
Lecture 16: Graph
Modeling

CSE 373: Data Structures and
Algorithms

1

Announcements
project 3 due (feedback quiz canvas for extra credit)

exercise 3 due friday
- note on N vs R and P: please actually use the R and P variables if the runtime is actually based on the number of

possible reaction types or number of possible persons. You use N (the normal variable) bc there are two factors here
– if you write N, we can’t tell which one you mean so it’s not correct.

project 4 out later today/maybe tomorrow morning, we’re pushing for tonight though

lots of good lecture questions from Monday – check out Piazza if you want to see those!

Post-CSE 373 Pathways session Saturday 6pm PDT

- technical interviews / applying for software jobs / how CSE 373 fits in

- Q&A with TAs

- recorded in case you can’t make it

CSE 373 SP 18 - KASEY CHAMPION 2

Review from last time
v BFS can be used to find shortest paths (path length = # of edges) for unweighted graphs,
guaranteed to work because it traverses level by level
v BFS can be used by keeping track of a predecessor edge (the edge that led to each vertex when we found it for the

first time) and if you drew out all of those at the end, you’d see those edges represent the Shortest Path Tree (the
short path from the source vertex to all the other vertices)

v BFS shortest paths doesn’t work on weighted graphs (paths lengths = sum of the edge weights along the path)
because BFS’s traversal order doesn’t take into account weights. We can use the edge weights (total distance) to
figure out the exact order to visit things in so our algorithm is correct
vDijkstra’s algorithm = this differently ordered traversal / algorithm to find the shortest path on weighted graph

v Dijkstra’s pseudocode / in English (it’s pretty similar to BFS shortest paths)

CSE 373 SP 18 - KASEY CHAMPION 3

Review from last time
v BFS shortest paths doesn’t work on weighted graphs (paths lengths = sum of the edge weights along the path)

because BFS’s traversal order doesn’t take into account weights. We can use the edge weights (total distance) to
figure out the exact order to visit things in so our algorithm is correct.

CSE 373 SP 18 - KASEY CHAMPION 4

a
c

b
4

6

?

Idea: when choosing the next node to process next, choose the next smallest distanced node that you know. This should give
you the flexibility to be comprehensive about your search / traversal.

In the above example, imagine that after we finish processing A (record that there are possible distances of 4 to b and 6 to
c) we want to figure out which node we should process next. Without analyzing all the paths coming out from B and C, we
know that since the distance to b is smaller, there’s a possibility b could have a better shortest path that ends up leading to c
(or other nodes) that we’d want to incorporate and propagate that information.

? ?
?

?

Another example of Dijkstra’s ordering

CSE 373 SP 18 - KASEY CHAMPION 5

a
1

b
1

c
1

d
1
e

1
f

1
g

1
h

1
i

1
j

500

BFS processing in level order would make sure the things at level 1 away (b and j) both get processed / completed before
nodes at level 2 +.

Dijkstra’s processing in distance order would visit B and see that the distance to C is only 2, which is still smaller than 500.
Hmmm there might still be a better path to J (which we propose has distance 500) if we keep going this way. Repeat for C
à D, distance of 3 still less than 500, so it’s possible and we should look at D first.

To summarize: Dijkstra’s algorithm will visit things in next-closest-distance order to make sure we’re comprehensive (just like
how BFS goes level by level, we go distance by distance)

Review from last time
v BFS can be used to find shortest paths (path length = # of edges) for unweighted graphs,
guaranteed to work because it traverses level by level
v BFS can be used by keeping track of a predecessor edge (the edge that led to each vertex when we found it for the

first time) and if you drew out all of those at the end, you’d see those edges represent the Shortest Path Tree (the
short path from the source vertex to all the other vertices)

v BFS shortest paths doesn’t work on weighted graphs (paths lengths = sum of the edge weights along the path)
because BFS’s traversal order doesn’t take into account weights. We can use the edge weights (total distance) to
figure out the exact order to visit things in so our algorithm is correct
vDijkstra’s algorithm = this differently ordered traversal / algorithm to find the shortest path on weighted graph

v Dijkstra’s pseudocode / in English (it’s pretty similar to BFS shortest paths)

CSE 373 SP 18 - KASEY CHAMPION 6

Dijkstra’s algorithm (pseudocode + English)

7

- propose all the estimated distances to all
nodes is infinity, except for the start which is 0

- start at your start vertex to be the current
vertex

- for the current vertex, look at all of the
outgoing neighbors/their edges. If the
distance to the current node + that edge
weight is smaller than the proposed estimated
distance for that neighbor, relax the neighbor
node (update the proposed estimated distance
and predecessor edge).

