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Administrivia

Project 4 Due Wednesday May 20th

Exercise 4 due Friday May 15th

Grades Posted

- Exercise 1

- Project 0

- Project 1

- Project 2

- Project 3

- Midterm 1

Zach & Kasey Grade Office hours

- Today, Monday May 11 9:30-11:30am PDT

- Tuesday May 12 5:45-7:15pm PDT
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Roadmap

- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)! 
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees

3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees

5. ArrayQuickUnionBySizeCompressing
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DisjointSets

- are a cool recap of topics / touches on a bunch of different things we’ve seen in this course 
(trees, arrays, graphs, optimizing runtime, etc.)

- have a lot of details and is fairly complex – it doesn’t seem like a plus at first, but after you learn 
this / while you’re learning this…you’ve come along way since lists and being able to learn new 
complex data structures is a great skill to have built)

DisjointSets!! is Zach’s favorite ADT/data structure that we talk about in this class (if you ever 
need to bribe Zach just start a conversation w zach about DisjointSets)
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Disjoint Sets in mathematics

- “In mathematics, two sets are said to be disjoint sets if they have no 
element in common.” - Wikipedia 
- disjoint = not overlapping
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Kevin

Aileen
Keanu

Sherdil

Leona

These two sets are disjoint sets

Nishu

Santino Brian

These two sets are not disjoint sets

Santino

Set #1 Set #2 Set #3 Set #4



Disjoint Sets in computer science

In computer science, disjointsets can refer to this ADT/data structure that 
keeps track of the multiple “mini” sets that are disjoint (confusing naming, I know)  
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Kevin

Aileen
Keanu

Sherdil

Leona

Set #1 Set #2

This overall grey blob thing is the actual 

disjoint sets, and it’s keeping track of any 

number of mini-sets, which are all disjoint 

(the mini sets have no overlapping

values).

Note: this might feel really different than ADTs we’ve

run into before.  The ADTs we’ve seen before

(dictionaries, lists, sets, etc.) just store values directly.

But the Disjoint Set ADT is particularly interested in

letting you group your values into sets and 

keep track of which particular set your values are in.

new ADT!



DisjointSets ADT methods

Just 3 methods (and makeSet is pretty simple!)

- findSet(value)
- union(valueA, valueB)
- makeSet(value)
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findSet(value)
findSet(value) returns some ID for which particular set the value is in.  For Disjoint Sets, we often 
call this the representative (as it’s a value that represents the whole set).

Examples:

findSet(Brian) 

findSet(Sherdil)

findSet(Velocity)

findSet(Kevin) == findSet(Aileen)
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Kevin

Aileen

Keanu

Sherdil

Velocity

Set #1

Set #2

Brian

Set #3

Set #4

Keanu

Kasey

3

3

2

2

true



union(valueA, valueB)
union(valueA, valueB) merges the set that A is in with the set that B is in.  (basically add the two 
sets together into one)

Example:  union(Blarry,Brian)
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Set #1
Set #3

Kevin

Vivian

Blarry

Sherdil

Velocity

Set #2

Brian

Set #4

Keanu

Kasey

Set #1

Kevin

Vivian

Blarry

Sherdil

Velocity

Set #2 Set #4

Kasey

Brian
Keanu



makeSet(value)
makeSet(value) makes a new mini set that just has the value parameter in it.

Examples:

makeSet(Elena)

makeSet(Anish)
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Kevin

Vivian

Blarry

Sherdil

Velocity

Set #1

Set #2

Brian

Set #3

Set #4

Keanu

Kasey

Elena

Set #5
Anish
Set #6



Disjoint Sets ADT Summary
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Disjoint-Sets ADT

makeSet(value) – creates a new set within the disjoint set where the 
only member is the value. Picks id/representative for set

state

behavior

Set of Sets
- Mini sets are disjoint: Elements must be unique across mini sets
- No required order
- Each set has id/representative

findSet(value) – looks up the set containing the value, returns 
id/representative/ of that set
union(x, y) – looks up set containing x and set containing y, combines two 
sets into one.  All of the values of one set are added to the other, and the 
now empty set goes away.



