
Lecture 18: Disjoint Sets CSE 373: Data Structures and
Algorithms

CSE 373 19 SP – ZACHARY CHUN 1

Administrivia

Project 4 Due Wednesday May 20th

Exercise 4 due Friday May 15th

Grades Posted

- Exercise 1

- Project 0

- Project 1

- Project 2

- Project 3

- Midterm 1

Zach & Kasey Grade Office hours

- Today, Monday May 11 9:30-11:30am PDT

- Tuesday May 12 5:45-7:15pm PDT

CSE 373 SP 18 - KASEY CHAMPION 2

Roadmap

- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)!
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees

3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees

5. ArrayQuickUnionBySizeCompressing

CSE 373 SP 18 - KASEY CHAMPION 3

DisjointSets

- are a cool recap of topics / touches on a bunch of different things we’ve seen in this course
(trees, arrays, graphs, optimizing runtime, etc.)

- have a lot of details and is fairly complex – it doesn’t seem like a plus at first, but after you learn
this / while you’re learning this…you’ve come along way since lists and being able to learn new
complex data structures is a great skill to have built)

DisjointSets!! is Zach’s favorite ADT/data structure that we talk about in this class (if you ever
need to bribe Zach just start a conversation w zach about DisjointSets)

CSE 373 SP20 – ZACH CHUN 4

Disjoint Sets in mathematics

- “In mathematics, two sets are said to be disjoint sets if they have no
element in common.” - Wikipedia
- disjoint = not overlapping

CSE 373 SP 18 - KASEY CHAMPION 5

Kevin

Aileen
Keanu

Sherdil

Leona

These two sets are disjoint sets

Nishu

Santino Brian

These two sets are not disjoint sets

Santino

Set #1 Set #2 Set #3 Set #4

Disjoint Sets in computer science

In computer science, disjointsets can refer to this ADT/data structure that
keeps track of the multiple “mini” sets that are disjoint (confusing naming, I know)

CSE 373 SP 18 - KASEY CHAMPION 6

Kevin

Aileen
Keanu

Sherdil

Leona

Set #1 Set #2

This overall grey blob thing is the actual

disjoint sets, and it’s keeping track of any

number of mini-sets, which are all disjoint

(the mini sets have no overlapping

values).

Note: this might feel really different than ADTs we’ve

run into before. The ADTs we’ve seen before

(dictionaries, lists, sets, etc.) just store values directly.

But the Disjoint Set ADT is particularly interested in

letting you group your values into sets and

keep track of which particular set your values are in.

new ADT!

DisjointSets ADT methods

Just 3 methods (and makeSet is pretty simple!)

- findSet(value)
- union(valueA, valueB)
- makeSet(value)

CSE 373 SP 18 - KASEY CHAMPION 7

findSet(value)
findSet(value) returns some ID for which particular set the value is in. For Disjoint Sets, we often
call this the representative (as it’s a value that represents the whole set).

Examples:

findSet(Brian)

findSet(Sherdil)

findSet(Velocity)

findSet(Kevin) == findSet(Aileen)

CSE 373 SP 18 - KASEY CHAMPION 8

Kevin

Aileen

Keanu

Sherdil

Velocity

Set #1

Set #2

Brian

Set #3

Set #4

Keanu

Kasey

3

3

2

2

true

union(valueA, valueB)
union(valueA, valueB) merges the set that A is in with the set that B is in. (basically add the two
sets together into one)

Example: union(Blarry,Brian)

CSE 373 SP 18 - KASEY CHAMPION 9

Set #1
Set #3

Kevin

Vivian

Blarry

Sherdil

Velocity

Set #2

Brian

Set #4

Keanu

Kasey

Set #1

Kevin

Vivian

Blarry

Sherdil

Velocity

Set #2 Set #4

Kasey

Brian
Keanu

makeSet(value)
makeSet(value) makes a new mini set that just has the value parameter in it.