- update the current vertex to be the vertex
w the next smallest estimated distance that
hasn’t been processed

Dijkstra(Graph G, Vertex source)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u.dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}
2 differences from BFS pseudocode:
- “let u be the closest unprocessed vertex” (not going necessarily by level order anymore)
- checking if the current distance + weight is better than what we’ve seen so far (BFS assumes its correct the first time it

discovers a node, but Dijkstra’s has the potential to update to a better distance later, so we check if that’s the case)

Dijkstra’s Algorithm

s tv
w

u
1

20

1

1 1

x
1

Vertex Distance Predecessor Processed

s

w

x

u

v

t

Dijkstra(Graph G, Vertex source)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u’s dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}

CSE 373 19 SU - ROBBIE WEBER

Dijkstra’s Algorithm
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u’s dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}
s tv
w

u
1

20

1

1 1

x
1

Vertex Distance Predecessor Processed

s 0 -- Yes

w 1 (s,w) Yes

x 2 (w, x) Yes

u 20 3 (s,u) (x, u) Yes

v 4 (u, v) Yes

t 5 (v, t) Yes

CSE 373 19 SU - ROBBIE WEBER

Dijkstra’s Pseuodocode

CSE 373 19 SU - ROBBIE WEBER 10

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){

v.dist = u.dist+weight(u,v)

v.predecessor = (u,v)

}

}

mark u as processed

}

Huh?

Min Priority Queue ADT

removeMin() – returns and removes
element with the smallest priority

state

behavior

Set of comparable values -
Ordered by “priority”

peek() – find the element with the
smallest priority

insert(value) – add new element to
collection

Dijkstra’s Pseuodocode

CSE 373 19 SU - ROBBIE WEBER 11

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

initialize MPQ as a Min Priority Queue, add source

while(there are unprocessed vertices){

u = MPQ.removeMin();

foreach(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){

v.dist = u.dist+weight(u,v)

v.predecessor = (u,v)

}

}

mark u as processed

}

Min Priority Queue ADT

removeMin() – returns and removes
element with the smallest priority

state

behavior

Set of comparable values -
Ordered by “priority”

peek() – find the element with the
smallest priority

insert(value) – add new element to
collection

How?

What are the high-level differences between using BFS and
Dijkstra’s algorithm?

findShortestPathsTree(G weightedGraph, V start) {
Map<V, E> edgeToV = empty map
Map<V, Double> distToV = empty map

PQ<V> orderedPerimeter = empty pq

initialize all distTo's to ∞ so the best paths
can be updated if any path is found to that vertex

orderedPerimeter.add(start, 0);
distTo.put(start, 0.0);

while (!orderedPerimeter.isEmpty()) {
V from = orderedPerimeter.removeMin();
for (E e : weightedGraph.outgoingEdgesFrom(from)) {

V to = e.to();
double oldDist = distTo.get(to);
double newDist = distTo.get(from) + e.weight();
if (newDist < oldDist) {

edgeToV.put(to, e);
distToV.put(to, newDist);
if (pq contain to) {

orderedPerimeter.changePriority(to, newDist);
} else {

orderedPerimeter.add(to, newDist);
}

}
}

}
}

12

findShortestPathsTree(G unweightedGraph, V start) {
Map<V, E> edgeToV = empty map
Map<V, Double> distToV = empty map

Queue<V> perimeter = empty queue
Set<V> discovered = empty set

perimeter.add(start);
distTo.put(start, 0.0);

while (!perimeter.isEmpty()) {
V from = perimeter.remove();
for (E e : unweightedGraph.outgoingEdgesFrom(from)) {

V to = e.to();
if (!discovered.contains(to)) {

edgeTo.put(to, e);
distTo.put(to, distTo(from) + 1);
perimeter.add(to);
discovered.add(to)

}
}

}
}

BFS to find shortest paths tree Dijkstra’s to find shortest paths tree (use this for p4)

What are the high-level differences between using BFS and
Dijkstra’s algorithm?

CSE 373 SP 18 - KASEY CHAMPION 13

BFS to find shortest paths Dijkstra’s to find shortest paths

only on unweighted graphs (breaks on weighted
graphs)

BFS iterates in level order, ordering in-between levels
is not important by default.

So BFS uses a Queue as it’s internal data structure to
keep track of the ordering.

works on weighted graphs

Dijkstra’s iterates in priority order, prioritizing
processing nodes with the next smallest estimated
distance (so that we get that guarantee that we’re
looking at correct information).

So Dijkstra’s uses a PriorityQueue as it’s internal data
structure to keep track of the ordering.

Overall:
- both produce an SPT (the set of edges used to find the shortest path to every vertex)
- both can be used on undirected or directed graphs
- they’re really similar and Dijkstra’s just has a few more steps than BFS, so if you’re confused, start with
understanding BFS shortest paths and then after you feel comfortable with that, tackle practicing /
understanding Dijktra’s.

Questions?

CSE 373 SP 18 - KASEY CHAMPION 14

BFS/DFS runtime All of the data structure operations (remove,
add, contains) are all constant runtime and
so are getting values out of the graph
(neighbors, distance, etc.).

So the main runtime is going to come from
just how much we’re looping / how many
things we’re looking at.

