
Lecture 19: Array Disjoint 
Sets and more Graphs

CSE 373: Data Structures and 
Algorithms
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Administrivia
Project 4 due Wednesday May 20th

- Please start now
- Last assignment to use late days on
- Will use Dijkstra’s code for last programming project

Exercise 4 due Friday May 15th
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Roadmap
- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)! 
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees
3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees
5. ArrayQuickUnionBySizeCompressing
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Disjoint Sets in computer science
In computer science, disjointsets can refer to this ADT/data structure that 
keeps track of the multiple “mini” sets that are disjoint (confusing naming, I know)  
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This overall grey blob thing is the actual 
disjoint sets, and it’s keeping track of any 
number of mini-sets, which are all disjoint 
(the mini sets have no overlapping
values).

Note: this might feel really different than ADTs we’ve
run into before.  The ADTs we’ve seen before

(dictionaries, lists, sets, etc.) just store values directly.
But the Disjoint Set ADT is particularly interested in
letting you group your values into sets and 
keep track of which particular set your values are in.

new ADT!



2. QuickUnionTrees implementation:
findSet(valueA)
findSet has to be different though … 

They all have access to the root node because all the links point up – we can use 
the root node as our id / representative. 

findSet(valueA) {

jump to valueA node

travel upwards till root

return ID for set (in this case the node itself)

}

findSet(5) == 1 node

findSet(9) == 9 node

they’re in the same set because they have the same representative!
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jumping to nodes:
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a b c d e

You can use a Map<T, Node> to jump to each node easily (so even though it’s not drawn on the future slides, 
assume we can just jump to any node)



2. QuickUnionTrees implementation:
union(valueA, valueB)
union(valueA, valueB) -- the method with the problem runtime from before -- should look a lot 
easier in terms of updating the data structure – all we have to do is change one pointer so 
they’re connected!  

What should we change?  If we change the root of one to point to the other tree, then all the 
lower nodes in the tree will be updated to be in the same set.  It turns out it will be most efficient 
if we have the root point to the other tree’s root so we can connect all of the values at once and 
keep a low height (for findSet)
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union(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to rootB

}



3. QuickUnionBySizeTrees
Problem: Trees can be unbalanced (and look linked-list-like) so our findSet runtime can be linear 
runtime in the worst case (if it’s linked-list like and we findSet a node towards the bottom of the 
linked list)

Solution: When union’ing, choose the parent to be the bigger tree
- have the root of each mini-set tree store that tree’s size
- When union’ing make the tree with larger size the root (If it’s a tie, pick one arbitrarily)
- increase the size of the new mini-set as appropriate
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3. QuickUnionBySizeTrees
Solution: When union’ing, choose the parent to be the bigger tree
- have the root of each mini-set tree store that tree’s size
- When union’ing make the tree with larger size the root (If it’s a tie, pick one arbitrarily)
- increase the size of the new mini-set as appropriate
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possible without union by size with union by size



3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has

a

# nodes height

1 0
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3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has

a
b

# nodes height

1 0

2 1
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3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has
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3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has
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3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has
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# nodes height
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3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has
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3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible 
for the number of nodes it has
Worst case tree height is Θ(log N)

a
b c

d

# nodes height

1 0

2 1

4 2

8 3

16 4

e
f g

h

i
j k

l
m
n o

p
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reminder: this is the worst case height since we’re trying to increase the height of the tree as much as possible. The best 
case height can just be at constant height with n nodes if all of them are at level 2 except for the root.



3. QuickUnionBySizeTrees bad situations are still 
bounded by the worst case heights
union(a, e) – which one becomes the parent when doing union-by-size?

a will point to e because a’s tree size is 4, but e’s tree size is 6.  The height increases by one even though it 
didn’t need to! If we had e point to a the height (the max distance) would have stayed the same.
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main point of this slide: QuickUnionBySizeTrees produces a suboptimal structures, such as this one, in specific 
cases.  But for the most part it works out as you increase the number of nodes towards infinity. It’s still bounded 
by the example we did before to show that the height of the tree grows logarithmically in the worst case.  If you 
try to come up with example union calls to create situations like above where union-by-size does the suboptimal 
thing, you’ll see that the height is still bounded by log(n) – the proof / practice is left as an exercise for the reader 
J.
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original disjoint sets
after union by size what should happen instead/optimally

size = 10, height = 3 size = 10, height = 2



small aside (just to satisfy curiosity):

