
Lecture 17: Minimum
Spanning Trees

CSE 373: Data Structures and
Algorithms

1

Administrivia
Exercise 3 due tonight
- Don’t forget you have 3 extra late days J
- note on N vs R and P: please actually use the R and P variables if the runtime is actually based on the number of possible

reaction types or number of possible persons. You use N (the normal variable) bc there are two factors here – if you write
N, we can’t tell which one you mean so it’s not correct.

Project 4 due Wednesday May 20th

- Two-week assignment, two weeks of work
- project 3 part 1 out, highly recommend you try to finish in 1 week. Part 2 topics covered today / Monday/Wednesday next

week

Come hang out with us this Saturday!
- How to ace the technical interview with Zach and Kasey
- TA career panel discussion
- Lots of resources & real talk to share

We’re really sorry but we’re a bit behind on grading…
- Next week we’ll release midterm grades
- Put everything into canvas
- Special Zach & Kasey office hours to talk grades

2CSE 373 20 SP – CHAMPION & CHUN

quarantine mood

https://www.reddit.com/r/udub/comments/gffvse/ive_crashed_and_my_motivation_is_dead/

https://www.reddit.com/r/udub/comments/gffvse/ive_crashed_and_my_motivation_is_dead/

Minimum Spanning Trees

3CSE 373 20 SP – CHAMPION & CHUN

Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose where
to build wires to connect all these cities to the plant.

She knows how much it would cost to lay electric wires between any pair of
cities, and wants the cheapest way to make sure electricity from the plant
to every city.

A

B

D

E

C

3
6

2
1

4

5

8

9
10

7

CSE 373 SU 19 - ROBBIE WEBER 4

MST Problem
What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. The edges “span” the graph.
- The graph on just those edges is connected.
- The minimum weight set of edges that meet those conditions.

Claim: The set of edges we pick never has a cycle. Why?

MST is the exact number of edges to connect all vertices
- taking away 1 edge breaks connectiveness
- adding 1 edge makes a cycle
- contains exactly V – 1 edges
Our result is a tree!

5

Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you can
get from any vertex of G to any other on only those
edges.

Minimum Spanning Tree Problem

CSE 373 20 SP – CHAMPION & CHUN

Interaction Pane Question:
Is there always a unique
MST for a given graph,
yes or no?

A

B

D

E

C

3
6

2
1

4

Shortest Path vs Minimum Spanning

6CSE 373 20 SP – CHAMPION & CHUN

Given: a directed graph G and vertices s,t
Find: the shortest path from s to t.

Shortest Path Problem

Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you can get
from any vertex of G to any other on only those edges.

Minimum Spanning Tree Problem

A

B

D

E

C

3
6

2
1

4

A

B

D

E

C

3
6

2
1

4

5

8

9
10

7

Shortest Path Tree
Specific start node (if you have a different start node,
that changes the whole SPT, so there are multiple SPTs
for graphs frequently)
Keeps track of total path length.

Minimum Spanning Tree
No specific start node, since the goal is just to minimize the
edge weights sum. Often only one possible MST that has the
minimum sum.
All nodes connected
Keeps track of cheapest edges that maintain connectivity

SPT from Factory MST of the graph

Finding an MST
Here are two ideas for finding an MST:

Think vertex-by-vertex
- Maintain a tree over a set of vertices
- Have each vertex remember the cheapest edge that could connect it to that set.
- At every step, connect the vertex that can be connected the cheapest.

Think edge-by-edge
- Sort edges by weight. In increasing order:
- add it if it connects new things to each other (don’t add it if it would create a cycle)

Both ideas work!!

Interaction Pane Question:
Which of these do you think are more likely to
work?
• Thumbs up for vertex by vertex
• Thumbs down for edge by edge
• Clap for both

CSE 373 SU 19 - ROBBIE WEBER 7

Prim
’s

Krus
kal’s

Prim’s Algorithm

CSE 373 SP 18 - KASEY CHAMPION 8

Dijkstra’s
1. Start at source
2. Update distance from current to

unprocessed neighbors
3. Add closest unprocessed neighbor

to solution
4. Repeat until all vertices have been

marked processed

Dijkstra(Graph G, Vertex source)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Algorithm idea:
1. Start at any node
2. Investigate edges that

connect unprocessed
vertices

3. Add the lightest edge
that grows connectivity
to solution

4. Repeat until all vertices
have been marked
processed

Prims(Graph G, Vertex source)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

1
2
3
4
5
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
5
6
7
8
9
10
11
12
13
14
15

In the Chat
Which lines of Dijkstra can we
change to create our new
algorithm?