Examples:

makeSet(Elena)

makeSet(Anish)

CSE 373 SP 18 - KASEY CHAMPION 10

Kevin

Vivian

Blarry

Sherdil

Velocity

Set #1

Set #2

Brian

Set #3

Set #4

Keanu

Kasey

Elena

Set #5
Anish
Set #6

Disjoint Sets ADT Summary

CSE 373 SP 18 - KASEY CHAMPION 11

Disjoint-Sets ADT

makeSet(value) – creates a new set within the disjoint set where the
only member is the value. Picks id/representative for set

state

behavior

Set of Sets
- Mini sets are disjoint: Elements must be unique across mini sets
- No required order
- Each set has id/representative

findSet(value) – looks up the set containing the value, returns
id/representative/ of that set
union(x, y) – looks up set containing x and set containing y, combines two
sets into one. All of the values of one set are added to the other, and the
now empty set goes away.

Roadmap
- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)! The data
structures we talk about are going to be highly optimized for these interesting ADT methods we
just talked about!
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees
3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees
5. ArrayQuickUnionBySizeCompressing

CSE 373 SP 18 - KASEY CHAMPION 12

DisjointSets example: running for President and
tracking voters

13

Imagine that Dubs, Kasey, Zach,
and Ana Mari are all running for
president, and are currently
dominating one region of the
country in the polls and have
secured that these states will
vote for these candidates.

You could imagine that some
common questions about this
data is:
• what happens when Zach has

to resign and wants his
supporters to now join
Kasey’s campaign, and Ana
Mari does the same for dubs?
How do we keep track of the
followers all moving over to a
different group?

• You can imagine we track the
voters ßà nominee data
with disjoint sets

Kruskal’s Algorithm Implementation

KruskalMST(Graph G)
initialize each vertex to be an independent component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
update u and v to be in the same component
add (u,v) to the MST

}
}

KruskalMST(Graph G)
foreach (V : G.vertices) {

makeSet(v);
}
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(findSet(v) is not the same as findSet(u)){
union(u, v)
add (u, v) to the MST

}
}

Kruskal’s with disjoint sets on the side example

CSE 373 SP 18 - KASEY CHAMPION 15

KruskalMST(Graph G)
foreach (V : G.vertices) {

makeSet(v);
}
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(findSet(v) is not the same as
findSet(u)){
union(u, v)

}
}

Why are we doing this again? (continued)
Disjoint Sets help us manage groups of distinct values.

This is a common idea in graphs, where we want to keep track of different connected
components of a graph.

In Kruskal’s, if each connected-so-far-island of the graph is its own mini set in our disjoint set, we
can easily check that we don’t introduce cycles. If we’re considering a new edge, we just check
that the two vertices of that edge are in different mini sets by calling findSet.

CSE 373 SP 18 - KASEY CHAMPION 16

1 min break for questions / review your notes

CSE 373 SP 18 - KASEY CHAMPION 17

Roadmap

- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)!
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees

3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees

5. ArrayQuickUnionBySizeCompressing

CSE 373 SP 18 - KASEY CHAMPION 18

1. QuickFind implementation
Calculate the worst case Big-Theta runtimes for each of the methods (makeSet, findSet, union)
for this QuickFind implementation of a DisjointSets.

CSE 373 SP 18 - KASEY CHAMPION 19

map of value -> set ID/representative

Sherdil

Robbie

Sarah

1

2

1

method runtime
(assume using
HashMap)

makeSet(value)

findSet(value)

union(valueA,
valueB)

1. QuickFind implementation
Calculate the worst case Big-Theta runtimes for each of the methods (makeSet, findSet, union)
for this QuickFind implementation of a DisjointSets.