Roadmap
- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)!  The data 
structures we talk about are going to be highly optimized for these interesting ADT methods we 
just talked about!
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees
3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees
5. ArrayQuickUnionBySizeCompressing
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DisjointSets example: running for President and 
tracking voters

13

Imagine that Dubs, Kasey, Zach, 
and Ana Mari are all running for 
president, and are currently 
dominating one region of the 
country in the polls and have 
secured that these states will 
vote for these candidates.  

You could imagine that some 
common questions about this 
data is: 
• what happens when Zach has 

to resign and wants his  
supporters to now join 
Kasey’s campaign, and Ana 
Mari does the same for dubs?  
How do we keep track of the 
followers all moving over to a 
different group?

• You can imagine we track the 
voters ßà nominee data 
with disjoint sets



Kruskal’s Algorithm Implementation

KruskalMST(Graph G) 
initialize each vertex to be an independent component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
update u and v to be in the same component
add (u,v) to the MST

}
}

KruskalMST(Graph G) 
foreach (V : G.vertices) {

makeSet(v);
}
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(findSet(v) is not the same as findSet(u)){
union(u, v)
add (u, v) to the MST

}
}



Kruskal’s with disjoint sets on the side example

CSE 373 SP 18 - KASEY CHAMPION 15

KruskalMST(Graph G) 
foreach (V : G.vertices) {

makeSet(v);
}
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(findSet(v) is not the same as 
findSet(u)){
union(u, v)

}
}



Why are we doing this again? (continued)
Disjoint Sets help us manage groups of distinct values.  

This is a common idea in graphs, where we want to keep track of different connected 
components of a graph.

In Kruskal’s, if each connected-so-far-island of the graph is its own mini set in our disjoint set,  we 
can easily check that we don’t introduce cycles.  If we’re considering a new edge, we just check 
that the two vertices of that edge are in different mini sets by calling findSet.
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1 min break for questions / review your notes
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Roadmap

- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)! 
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees

3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees

5. ArrayQuickUnionBySizeCompressing
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1. QuickFind implementation
Calculate the worst case Big-Theta runtimes for each of the methods (makeSet, findSet, union) 
for this QuickFind implementation of a DisjointSets.
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map of value -> set ID/representative

Sherdil

Robbie

Sarah

1

2

1

method runtime 
(assume using 
HashMap)

makeSet(value)

findSet(value)

union(valueA, 
valueB)



1. QuickFind implementation
Calculate the worst case Big-Theta runtimes for each of the methods (makeSet, findSet, union) 
for this QuickFind implementation of a DisjointSets.
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map of value -> set ID/representative

Sherdil

Robbie

Sarah

1

2

1

method runtime (with 
HashMaps)

makeSet(value) O(1)

findSet(value) O(1)

union(valueA, 
valueB)

O(n)



2. QuickUnionTrees implementation
Each mini-set is now represented as a separate tree. If values are somehow connected / in the 
same tree, they’re in the same mini-set!

(Note: unlike other trees we’ve seen before, the arrows go upwards! We’ll see this is useful so all
nodes can access the root)
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a

b

c

1

2

1

d

ac

e

b

d

e 2

1



2. QuickUnionTrees implementation:
findSet(valueA)
findSet has to be different though … 
They all have access to the root node because all the links point up – we can use 
the root node as our id / representative. 

findSet(valueA) {

jump to valueA node

travel upwards till root

return ID for set (in this case the node itself)

}

findSet(5) == 1 node
findSet(9) == 9 node
they’re in the same set because they have the same representative!
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1

6

3 4

2

105 7

98



jumping to nodes:

23

d

ac

e

b

a b c d e

You can use a Map<T, Node> to jump to each node easily (so even though it’s not drawn on the future slides, 
assume we can just jump to any node)



2. QuickUnionTrees implementation:
union(valueA, valueB)
union(valueA, valueB) -- the method with the problem runtime from before -- should look a lot 
easier in terms of updating the data structure – all we have to do is change one pointer so 
they’re connected!  