CSE 373 SP 18 - KASEY CHAMPION 18

why not use the height of the tree?
- QuickUnionByHeightTrees runtime is asymptotically the same: Θ(log(N))

- It’s easier to track weights than heights



Questions break
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QuickUnionBySizeCompressingTrees



Roadmap
- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)! 
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees
3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees
5. ArrayQuickUnionBySizeCompressing
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Modifying Data Structures To Preserve Invariants

Thus far, the modifications we’ve studied are designed to preserve 
invariants (aka “repair the data structure”)
- Tree rotations: preserve AVL height invariant so we guarantee log(n) height and log(n) 

runtime for worst case if we need to traverse to the bottom of the tree
- heap percolations: preserve heap sorted invariants so we can find Min/Max still in 

constant time

Notably, the modifications don’t improve runtime between identical 
method calls.

Path compression is entirely different: we are modifying the tree 
structure to improve future performance of related method calls. 

21



4. QuickUnionBySizeCompressingTrees
Path Compression: Idea
This is the worst-case structure / height if we use QuickUnionBySize
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Idea: When we do findSet(p), move all visited nodes to directly 
point to the root

Additional cost is insignificant (same order of growth to 
visit all of these nodes one more time)



4. QuickUnionBySizeCompressingTrees
Path Compression: Example
This is the worst-case structure / height if we use WeightedQuickUnion

Idea: When we do findSet(p), move all visited nodes under the root
- Doesn’t meaningfully change runtime for this invocation of findSet(p), but subsequent findSet(p)s 

(and subsequent findSet(o)s and findSet(m)s and …) will be faster
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4. QuickUnionBySizeCompressingTrees
Path Compression: Details and Runtime

Run path compression on every findSet()!

a
b c d e

f
g
h

i
j

k l m
n

o p

Understanding the performance of more than 1 operations requires amortized analysis 

We won’t go into it here, but we’ve sort of seen this before
It’s how we can actually say that appending to an array is “O(1) on average” if we 
double whenever we resize. You can google it more if you’re curious!



4. QuickUnionBySizeCompressingTrees
Subtleties of Path Compression
Path compression is an optimization written into the findSet code.

It does not appear directly in the union code.
- It’s not worth it; you’d have to rewrite the entire findSet code inside union to make it 

happen.

But union does make two findSet calls,
- So path compression will happen when you do a union call, just indirectly.
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makeSet findSet Union

Worst-Case Θ(1) Θ(log 𝑛) Θ(log 𝑛)
Best-Case Θ(1) Θ(1) Θ(1)
In-Practice Θ(1) Θ 1 * Θ 1 ∗

* can be thought of as Θ 1 but technically incorrect notation … it’s bounded by a function called the inverse 
Ackermann function, 𝛼(𝑛), that outputs < 5 for any value of n that can be written in this physical universe, so the 
disjoint-sets operations take place in essentially constant time.  

4. QuickUnionBySizeCompressingTrees
Runtimes

findSet(value):
1. jump to the node of value and traverse up to get to the root (representative)
2. after finding the representative do path compression (point every node from the path you visited to the root directly)
3. return the root (representative) of the set value is in
union(valueA, valueB):
1. call findSet(valueA) and findSet(valueB) to get access to the root (representative) of both
2. merge by setting one root to point to the other root (one root becomes the parent of the other root). Have the smaller 

sized tree’s root point to the bigger tree’s root
if treeA’s rank == treeB’s size, It doesn’t matter which is the parent so choose arbitrarily



4. QuickUnionBySizeCompressingTrees methods 
recap
findSet(value):

1. jump to the node of value and traverse up to get to the root (representative)
2. after finding the representative do path compression (point every node from 

the path you visited to the root directly)
3. return the root (representative) of the set value is in
union(valueA, valueB):
1. call findSet(valueA) and findSet(valueB) to get access to the root 

(representative) of both
2. merge by setting one root to point to the other root (one root becomes the 

parent of the other root). Have the smaller sized tree’s root point to the bigger 
tree’s root

- if treeA’s rank == treeB’s size, It doesn’t matter which is the parent so choose arbitrarily

CSE 373 SP 19 - ZACH CHUN 27



Questions break
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QuickUnionBySizeCompressingTrees



Roadmap
- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)! 
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees
3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees
5. ArrayQuickUnionBySizeCompressing
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Instead of nodes, let’s use an array implementation!