CSE 373 SP 18 - KASEY CHAMPION 20

map of value -> set ID/representative

Sherdil

Robbie

Sarah

1

2

1

method runtime (with
HashMaps)

makeSet(value) O(1)

findSet(value) O(1)

union(valueA,
valueB)

O(n)

2. QuickUnionTrees implementation
Each mini-set is now represented as a separate tree. If values are somehow connected / in the
same tree, they’re in the same mini-set!

(Note: unlike other trees we’ve seen before, the arrows go upwards! We’ll see this is useful so all
nodes can access the root)

CSE 373 SP 18 - KASEY CHAMPION 21

a

b

c

1

2

1

d

ac

e

b

d

e 2

1

2. QuickUnionTrees implementation:
findSet(valueA)
findSet has to be different though …
They all have access to the root node because all the links point up – we can use
the root node as our id / representative.

findSet(valueA) {

jump to valueA node

travel upwards till root

return ID for set (in this case the node itself)

}

findSet(5) == 1 node
findSet(9) == 9 node
they’re in the same set because they have the same representative!

CSE 373 SP 18 - KASEY CHAMPION 22

1

6

3 4

2

105 7

98

jumping to nodes:

23

d

ac

e

b

a b c d e

You can use a Map<T, Node> to jump to each node easily (so even though it’s not drawn on the future slides,
assume we can just jump to any node)

2. QuickUnionTrees implementation:
union(valueA, valueB)
union(valueA, valueB) -- the method with the problem runtime from before -- should look a lot
easier in terms of updating the data structure – all we have to do is change one pointer so
they’re connected!

What should we change? If we change the root of one to point to the other tree, then all the
lower nodes in the tree will be updated to be in the same set. It turns out it will be most efficient
if we have the root point to the other tree’s root so we can connect all of the values at once and
keep a low height (for findSet)

CSE 373 SP 18 - KASEY CHAMPION 24

1

6

3 4

2

105 7

98

11

15

13 14

12

1716

18

union(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to rootB

}

2. QuickUnionTrees implementation:
union(valueA, valueB)
Note: we need to change one of the roots to point to the tree for correctness. If we did
union(2, 11) for example and just set the 2 node to point directly to 11… what’s wrong
about this picture?

CSE 373 SP 18 - KASEY CHAMPION 25

1

6

3 4

2

105 7

98

11

15

13 14

12

1716

18

badUnion1(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set valueA to point to rootB

}

1

6

3 4

2

10 57

98

11

15

13 14

12

1716

18

original union(valueA, valueB) {

rootA = findSet(valueA)

rootB = findSet(valueB)

set rootA to point to rootB

}

2. QuickUnionTrees implementation:
union(valueA, valueB)
What about if we did the other way around, what happens? It’s a little bit inefficient for
future calls! Try badUnion2(11, 9) – what does this do to future findSets?

CSE 373 SP 18 - KASEY CHAMPION 26

1

6

3 4

2

105 7

98

11

15

13 14

12

1716

18

badUnion2(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to valueB

}

1

6

3 4

2

105 7

98

11

15

13 14

12

1716

18

original union(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to rootB

}

union(valueA, valueB) why modify the roots
summary
Recap:

What should we change? If we change the root of one to point to the other tree, then all the
lower nodes in the tree will be updated to be in the same set. It turns out it will be most
efficient if we have the root point to the other tree’s root so we can connect all of the values at
once and keep a low height (for findSet).

See the previous slides for the visual examples!

CSE 373 SP 18 - KASEY CHAMPION 27

Questions break

CSE 373 SP 18 - KASEY CHAMPION 28

QuickFind implementation
QuickUnionTrees
- union
- find

Roadmap

- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)!
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees

3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees

5. ArrayQuickUnionBySizeCompressing

CSE 373 SP 18 - KASEY CHAMPION 29

Let’s try to construct a worst-case scenario J
makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

Take 1 min to figure out how: what is a worst case scenario for QuickUnionTrees’s findSet/union
runtime? What type of union()s do we need to call to produce this?