What should we change?  If we change the root of one to point to the other tree, then all the 
lower nodes in the tree will be updated to be in the same set.  It turns out it will be most efficient 
if we have the root point to the other tree’s root so we can connect all of the values at once and
keep a low height (for findSet)

CSE 373 SP 18 - KASEY CHAMPION 24

1

6

3 4

2

105 7

98

11

15

13 14

12

1716

18

union(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to rootB

}



2. QuickUnionTrees implementation:
union(valueA, valueB)
Note: we need to change one of the roots to point to the tree for correctness.  If we did 
union(2, 11) for example and just set the 2 node to point directly to 11… what’s wrong 
about this picture?

CSE 373 SP 18 - KASEY CHAMPION 25

1

6

3 4

2

105 7

98

11

15

13 14

12

1716

18

badUnion1(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set valueA to point to rootB

}

1

6

3 4

2

10 57

98

11

15

13 14

12

1716

18

original union(valueA, valueB) {

rootA = findSet(valueA)

rootB = findSet(valueB)

set rootA to point to rootB

}



2. QuickUnionTrees implementation:
union(valueA, valueB)
What about if we did the other way around, what happens? It’s a little bit inefficient for 
future calls!  Try badUnion2(11, 9) – what does this do to future findSets?
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1
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105 7

98

11
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1716
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badUnion2(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to valueB

}

1

6

3 4

2

105 7

98

11

15

13 14

12

1716

18

original union(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to rootB

}



union(valueA, valueB) why modify the roots 
summary
Recap:

What should we change?  If we change the root of one to point to the other tree, then all the 
lower nodes in the tree will be updated to be in the same set.  It turns out it will be most 
efficient if we have the root point to the other tree’s root so we can connect all of the values at 
once and keep a low height (for findSet).

See the previous slides for the visual examples!
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Questions break
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QuickFind implementation
QuickUnionTrees
- union
- find



Roadmap

- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)! 
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees

3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees

5. ArrayQuickUnionBySizeCompressing
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Let’s try to construct a worst-case scenario J
makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

Take 1 min to figure out how: what is a worst case scenario for QuickUnionTrees’s findSet/union 
runtime?    What type of union()s do we need to call to produce this?
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union(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to rootB

}



Let’s try to construct a worst-case scenario J
makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

Take 1 min to figure out how: what is a worst case scenario for QuickUnionTrees’s findSet/union 
runtime?    What type of union()s do we need to call to produce this?
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union(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to rootB

}

union(e, d)
union(d, c)
union(c, b)
union(b, a)
findSet(e)



3. QuickUnionBySizeTrees
Problem: Trees can be unbalanced (and look linked-list-like) so our findSet runtime can be linear 
runtime in the worst case (if it’s linked-list like and we findSet a node towards the bottom of the 
linked list)

Solution: When union’ing, choose the parent to be the bigger tree
- have the root of each mini-set tree store that tree’s size
- When union’ing make the tree with larger size the root (If it’s a tie, pick one arbitrarily)
- increase the size of the new mini-set as appropriate
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3. QuickUnionBySizeTrees
Solution: When union’ing, choose the parent to be the bigger tree
- have the root of each mini-set tree store that tree’s size
- When union’ing make the tree with larger size the root (If it’s a tie, pick one arbitrarily)
- increase the size of the new mini-set as appropriate
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b

d

e

c

a

size = 1 size = 4

b

d

e

c

size = 5
height = 2

a
union(b,a)

b

d

e

c

a

size = 1 size = 4

b

d

e

c

size = 5
height = 3 

a

union(b,a)

possible without union by size with union by size



3. QuickUnionBySizeTrees worst case heights

Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has

a

# nodes height

1 0
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3. QuickUnionBySizeTrees worst case heights

Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has

a

b

# nodes height

1 0

2 1
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3. QuickUnionBySizeTrees worst case heights

Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has

a

b

c

d

# nodes height

1 0

2 1
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3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has

a
b c

d

# nodes height

1 0

2 1

4 2

CSE 373 WI 20 – HANNAH TANG



3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has

a
b c

d

e
f g

h

# nodes height

1 0

2 1

4 2
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3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes 
it has

a
b c

d
e
f g

h

# nodes height

1 0

2 1

4 2

8 3
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3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible 
for the number of nodes it has
Worst case tree height is Θ(log N)

a
b c

d

# nodes height

1 0

2 1

4 2

8 3

16 4

e
f g

h

i
j k

l
m
n o

p
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3. QuickUnionBySizeTrees bad situations are still 
bounded by the worst case heights
union(a, e) – which one becomes the parent when doing union-by-size?

a will point to e because a’s tree size is 4, but e’s tree size is 6.  The height increases by one even 
though it didn’t need to! If we had e point to a the height (the max distance) would have stayed 
the same.
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a
b c

d
f g

e

i jh

Why not use the height of the tree?
QuickUnionByHeightTrees runtime is asymptotically the same: Θ(log(N))
It’s easier to track weights than heights

main point of this slide: QuickUnionBySizeTrees produces a suboptimal structures, such as this one, in specific 
cases.  But for the most part it works out as you increase the number of nodes towards infinity.



Roadmap

- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)! 
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees

3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees

5. ArrayQuickUnionBySizeCompressing
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Modifying Data Structures To Preserve Invariants

Thus far, the modifications we’ve studied are designed to preserve 
invariants (aka “repair the data structure”)
- Tree rotations: preserve AVL height invariant so we guarantee log(n) height and log(n) 

runtime for worst case if we need to traverse to the bottom of the tree
- heap percolations: preserve heap sorted invariants so we can find Min/Max still in 

constant time

Notably, the modifications don’t improve runtime between identical 
method calls

Path compression is entirely different: we are modifying the tree 
structure to improve future performance
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4. QuickUnionBySizeCompressingTrees
Path Compression: Idea
This is the worst-case topology if we use WeightedQuickUnion

Idea: When we do findSet(p), move all visited nodes under the root
- Additional cost is insignificant (same order of growth)

a
b c

d
e
f g

h

i
j k

l
m
n o

p



4. QuickUnionBySizeCompressingTrees

Path Compression: Example

This is the worst-case topology if we use WeightedQuickUnion

Idea: When we do findSet(p), move all visited nodes under the root

- Doesn’t meaningfully change runtime for this invocation of findSet(p), but 

subsequent findSet(p)s (and subsequent findSet(o)s and findSet(m)s and …) will be 

faster

a

b c

d

e

f g

h

i

j k

l

m

n

o p



4. QuickUnionBySizeCompressingTrees

Path Compression: Details and Runtime

Run path compression on every findSet()!

- Including the findSet()s that are invoked as part of a union()

Understanding the performance of M>1 operations requires amortized 
analysis 

We won’t go into it here, but we’ve sort of seen this before

- It’s how we can actually say that appending to an array is “O(1) on average” if we 

double whenever we resize. You can google it more if you’re curious!

a

b c d e

f

g

h

i

j

k l m

n

o p



4. QuickUnionBySizeCompressingTrees
Subtleties of Path Compression
Path compression is an optimization written into the findSet code.

It does not appear directly in the union code.
- It’s not worth it; you’d have to rewrite the entire findSet code inside union to make it 

happen.

But union does make two findSet calls,
- So path compression will happen when you do a union call, just indirectly.



Questions break
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QuickunionBySizeTrees
QuickUnionBySizeCompressingTrees



4. QuickUnionBySizeCompressingTrees runtimes
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makeSet findSet Union
Worst-Case Θ(1) Θ(log () Θ(log ()
Best-Case Θ(1) Θ(1) Θ(1)
In-Practice Θ(1) )(log∗ () )(log∗ ()

Hey why are some of those )() not Θ()?
And…wait what’s that * above the log?



log∗ %
log∗(%) is the “iterated logarithm”

It answers the question “how many times do I have to take the log of this to get a number at 
most 1?”