Just like heaps, the trees and node objects will exist in our mind, but not in our programs. So 
everything we learned about the tree versions conceptually will still exist, we’ll just store the 
data a little differently.

It won’t be asymptotically faster, but check out all these benefits:

- this will be more memory compact

- get better caching benefits because we’ll be using arrays

- simplify the implementation 
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5. ArrayQuickUnionBySizeCompressing
Array implementation motivation



5. ArrayQuickUnionBySizeCompressing
What are we going to put in the array and what is 
it going to mean?
One of the most common things we do with Disjoint Sets is: go to a node and 
traverse upwards to the root (go to your parent, then go to your parent’s parent, 
then go to your parent’s parent’s parent, etc.).

A couple of ideas:
• represent each node as a position in our array

• at each node’s position, store the index of the parent node. This will let us jump 
to the parent node position in the array, and then we can look up our parent’s 
parent node position, etc.

• if we’re storing indices, this mean this is an array of ints
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This is a big idea!
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ea

b c d

0 1 2 3 4 5

- - 1 1 0 ?
index

value

5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index 
of the parent node

a e d c b f

f
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0 1 2 3 4 5

- - 1 1 0 2
index
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5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index 
of the parent node

a e d c b f

f
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t
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5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the 
parent node  (practice)

z y t x w

z y

0 1 2 3 4 5 6

? ? ? ? ? - -

v u
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5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the 
parent node

z y t x w

z y

0 1 2 3 4 5 6

3 ? ? ? ? - -

v u
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5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the 
parent node

z y t x w

z y

0 1 2 3 4 5 6

3 3 ? ? ? - -

v u
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5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the 
parent node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 ? ? - -

v u
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5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the 
parent node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 ? - -

v u
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5. ArrayQuickUnionBySizeCompressing
big idea: at each node’s position, store the index of the 
parent node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u
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5. ArrayQuickUnionBySizeCompressing
findSet()

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

example : findSet(y)
- look up the index of y in our array (index 1)
- keep traversing till we get to the root / no more parent indices 

available
- path compression (set everything to point to the index of the 

root - in this case set everything on the path to 5)
- return the index of the root (in this case return 5). Instead of the 

actual node itself, we now have access to an index which is a 
simpler, but still unique ID 
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5. ArrayQuickUnionBySizeCompressing
findSet(): (Looking up the index for a given value)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

In findSet we have to figure out where to start traversing upwards from … 
so what index do we use and how do we keep track of the values indices?  
(In the above example) basically, how would we map each letter to a position?

Whenever you add new values into your disjoint set, 
keep track of what index you stored it at with a dictionary of value to index! 
This is similar to the thing as what we did in our heap project.

This is a big idea!
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5. ArrayQuickUnionBySizeCompressing
findSet(): (What do we store at the root position so we know when to stop?)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

We just mentioned for findSet that we need to traverse starting from a node 
(like y) to its parent and then its parent’s parent until we get to a root.  What 
type of int could we put there as a sign that we’ve reached the root? 
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5. ArrayQuickUnionBySizeCompressing
findSet(): (What do we store at the root position so we 
know when to stop?)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 -4 -3

v u

We just mentioned for findSet that we need to traverse starting from a node 
(like y) to its parent and then its parent’s parent until we get to a root.  What 
type of int could we put there as a sign that we’ve reached the root? 