CSE 373 SP 18 - KASEY CHAMPION 30

union(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to rootB

}

Let’s try to construct a worst-case scenario J
makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

Take 1 min to figure out how: what is a worst case scenario for QuickUnionTrees’s findSet/union
runtime? What type of union()s do we need to call to produce this?

CSE 373 SP 18 - KASEY CHAMPION 31

union(valueA, valueB) {
rootA = findSet(valueA)
rootB = findSet(valueB)
set rootA to point to rootB

}

union(e, d)
union(d, c)
union(c, b)
union(b, a)
findSet(e)

3. QuickUnionBySizeTrees
Problem: Trees can be unbalanced (and look linked-list-like) so our findSet runtime can be linear
runtime in the worst case (if it’s linked-list like and we findSet a node towards the bottom of the
linked list)

Solution: When union’ing, choose the parent to be the bigger tree
- have the root of each mini-set tree store that tree’s size
- When union’ing make the tree with larger size the root (If it’s a tie, pick one arbitrarily)
- increase the size of the new mini-set as appropriate

CSE 373 SP 18 - KASEY CHAMPION 32

3. QuickUnionBySizeTrees
Solution: When union’ing, choose the parent to be the bigger tree
- have the root of each mini-set tree store that tree’s size
- When union’ing make the tree with larger size the root (If it’s a tie, pick one arbitrarily)
- increase the size of the new mini-set as appropriate

CSE 373 SP 18 - KASEY CHAMPION 33

b

d

e

c

a

size = 1 size = 4

b

d

e

c

size = 5
height = 2

a
union(b,a)

b

d

e

c

a

size = 1 size = 4

b

d

e

c

size = 5
height = 3

a

union(b,a)

possible without union by size with union by size

3. QuickUnionBySizeTrees worst case heights

Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a

nodes height

1 0

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights

Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a

b

nodes height

1 0

2 1

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights

Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a

b

c

d

nodes height

1 0

2 1

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a
b c

d

nodes height

1 0

2 1

4 2

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a
b c

d

e
f g

h

nodes height

1 0

2 1

4 2

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible for the number of nodes
it has

a
b c

d
e
f g

h

nodes height

1 0

2 1

4 2

8 3

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees worst case heights
Consider the worst case where the tree height grows as fast as possible
for the number of nodes it has
Worst case tree height is Θ(log N)

a
b c

d

nodes height

1 0

2 1

4 2

8 3

16 4

e
f g

h

i
j k

l
m
n o

p

CSE 373 WI 20 – HANNAH TANG

3. QuickUnionBySizeTrees bad situations are still
bounded by the worst case heights
union(a, e) – which one becomes the parent when doing union-by-size?

a will point to e because a’s tree size is 4, but e’s tree size is 6. The height increases by one even
though it didn’t need to! If we had e point to a the height (the max distance) would have stayed
the same.

CSE 373 WI 20 – HANNAH TANG 41

a
b c

d
f g

e

i jh

Why not use the height of the tree?
QuickUnionByHeightTrees runtime is asymptotically the same: Θ(log(N))
It’s easier to track weights than heights

main point of this slide: QuickUnionBySizeTrees produces a suboptimal structures, such as this one, in specific
cases. But for the most part it works out as you increase the number of nodes towards infinity.

Roadmap

- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)!
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees

3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees

5. ArrayQuickUnionBySizeCompressing

CSE 373 SP 18 - KASEY CHAMPION 42

Modifying Data Structures To Preserve Invariants

Thus far, the modifications we’ve studied are designed to preserve
invariants (aka “repair the data structure”)
- Tree rotations: preserve AVL height invariant so we guarantee log(n) height and log(n)

runtime for worst case if we need to traverse to the bottom of the tree
- heap percolations: preserve heap sorted invariants so we can find Min/Max still in

constant time

Notably, the modifications don’t improve runtime between identical
method calls

Path compression is entirely different: we are modifying the tree
structure to improve future performance