Try it Out

CSE 373 SP 18 - KASEY CHAMPION 9

PrimMST(Graph G)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v)) {

v.dist = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist && v unprocessed){
v.dist = weight(u,v)
v.bestEdge = (u,v)

}
}
mark u as processed

}

A

B

D F

E

C

50

6

3

4

7

2

8

9
5

7

Vertex Distance Best Edge Processed
A
B
C
D
E
F
G

G

2

Try it Out

CSE 373 SP 18 - KASEY CHAMPION 10

A

B

D F

E

C

50

6

3

4

7

2

8

9
5

7

Vertex Distance Best Edge Processed
A
B
C
D
E
F
G

G

2

-

2
4

7

(A, B)
(A, C)
(A, D)

X ✓
✓

3

50

6

(B, F) ✓
(B, E)

(B, G)

PrimMST(Graph G)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v)) {

v.dist = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist && v unprocessed){
v.dist = weight(u,v)
v.bestEdge = (u,v)

}
}
mark u as processed

}

✓
---2
---5

--------(C, D)
--------(C, E)

✓
✓

✓

A different Approach
Prim’s Algorithm started from a single vertex and reached more and more other
vertices.
Prim’s thinks vertex by vertex (add the closest vertex to the currently reachable
set).
Prim's Algorithm Visualization

What if you think edge by edge instead?
Start from the lightest edge; add it if it connects new things to each other (don’t
add it if it would create a cycle)
This is Kruskal’s Algorithm.
Kruskal's Algorithm Visualization

CSE 373 20 SP – CHAMPION & CHUN

https://www.youtube.com/watch?v=6uq0cQZOyoY
https://www.youtube.com/watch?v=ggLyKfBTABo

Kruskal’s Algorithm

KruskalMST(Graph G)
initialize each vertex to be its own component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

CSE 373 SU 19 - ROBBIE WEBER 12

Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G)
initialize each vertex to be its own component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Edge Include? Reason
(A,C)
(C,E)
(A,B)
(A,D)
(C,D)

Edge (cont.) Inc? Reason
(B,F)
(D,E)
(D,F)
(E,F)
(C,F)

CSE 373 SU 19 - ROBBIE WEBER 13

Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G)
initialize each vertex to be its own component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

CSE 373 SU 19 - ROBBIE WEBER 14

Edge Include? Reason
(A,C) Yes
(C,E) Yes
(A,B) Yes
(A,D) Yes
(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason
(B,F) Yes
(D,E) No Cycle A,C,E,D,A
(D,F) No Cycle A,D,F,B,A
(E,F) No Cycle A,C,E,F,D,A
(C,F) No Cycle C,A,B,F,C

Kruskal’s Implementation

Some lines of code there were a little sketchy.

> initialize each vertex to be its own component
> Update u and v to be in the same component

Can we use one of our data structures?

CSE 373 SU 19 - ROBBIE WEBER 16

KruskalMST(Graph G)
initialize each vertex to be its own component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Disjoint Sets

CSE 373 SU 19 - ROBBIE WEBER 17

A new ADT

We need a new ADT!

CSE 373 SU 19 - ROBBIE WEBER 18

Disjoint-Sets (aka Union-Find) ADT

makeSet(value) – creates a new set where the only member is the

value. Picks value as the representative

state

behavior

Family of Sets

- sets are disjoint: No element appears in more than one set

- No required order (neither within sets, nor between sets)

- Each set has a representative (use one of its members as a name)

findSet(value) – looks up the representative of the set containing

value, returns the representative of that set

union(x, y) – looks up set containing x and set containing y, combines

two sets into one. All of the values of one set are added to the other,

and the now empty set goes away. Chooses a representative for

combined set.

Disjoint sets implementation
There’s only one common implementation of the Disjoint sets/Union-find ADT.

We’ll call it “forest of up-trees” or just “up-trees”

It’s very common to conflate the ADT with the data structure
- Because the standard implementation is basically the “only one”
- Don’t conflate them!

We’re going to slowly design/optimize the implementation over the next lecture-plus.

It’ll take us a while, but it’ll be a great review of some key ideas we’ve learned this quarter.

CSE 373 SU 19 - ROBBIE WEBER 19

Implementing Disjoint-Sets with Dictionaries

CSE 373 SU 19 - ROBBIE WEBER 20

Approach 1: dictionary of
value -> set ID/representative

Approach 2: dictionary of ID/representative of set
-> all the values in that set

Matt

Zach

Velocity

1

2

1

1

2 Zach

Velocity, Matt

Let’s start with a not-great implementation to see why we really need a new data
structure.

approach 1 approach 2

makeSet(value) Θ(1) Θ(1)

findSet(value) Θ(1) Θ(%)

union(valueA,
valueB)

Θ(%) Θ(%)

A better idea
Here’s a better idea:

We need to be able to combine things easily.
- Pointer based data structures are better at that.

But given a value, we need to be able to find the right set.
- Sounds like we need a dictionary somewhere

And we need to be able to find a certain element (“the representative”) within a set quickly.
- Trees are good at that (better than linked lists at least)

CSE 373 SU 19 - ROBBIE WEBER 21

The Real Implementation

CSE 373 SU 19 - ROBBIE WEBER 22

UpTreeDisjointSet<E>

makeSet(x)-create a new
tree of size 1 and add to
our forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with
x and moves up tree to find
root

union(x, y)-append tree
with y as a child of tree
with x

Disjoint-Set ADT

makeSet(x) – creates a new set within the

disjoint set where the only member is x.