A negative number! (since valid array indices are only 0 and positive numbers)

We’re going to actually be extra clever and store a strictly negative version of 
the size for our root nodes.  This is a big idea!
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5. ArrayQuickUnionBySizeCompressing
findSet(): full details

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 -4 -3

v u

example : findSet(y)
- look up the index of y in our array with index dictionary (index 1)
- keep traversing till we get to the root, signified by negative 

numbers
- path compression (set everything to point to the index of the 

root - in this case set everything on the path to 5)
- return the index of the root (in this case return 5). Instead of the 

actual node itself, we now have access to an index which is a 
simpler, but still unique ID 
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5. ArrayQuickUnionBySizeCompressing
practice: findSet(s)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 5 -7 2

s

- look up the index of value in our array with index dictionary keep 
traversing till we get to the root, signified by negative numbers

- path compression (set everything to point to the index of the 
root)

- return the index of the root (in this case return 5). Instead of the 
actual node itself, we now have access to an index which is a 
simpler, but still unique ID 

u

s
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5. ArrayQuickUnionBySizeCompressing
practice: findSet(s)

z y t x w

z y

0 1 2 3 4 5 6

3 3 5 5 5 -7 5

s

- look up the index of value in our array with index dictionary keep 
traversing till we get to the root, signified by negative numbers

- path compression (set everything to point to the index of the 
root)

- return the index of the root (in this case return 5). Instead of the 
actual node itself, we now have access to an index which is a 
simpler, but still unique ID 

u

s

returns 5
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index

value

5. ArrayQuickUnionBySizeCompressing
union

0 1 2 3

/ / / /

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size
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uindex

value

5. ArrayQuickUnionBySizeCompressing
union

u

0 1 2 3

-1 / / /

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size
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uindex

value

5. ArrayQuickUnionBySizeCompressing
union

u

0 1 2 3

-1 -1 / /

v
v

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size
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u

index

value

5. ArrayQuickUnionBySizeCompressing
union

u

0 1 2 3

1 -1 / /

v
v

makeSet(u)
makeSet(v)
union(u, v)

union – almost the same as before
• update one of the roots to point to the 

other root (in this case we had node u’s 
position in the array store index 1, as v is 
now its parent)

note: formula to store in root nodes is negative size
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u

index
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5. ArrayQuickUnionBySizeCompressing
union

u

0 1 2 3

1 -2 / /

v
v

makeSet(u)
makeSet(v)
union(u, v)

union – almost the same as before
• update one of the roots to point to the 

other root (in this case we had node u’s 
position in the array store index 1, as v is 
now its parent)

• Note: calculate the new size and then 
multiply it by -1 to turn it into the 
negative version.

note: formula to store in root nodes is negative size



5. ArrayQuickUnionBySizeCompressing
union (practice)

a b c d e f g

already set up all the makeSet calls in the area
-union(a, b)
-union(c, d)
-union(e, f)
-union(a, g)
-union(c, e)
-union(a, c)
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0 1 2 3 4 5 6
-1 -1 -1 -1 -1 -1 -1



5. ArrayQuickUnionBySizeCompressing
big ideas summary
• each node is represented by a position in the int array

• each position stores either:
• the index of its parent, if not the root node
• -1 * size if the root node

• keep track of a dictionary of value to index to be able to jump to a node’s position in the array

• apply all the same high level ideas of how the Disjoint Set methods work (findSet and union) for 
trees, but to the array representation
• makeSet – store -1 (size of 1) in a new slot in the array
• findSet(value) – jump to the value’s position in your array, and traverse till you reach a negative number (signifies 

the root).  Do path compression and return the index of the root (the representative of this set).
• union(valueA, valueB) – call findSet(valueA) and findSet(valueB) to access the sizes and indices of valueA and 

valueB’s sets.  Compare the sizes like in the tree representation.  Make sure to update the size when you union the 
two of them together.
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Questions?
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Graph Algorithms Review
Breadth First Search 
(BFS)

Good for:
- establishing connectivity 

between set of vertices
- Traversing the graph
- Breadth pattern can be 

leveraged to answer other 
questions

Algorithm:
- Pick starting vertex
- Add all direct neighbors to 

queue
- add next in queue to 

processed list and repeat
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Depth First Search 
(DFS)