43

4. QuickUnionBySizeCompressingTrees
Path Compression: Idea
This is the worst-case topology if we use WeightedQuickUnion

Idea: When we do findSet(p), move all visited nodes under the root
- Additional cost is insignificant (same order of growth)

a
b c

d
e
f g

h

i
j k

l
m
n o

p

4. QuickUnionBySizeCompressingTrees

Path Compression: Example

This is the worst-case topology if we use WeightedQuickUnion

Idea: When we do findSet(p), move all visited nodes under the root

- Doesn’t meaningfully change runtime for this invocation of findSet(p), but

subsequent findSet(p)s (and subsequent findSet(o)s and findSet(m)s and …) will be

faster

a

b c

d

e

f g

h

i

j k

l

m

n

o p

4. QuickUnionBySizeCompressingTrees

Path Compression: Details and Runtime

Run path compression on every findSet()!

- Including the findSet()s that are invoked as part of a union()

Understanding the performance of M>1 operations requires amortized
analysis

We won’t go into it here, but we’ve sort of seen this before

- It’s how we can actually say that appending to an array is “O(1) on average” if we

double whenever we resize. You can google it more if you’re curious!

a

b c d e

f

g

h

i

j

k l m

n

o p

4. QuickUnionBySizeCompressingTrees
Subtleties of Path Compression
Path compression is an optimization written into the findSet code.

It does not appear directly in the union code.
- It’s not worth it; you’d have to rewrite the entire findSet code inside union to make it

happen.

But union does make two findSet calls,
- So path compression will happen when you do a union call, just indirectly.

Questions break

CSE 373 SP 18 - KASEY CHAMPION 48

QuickunionBySizeTrees
QuickUnionBySizeCompressingTrees

4. QuickUnionBySizeCompressingTrees runtimes

CSE 373 SU 19 - ROBBIE WEBER 49

makeSet findSet Union
Worst-Case Θ(1) Θ(log () Θ(log ()
Best-Case Θ(1) Θ(1) Θ(1)
In-Practice Θ(1))(log∗ ())(log∗ ()

Hey why are some of those)() not Θ()?
And…wait what’s that * above the log?

log∗ %
log∗(%) is the “iterated logarithm”

It answers the question “how many times do I have to take the log of this to get a number at
most 1?”

E.g. log∗(16) = 3
log 16 = 4 log 4 = 2 log 2 = 1.
log∗ % grows ridiculously slowly.

log∗ 1001 = 5.
1001 is the number of atoms in the observable universe. For all practical purposes these
operations are constant time.
But they aren’t 3(1).

CSE 373 SU 19 - ROBBIE WEBER 50

log∗ % isn’t tight – that’s why those Θ() bounds became)() bounds.

There is a tight bound. It’s a function that grows even slower than log∗ %
- Google “inverse Ackerman function“

CSE 373 SU 19 - ROBBIE WEBER 51

4. QuickUnionBySizeCompressingTrees methods
recap
findSet(value):

1. jump to the node of value and traverse up to get to the root (representative)
2. after finding the representative do path compression (point every node from

the path you visited to the root directly)
3. return the root (representative) of the set value is in
union(valueA, valueB):
1. call findSet(valueA) and findSet(valueB) to get access to the root

(representative) of both
2. merge by setting one root to point to the other root (one root becomes the

parent of the other root). Have the smaller sized tree’s root point to the bigger
tree’s root

- if treeA’s rank == treeB’s size, It doesn’t matter which is the parent so choose arbitrarily

CSE 373 SP 19 - ZACH CHUN 52

Roadmap

- Disjoint Sets ADT

- Context, examples

- Different implementations (most of them are just optimizations of the previous)!
1. QuickFind implementation (HashMap based)
2. QuickUnionTrees

3. QuickUnionBySizeTrees
4. QuickUnionBySizeCompressingTrees

5. ArrayQuickUnionBySizeCompressing

CSE 373 SP 18 - KASEY CHAMPION 53

Instead of nodes, let’s use an array implementation!