E.g. log∗(16) = 3
log 16 = 4 log 4 = 2 log 2 = 1.
log∗ % grows ridiculously slowly. 

log∗ 1001 = 5.
1001 is the number of atoms in the observable universe. For all practical purposes these 
operations are constant time.
But they aren’t 3(1).
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log∗ % isn’t tight – that’s why those Θ() bounds became )() bounds. 

There is a tight bound. It’s a function that grows even slower than log∗ %
- Google “inverse Ackerman function“
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4. QuickUnionBySizeCompressingTrees methods 
recap
findSet(value):

1. jump to the node of value and traverse up to get to the root (representative)
2. after finding the representative do path compression (point every node from 

the path you visited to the root directly)
3. return the root (representative) of the set value is in
union(valueA, valueB):
1. call findSet(valueA) and findSet(valueB) to get access to the root 

(representative) of both
2. merge by setting one root to point to the other root (one root becomes the 

parent of the other root). Have the smaller sized tree’s root point to the bigger 
tree’s root

- if treeA’s rank == treeB’s size, It doesn’t matter which is the parent so choose arbitrarily
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Roadmap

- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)! 
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees

3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees

5. ArrayQuickUnionBySizeCompressing
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Instead of nodes, let’s use an array implementation!

Just like heaps, the trees and node objects will exist in our mind, but not in our programs.

It won’t be asymptotically faster, but check out all these benefits:

- this will be more memory compact

- get better caching benefits because we’ll be using arrays

- simplify the implementation 
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Array implementation motivation



What are we going to put in the array and what is 
it going to mean?
One of the most common things we do with Disjoint Sets is: go to a node 
and traverse upwards to the root (go to your parent, then go to your 
parent’s parent, then go to your parent’s parent’s parent, etc.).

A couple of ideas:
• represent each node as a position in our array

• at each node’s position, store the index of the parent node. This will let us 
jump to the parent node position in the array, and then we can look up our 
parent’s parent node position, etc.

• if we’re storing indices, this mean this is an array of ints
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This is a big idea!
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ea

b c d

0 1 2 3 4 5
- - 1 1 0 ?

index

value

at each node’s position, store the index of the 
parent node

a e d c b f

f
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ea

b c d

0 1 2 3 4 5
- - 1 1 0 2

index

value

at each node’s position, store the index of the 
parent node

a e d c b f

f
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uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent 
node

z y t x w

z y

0 1 2 3 4 5 6

? ? ? ? ? - -

v u
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uv

x w
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index

value

Exercise (1 min)
at each node’s position, store the index of the parent 
node

z y t x w

z y

0 1 2 3 4 5 6

3 ? ? ? ? - -

v u
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uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent 
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 ? ? ? - -

v u
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uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent 
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 ? ? - -

v u
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uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent 
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 ? - -

v u
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uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent 
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u
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uv

x w

t

index

value

How would findSet work for array implementation?

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

example : findSet(y)
- look up the index of y in our array (index 1)
- keep traversing till we get to the root / no more parent indices 

available
- path compression (set everything to point to the index of the 

root - in this case set everything on the path to 5)
- return the index of the root (in this case return 5). Instead of the 

actual node itself, we now have access to an index which is a 
simpler, but still unique ID 
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x w

t
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value

How would findSet work for array implementation? 
(Looking up the index for a given value)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

In findSet we have to figure out where to start traversing upwards from … 
so what index do we use and how do we keep track of the values indices?  
(In the above example) basically, how would we map each letter to a position?

Whenever you add new values into your disjoint set, 
keep track of what index you stored it at with a dictionary of value to index! 
This is similar to the thing as what we did in our ArrayHeap.