Good for:
- establishing 

connectivity between 
set of vertices

- Traversing the graph
- Can “stop early” when 

looking for 
connectivity between 
two points

Algorithm:
- Pick starting vertex
- Add all direct 

neighbors to queue
- add next in stack to 

processed list and 
repeat

Dijkstra’s

Good for:
- Minimum weight path 

from source to 
destination

- Requires weighted 
edges, no negatives

Algorithm:
- Start at source
- Select next closest 

neighbor
- Update selected 

neighbor to sum distance 
from original source

- Repeat for selected
vertex

- Repeat until all vertices
processed

- Backtrack from 
destination vertex to 
determine path

Prim’s

Good for:
- Finding minimum 

weight set of vertices 
for complete 
connectivity

- Requires weighted 
edges

Algorithm:
- Pick starting vertex
- Add neighbor with 

smallest weight edge
- Consider all neighbors to 

current spanning tree
- Select closest neighbor
- Repeat until all vertices 

are connected

Kruskal’s

Good for:
- Finding minimum 

weight set of vertices 
for complete 
connectivity

- Requires weighted 
edges

Algorithm:
- Sort all edges
- Add lightest edge to 

solution and place two 
vertices it connects into 
a single component

- Add next lightest edge 
and combine two 
connected vertices

- Repeat until all vertices 
are connected



perimeter.add(start);

discovered.add(start);

start’s distance = 0;

while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();

if (!discovered.contains(to)) {
to’s distance = from.distance + 1;

to’s predecessorEdge = edge;

perimeter.add(to);

discovered.add(to)

}

}

} 

BFS/DFS runtime
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Queue for BFS
Stack for DFS

Θ(1)

Θ(1)

Θ(V)

Θ(E)Θ(E of Vx)

O(E + V)



Dijkstra’s Runtime
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Dijkstra(Graph G, Vertex source) 

for (Vertex v : G.getVertices()) { v.dist = INFINITY; }

G.getVertex(source).dist = 0;

initialize MPQ as a Min Priority Queue, add source

while(MPQ is not empty){

u = MPQ.removeMin();

for (Edge e : u.getEdges(u)){

oldDist = v.dist; newDist = u.dist+weight(u,v) 

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u          

if(oldDist == INFINITY) { MPQ.insert(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

Θ(logV)

Θ(logV)

This actually doesn’t run 𝐸 times 
for every iteration of the outer 
loop. It actually will run 𝐸 times in 
total; if every vertex is only 
removed from the priority queue 
(processed) once, then we 
examine each edge once. Each line 
inside this foreach gets multiplied 
by a single E instead of E * V.

Θ(V)

Θ(V)

Θ(V log V + E log V)



Prim’s Runtime
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Dijkstra(Graph G, Vertex source) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Prims(Graph G, Vertex source) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

1
2
3
4
5
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
5
6
7
8
9
10
11
12
13
14
15

Θ(V log V + E log V)Θ(V log V + E log V)

*Prim’s is the same algorithm as Dijkstra’s with a different if check which doesn’t impact the runtime 



Kruskal’s Runtime

KruskalMST(Graph G) 
initialize new DisjointSets DS
for(v : G.vertices) { DS.makeSet(v) }
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(DS.findSet(u) != DS.findSet(v)){
add (u,v) to the MST
DS.union(u,v)

}
}

Θ(𝐸 log𝐸)

Θ(𝑉)

𝐸 calls

𝑉 calls, do

Intuition: We could make the log 𝑉 running time happen once…but not really more than that. 
Since we’re counting total operations, we’re actually going to see the “in-practice” behavior

For MST algorithms, assume that 𝑬 dominates 𝑽
(if it doesn’t, there is no spanning tree to find)

Whether we hit worst-case or not: 𝚯(𝑬 𝐥𝐨𝐠𝑬) is dominating term.



Graph problems
What algorithms would you use to solve each of the following?

1. s-t Path. Is there a path between vertices s and t?

2. Connectivity. Is the graph connected? 

3. Biconnectivity. Is there a vertex whose removal disconnects the graph? 

4. Shortest s-t Path. What is the shortest path between vertices s and t? 

5. Cycle Detection. Does the graph contain any cycles?
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BFS or DFS

BFS or DFS

BFS or DFS

Dijkstra’s

Prim’s or Kruskal’s