Picks representative for set

Count of Sets

state

behavior

Set of Sets

- Disjoint: Elements must be unique

across sets

- No required order

- Each set has representative

findSet(x) – looks up the set containing

element x, returns representative of that

set

union(x, y) – looks up set containing x and

set containing y, combines two sets into

one. Picks new representative for resulting

set

Dictionary<NodeValues,
NodeLocations> nodeInventory

TreeSet<E>

TreeSet(x)

state

behavior
SetNode overallRoot

add(x)

remove(x, y)
getRep()-returns data of
overallRoot

SetNode<E>

SetNode(x)

state

behavior

E data

addChild(x)

removeChild(x, y)

Collection<SetNode>
children

Implement makeSet(x)

Worst case runtime? Just like with graphs, we’re going to assume we have control over the
dictionary keys and just say we’ll always have Θ(1) dictionary behavior.

%(1)
CSE 373 SU 19 - ROBBIE WEBER 23

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

0 1 2 3 4 5

forest

0 1 2 3 4 5

makeSet(0)

makeSet(1)

makeSet(2)

makeSet(3)

makeSet(4)

makeSet(5)

Implement union(x, y)

CSE 373 SU 19 - ROBBIE WEBER 24

union(3, 5) 0 1 2 3 4 5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

Implement union(x, y)

CSE 373 SU 19 - ROBBIE WEBER 25

union(3, 5)

union(2, 1)

0 1 2 3 4

5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

Implement union(x, y)

CSE 373 SU 19 - ROBBIE WEBER 26

union(3, 5)

union(2, 1)

union(2, 5)

0 2 3 4

5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

1

Implement union(x, y)

CSE 373 SU 19 - ROBBIE WEBER 27

union(3, 5)

union(2, 1)

union(2, 5)

0 2

3

4

5

forest

0 1 2 3 4 5

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

1

Implement findSet(x)

CSE 373 SU 19 - ROBBIE WEBER 28

findSet(0)

findSet(3)

findSet(5)

0 2

3

4

5

forest

0 1 2 3 4 5

1

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

Worst case runtime of findSet?

!(#)
Worst case runtime of union?

!(#) – union has to call find!

Appendix: MST Properties, Another
MST Application

CSE 373 SP 18 - KASEY CHAMPION 29

Why do all of these MST Algorithms Work?

MSTs satisfy two very useful properties:

Cycle Property: The heaviest edge along a cycle is NEVER part of an MST.

Cut Property: Split the vertices of the graph any way you want into two sets A and B. The lightest
edge with one endpoint in A and the other in B is ALWAYS part of an MST.

Whenever you add an edge to a tree you create exactly one cycle, you can then remove any edge
from that cycle and get another tree out.

This observation, combined with the cycle and cut properties form the basis of all of the greedy
algorithms for MSTs.

CSE 373 SP 18 - KASEY CHAMPION 30

One More MST application
Let’s say you’re building a new building.

There are very important building donors coming to visit TOMORROW,
- and the hallways are not finished.

You have n rooms you need to show them, connected by the unfinished hallways.

Thanks to your generous donors you have n-1 construction crews, so you can assign one to each
of that many hallways.
- Sadly the hallways are narrow and you can’t have multiple crews working on the same hallway.

Can you finish enough hallways in time to give them a tour?

CSE 373 SP 18 - KASEY CHAMPION 31

Given: an undirected, weighted graph G
Find: A spanning tree such that the weight of the
maximum edge is minimized.

Minimum Bottleneck Spanning Tree Problem

MSTs and MBSTs

CSE 373 SP 18 - KASEY CHAMPION 32

Given: an undirected, weighted graph G
Find: A spanning tree such that the weight of the
maximum edge is minimized.

Minimum Bottleneck Spanning Tree Problem
Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you
can get from any vertex of G to any other on only
those edges.

Minimum Spanning Tree Problem

A

D

B

C3

4

1

2

2
A

D

B

C3

4

1

2

2

Graph on the right is a minimum bottleneck spanning tree, but not a minimum
spanning tree.

Finding MBSTs
Algorithm Idea: want to use smallest edges. Just start with the smallest edge and add it if it
connects previously unrelated things (and don’t if it makes a cycle).

Hey wait…that’s Kruskal’s Algorithm!

Every MST is an MBST (because Kruskal’s can find any MST when looking for MBSTs)

but not vice versa (see the example on the last slide).

If you need an MBST, any MST algorithm will work.

There are also some specially designed MBST algorithms that are faster (see Wikipedia)

Takeaway: When you’re modeling a problem, be careful to really understand what you’re looking
for. There may be a better algorithm out there.

CSE 373 SP 18 - KASEY CHAMPION 33