Just like heaps, the trees and node objects will exist in our mind, but not in our programs.

It won’t be asymptotically faster, but check out all these benefits:

- this will be more memory compact

- get better caching benefits because we’ll be using arrays

- simplify the implementation

CSE 373 SP 19 - ZACH CHUN 54

Array implementation motivation

What are we going to put in the array and what is
it going to mean?
One of the most common things we do with Disjoint Sets is: go to a node
and traverse upwards to the root (go to your parent, then go to your
parent’s parent, then go to your parent’s parent’s parent, etc.).

A couple of ideas:
• represent each node as a position in our array

• at each node’s position, store the index of the parent node. This will let us
jump to the parent node position in the array, and then we can look up our
parent’s parent node position, etc.

• if we’re storing indices, this mean this is an array of ints

CSE 373 SP 19 - ZACH CHUN 55

This is a big idea!

CSE 373 SP 19 - ZACH CHUN 56

ea

b c d

0 1 2 3 4 5
- - 1 1 0 ?

index

value

at each node’s position, store the index of the
parent node

a e d c b f

f

CSE 373 SP 19 - ZACH CHUN 57

ea

b c d

0 1 2 3 4 5
- - 1 1 0 2

index

value

at each node’s position, store the index of the
parent node

a e d c b f

f

CSE 373 SP 19 - ZACH CHUN 58

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

? ? ? ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 59

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

3 ? ? ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 60

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 ? ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 61

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 ? ? - -

v u

CSE 373 SP 19 - ZACH CHUN 62

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 ? - -

v u

CSE 373 SP 19 - ZACH CHUN 63

uv

x w

t

index

value

Exercise (1 min)
at each node’s position, store the index of the parent
node

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

CSE 373 SP 19 - ZACH CHUN 64

uv

x w

t

index

value

How would findSet work for array implementation?

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

example : findSet(y)
- look up the index of y in our array (index 1)
- keep traversing till we get to the root / no more parent indices

available
- path compression (set everything to point to the index of the

root - in this case set everything on the path to 5)
- return the index of the root (in this case return 5). Instead of the

actual node itself, we now have access to an index which is a
simpler, but still unique ID

CSE 373 SP 19 - ZACH CHUN 65

uv

x w

t

index

value

How would findSet work for array implementation?
(Looking up the index for a given value)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

In findSet we have to figure out where to start traversing upwards from …
so what index do we use and how do we keep track of the values indices?
(In the above example) basically, how would we map each letter to a position?

Whenever you add new values into your disjoint set,
keep track of what index you stored it at with a dictionary of value to index!
This is similar to the thing as what we did in our ArrayHeap.

This is a big idea!

CSE 373 SP 19 - ZACH CHUN 66

uv

x w

t

index

value

How would findSet work for array implementation?
(What do we store at the root position so we know when to stop?)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 - -

v u

We just mentioned for findSet that we need to traverse starting from a node

(like y) to its parent and then its parent’s parent until we get to a root. What

type of int could we put there as a sign that we’ve reached the root?

CSE 373 SP 19 - ZACH CHUN 67

uv

x w

t

index

value

How would findSet work for array implementation?
(What do we store at the root position so we know when to stop?)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 -4 -3

v u

We just mentioned for findSet that we need to traverse starting from a node

(like y) to its parent and then its parent’s parent until we get to a root. What

type of int could we put there as a sign that we’ve reached the root?

A negative number! (since valid array indices are only 0 and positive numbers)

We’re going to actually be extra clever and store a strictly negative version of the size;

for our root nodes. This is a big idea!

