findSet and union) for
trees, but to the array representation
• makeSet – store -1 (size of 1) in a new slot in the array
• findSet(value) – jump to the value’s position in your array, and traverse till you reach a negative number (signifies

the root). Do path compression and return the index of the root (the representative of this set).
• union(valueA, valueB) – call findSet(valueA) and findSet(valueB) to access the sizes and indices of valueA and

valueB’s sets. Compare the sizes like in the tree representation. Make sure to update the size when you union the
two of them together.

CSE 373 SP 19 - ZACH CHUN 53

Questions?

CSE 373 SP 18 - KASEY CHAMPION 54

Graph Algorithms Review
Breadth First Search
(BFS)

Good for:
- establishing connectivity

between set of vertices
- Traversing the graph
- Breadth pattern can be

leveraged to answer other
questions

Algorithm:
- Pick starting vertex
- Add all direct neighbors to

queue
- add next in queue to

processed list and repeat

55CSE 373 20 SP – CHAMPION & CHUN

Depth First Search
(DFS)

Good for:
- establishing

connectivity between
set of vertices

- Traversing the graph
- Can “stop early” when

looking for
connectivity between
two points

Algorithm:
- Pick starting vertex
- Add all direct

neighbors to queue
- add next in stack to

processed list and
repeat

Dijkstra’s

Good for:
- Minimum weight path

from source to
destination

- Requires weighted
edges, no negatives

Algorithm:
- Start at source
- Select next closest

neighbor
- Update selected

neighbor to sum distance
from original source

- Repeat for selected
vertex

- Repeat until all vertices
processed

- Backtrack from
destination vertex to
determine path

Prim’s

Good for:
- Finding minimum

weight set of vertices
for complete
connectivity

- Requires weighted
edges

Algorithm:
- Pick starting vertex
- Add neighbor with

smallest weight edge
- Consider all neighbors to

current spanning tree
- Select closest neighbor
- Repeat until all vertices

are connected

Kruskal’s

Good for:
- Finding minimum

weight set of vertices
for complete
connectivity

- Requires weighted
edges

Algorithm:
- Sort all edges
- Add lightest edge to

solution and place two
vertices it connects into
a single component

- Add next lightest edge
and combine two
connected vertices

- Repeat until all vertices
are connected

perimeter.add(start);

discovered.add(start);

start’s distance = 0;

while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();

if (!discovered.contains(to)) {
to’s distance = from.distance + 1;

to’s predecessorEdge = edge;

perimeter.add(to);

discovered.add(to)

}

}

}

BFS/DFS runtime

56CSE 373 20 SP – CHAMPION & CHUN

Queue for BFS
Stack for DFS

Θ(1)

Θ(1)

Θ(V)

Θ(E)Θ(E of Vx)

O(E + V)

Dijkstra’s Runtime

CSE 373 19 SU - ROBBIE WEBER 57

Dijkstra(Graph G, Vertex source)

for (Vertex v : G.getVertices()) { v.dist = INFINITY; }

G.getVertex(source).dist = 0;

initialize MPQ as a Min Priority Queue, add source

while(MPQ is not empty){

u = MPQ.removeMin();

for (Edge e : u.getEdges(u)){

oldDist = v.dist; newDist = u.dist+weight(u,v)

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u

if(oldDist == INFINITY) { MPQ.insert(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

Θ(logV)

Θ(logV)

This actually doesn’t run 𝐸 times
for every iteration of the outer
loop. It actually will run 𝐸 times in
total; if every vertex is only
removed from the priority queue
(processed) once, then we
examine each edge once. Each line
inside this foreach gets multiplied
by a single E instead of E * V.

Θ(V)

Θ(V)

Θ(V log V + E log V)

Prim’s Runtime

CSE 373 SP 18 - KASEY CHAMPION 58

Dijkstra(Graph G, Vertex source)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Prims(Graph G, Vertex source)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

1
2
3
4
5
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
5
6
7
8
9
10
11
12
13
14
15

Θ(V log V + E log V)Θ(V log V + E log V)

*Prim’s is the same algorithm as Dijkstra’s with a different if check which doesn’t impact the runtime

Kruskal’s Runtime

KruskalMST(Graph G)
initialize new DisjointSets DS
for(v : G.vertices) { DS.makeSet(v) }
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(DS.findSet(u) != DS.findSet(v)){
add (u,v) to the MST
DS.union(u,v)

}
}

Θ(𝐸 log𝐸)

Θ(𝑉)

𝐸 calls

𝑉 calls, do

Intuition: We could make the log 𝑉 running time happen once…but not really more than that.
Since we’re counting total operations, we’re actually going to see the “in-practice” behavior

For MST algorithms, assume that 𝑬 dominates 𝑽
(if it doesn’t, there is no spanning tree to find)

Whether we hit worst-case or not: 𝚯(𝑬 𝐥𝐨𝐠𝑬) is dominating term.

Graph problems
What algorithms would you use to solve each of the following?

1. s-t Path. Is there a path between vertices s and t?

2. Connectivity. Is the graph connected?

3. Biconnectivity. Is there a vertex whose removal disconnects the graph?

4. Shortest s-t Path. What is the shortest path between vertices s and t?

5. Cycle Detection. Does the graph contain any cycles?

HANNAH TANG 20WI

BFS or DFS

BFS or DFS

BFS or DFS

Dijkstra’s

Prim’s or Kruskal’s