This is a big idea!
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How would findSet work for array implementation?
(What do we store at the root position so we know when to stop?)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

We just mentioned for findSet that we need to traverse starting from a node 

(like y) to its parent and then its parent’s parent until we get to a root.  What 

type of int could we put there as a sign that we’ve reached the root? 
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How would findSet work for array implementation?
(What do we store at the root position so we know when to stop?)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 -4 -3

v u

We just mentioned for findSet that we need to traverse starting from a node 

(like y) to its parent and then its parent’s parent until we get to a root.  What 

type of int could we put there as a sign that we’ve reached the root? 

A negative number! (since valid array indices are only 0 and positive numbers)

We’re going to actually be extra clever and store a strictly negative version of the size;

for our root nodes.  This is a big idea!
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How would findSet work for array implementation?
(after ironing out details)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 -4 -3

v u

example : findSet(y)

- look up the index of y in our array with index dictionary (index 1)

- keep traversing till we get to the root, signified by negative 

numbers

- path compression (set everything to point to the index of the 

root - in this case set everything on the path to 5)

- return the index of the root (in this case return 5). Instead of the 

actual node itself, we now have access to an index which is a 

simpler, but still unique ID 
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Exercise (1.5 min) – what happens for findSet(s)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 5 -7 2

s

- look up the index of value in our array with index dictionary keep 

traversing till we get to the root, signified by negative numbers

- path compression (set everything to point to the index of the 

root)

- return the index of the root (in this case return 5). Instead of the 

actual node itself, we now have access to an index which is a 

simpler, but still unique ID 

u

s
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u
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index

value

Exercise (1.5 min) – what happens for findSet(s)

z y t x w

z y

0 1 2 3 4 5 6

3 3 5 5 5 -7 5

s

- look up the index of value in our array with index dictionary keep 
traversing till we get to the root, signified by negative numbers

- path compression (set everything to point to the index of the 
root)

- return the index of the root (in this case return 5). Instead of the 
actual node itself, we now have access to an index which is a 
simpler, but still unique ID 

u

s

returns 5
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index

value

How would union work for array implementation?

0 1 2 3
/ / / /

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size
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value

How would union work for array implementation?

u

0 1 2 3
-1 / / /

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size



CSE 373 SP 19 - ZACH CHUN 73

uindex

value

How would union work for array implementation?

u

0 1 2 3
-1 -1 / /

v
v

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size
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How would union work for array implementation?

u

0 1 2 3
1 -1 / /

v

v

makeSet(u)

makeSet(v)

union(u, v)

union – almost the same as before

• update one of the roots to point to the 

other root (in this case we had node u’s 

position in the array store index 1, as v is 

now its parent)

note: formula to store in root nodes is negative size
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How would union work for array implementation?

u

0 1 2 3
1 -2 / /

v

v

makeSet(u)

makeSet(v)

union(u, v)

union – almost the same as before

• update one of the roots to point to the 

other root (in this case we had node u’s 

position in the array store index 1, as v is 

now its parent)

• Note: calculate the new size and then 

multiply it by -1 to turn it into the 

negative version.

note: formula to store in root nodes is negative size



Exercise maybe
a b c d e f g

already set up all the makeSet calls in the area
-union(a, b)
-union(c, d)
-union(e, f)
-union(a, g)
-union(c, e)
-union(a, c)
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0 1 2 3 4 5 6
-1 -1 -1 -1 -1 -1 -1



Summary of the big ideas
• each node is represented by a position in the int array

• each position stores either:
• the index of its parent, if not the root node
• -1 * size if the root node

• keep track of a dictionary of value to index to be able to jump to a node’s position in the array

• apply all the same high level ideas of how the Disjoint Set methods work (findSet and union) for 
trees, but to the array representation
• makeSet – store -1 (size of 1) in a new slot in the array
• findSet(value) – jump to the value’s position in your array, and traverse till you reach a negative number (signifies 

the root).  Do path compression and return the index of the root (the representative of this set).
• union(valueA, valueB) – call findSet(valueA) and findSet(valueB) to access the sizes and indices of valueA and 

valueB’s sets.  Compare the sizes like in the tree representation.  Make sure to update the size when you union the 
two of them together.
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