CSE 373 SP 19 - ZACH CHUN 68

uv

x w

t

index

value

How would findSet work for array implementation?
(after ironing out details)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 6 -4 -3

v u

example : findSet(y)

- look up the index of y in our array with index dictionary (index 1)

- keep traversing till we get to the root, signified by negative

numbers

- path compression (set everything to point to the index of the

root - in this case set everything on the path to 5)

- return the index of the root (in this case return 5). Instead of the

actual node itself, we now have access to an index which is a

simpler, but still unique ID

CSE 373 SP 19 - ZACH CHUN 69

u

x w

t

index

value

Exercise (1.5 min) – what happens for findSet(s)

z y t x w

z y

0 1 2 3 4 5 6

3 3 4 5 5 -7 2

s

- look up the index of value in our array with index dictionary keep

traversing till we get to the root, signified by negative numbers

- path compression (set everything to point to the index of the

root)

- return the index of the root (in this case return 5). Instead of the

actual node itself, we now have access to an index which is a

simpler, but still unique ID

u

s

CSE 373 SP 19 - ZACH CHUN 70

u

x w t

index

value

Exercise (1.5 min) – what happens for findSet(s)

z y t x w

z y

0 1 2 3 4 5 6

3 3 5 5 5 -7 5

s

- look up the index of value in our array with index dictionary keep
traversing till we get to the root, signified by negative numbers

- path compression (set everything to point to the index of the
root)

- return the index of the root (in this case return 5). Instead of the
actual node itself, we now have access to an index which is a
simpler, but still unique ID

u

s

returns 5

CSE 373 SP 19 - ZACH CHUN 71

index

value

How would union work for array implementation?

0 1 2 3
/ / / /

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size

CSE 373 SP 19 - ZACH CHUN 72

uindex

value

How would union work for array implementation?

u

0 1 2 3
-1 / / /

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size

CSE 373 SP 19 - ZACH CHUN 73

uindex

value

How would union work for array implementation?

u

0 1 2 3
-1 -1 / /

v
v

makeSet(u)
makeSet(v)
union(u, v)

note: formula to store in root nodes is negative size

CSE 373 SP 19 - ZACH CHUN 74

u

index

value

How would union work for array implementation?

u

0 1 2 3
1 -1 / /

v

v

makeSet(u)

makeSet(v)

union(u, v)

union – almost the same as before

• update one of the roots to point to the

other root (in this case we had node u’s

position in the array store index 1, as v is

now its parent)

note: formula to store in root nodes is negative size

CSE 373 SP 19 - ZACH CHUN 75

u

index

value

How would union work for array implementation?

u

0 1 2 3
1 -2 / /

v

v

makeSet(u)

makeSet(v)

union(u, v)

union – almost the same as before

• update one of the roots to point to the

other root (in this case we had node u’s

position in the array store index 1, as v is

now its parent)

• Note: calculate the new size and then

multiply it by -1 to turn it into the

negative version.

note: formula to store in root nodes is negative size

Exercise maybe
a b c d e f g

already set up all the makeSet calls in the area
-union(a, b)
-union(c, d)
-union(e, f)
-union(a, g)
-union(c, e)
-union(a, c)

CSE 373 SP 18 - KASEY CHAMPION 76

0 1 2 3 4 5 6
-1 -1 -1 -1 -1 -1 -1

Summary of the big ideas
• each node is represented by a position in the int array

• each position stores either:
• the index of its parent, if not the root node
• -1 * size if the root node

• keep track of a dictionary of value to index to be able to jump to a node’s position in the array

• apply all the same high level ideas of how the Disjoint Set methods work (findSet and union) for
trees, but to the array representation
• makeSet – store -1 (size of 1) in a new slot in the array
• findSet(value) – jump to the value’s position in your array, and traverse till you reach a negative number (signifies

the root). Do path compression and return the index of the root (the representative of this set).
• union(valueA, valueB) – call findSet(valueA) and findSet(valueB) to access the sizes and indices of valueA and

valueB’s sets. Compare the sizes like in the tree representation. Make sure to update the size when you union the
two of them together.

CSE 373 SP 19 - ZACH CHUN 77