Overall intuition: we look at every vertex
once (when we take it out of the
queue/stack) and we look at every edge that
exists in the graph twice (there will be two
instances when our current vertex is one of
the vertices attached to this edge in
question), so the runtime is just Theta(n +
m).

CSE 373 SP 18 - KASEY CHAMPION 15

perimeter.add(start);

discovered.add(start);
start’s distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();

if (!discovered.contains(to)) {
to’s distance = from.distance + 1;
to’s predecessorEdge = edge;

perimeter.add(to);

discovered.add(to)

}
}

}

BFS/DFS runtime Runtime details -- a different strategy than before:
calculating how many times each line runs in the
whole method / not across one particular loop:

Since we know that we could loop through all
vertices, we know it’s going to take at least n time
(where n is the number of nodes).
perimeter.remove() will run n times.
And we know that since all the edges will be looped

through, we know that edge.to() and
discovered.contains() will run m times.

How to think about it by multiplying loops: the inner
for each loop actually runs in m/n time, where m/n
represents the average number of edges per node. If
you multiply this happening actually n times, then
you get that the code inside the inner for loop runs m
times. (And the code inside the while loop and
outside of the for loop like the Queue.remove runs n
times).

CSE 373 SP 18 - KASEY CHAMPION 16

perimeter.add(start);

discovered.add(start);
start’s distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();

if (!discovered.contains(to)) {
to’s distance = from.distance + 1;
to’s predecessorEdge = edge;

perimeter.add(to);

discovered.add(to)

}
}

}

Dijkstra’s Runtime

CSE 373 19 SU - ROBBIE WEBER 17

Dijkstra(Graph G, Vertex source)

for (Vertex v : G.getVertices()) { v.dist = INFINITY; }

G.getVertex(source).dist = 0;

initialize MPQ as a Min Priority Queue, add source

while(MPQ is not empty){

u = MPQ.removeMin();

for (Edge e : u.getEdges(u)){

oldDist = v.dist; newDist = u.dist+weight(u,v)

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u

if(oldDist == INFINITY) { MPQ.add(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

+logV

+logV

This actually doesn’t run 𝑚 times for
every iteration of the outer loop. It
actually will run 𝑚 times in total; if
every vertex is only removed from
the priority queue (processed) once,
then we examine each edge once.
Each line inside this foreach gets
multiplied by a single m instead of
m * n.
Tight O Bound = O(n log n + m
log n)

Just like when we analyzed BFS, don’t
just work inside out; try to figure out
how many times each line will be
executed.

Dijkstra’s Wrap-up
The details of the implementation depend on what data structures you have available.

Your implementation in the programming project will be different in a few spots.

Our running time is Θ(𝐸 log𝑉 + 𝑉 log𝑉) i.e. Θ(𝑚 log 𝑛 + 𝑛 log 𝑛) .

CSE 373 SU 19 - ROBBIE WEBER 18

CSE 373 SU 19 - ROBBIE WEBER 19

Dijkstra’s Wrap-up
The details of the implementation depend on what data structures you have available.

Your implementation in the programming project will be different in a few spots.

Our running time is Θ(𝐸 log𝑉 + 𝑉 log𝑉) i.e. Θ(𝑚 log 𝑛 + 𝑛 log 𝑛) .
If you go to Wikipedia right now, they say it’s 𝑂(𝐸 + 𝑉 log𝑉)
They’re using a Fibonacci heap instead of a binary heap.

Θ(𝐸 log𝑉 + 𝑉 log𝑉) is the right running time for this class.

Shortest path summary:
- BFS works great (and fast -- Θ(𝑚 + 𝑛) time) if graph is unweighted.
- Dijkstra’s works for weighted graphs with no negative edges, but a bit slower Θ(𝑚 log 𝑛 + 𝑛 log 𝑛)
- Reductions!

CSE 373 SU 19 - ROBBIE WEBER 20

Questions?

21CSE 373 20 SP – CHAMPION & CHUN

Review: Making Graphs

If your problem has data and relationships, you might want to represent it
as a graph
How do you choose a representation?

Usually:
Think about what your “fundamental” objects are
- Those become your vertices.

Then think about how they’re related
- Those become your edges.

CSE 373 SU 19 – ROBBIE WEBBER

Review: Some examples
For each of the following think about what you should choose for vertices and
edges.
The internet
- Vertices: webpages. Edges from a to b if a has a hyperlink to b.

Family tree
- Vertices: people. Edges: from parent to child, maybe for marriages too?

Input data for the “6 Degrees of Kevin Bacon” game
- Vertices: actors. Edges: if two people appeared in the same movie
- Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
- Vertices: courses. Edge: from a to b if a is a prereq for b.

CSE 373 SU 19 – ROBBIE WEBBER

Graph Modeling Activity

24CSE 373 20 SP – CHAMPION & CHUN

Note Passing - Part I
Imagine you are an American High School student. You have a
very important note to pass to your crush, but the two of you do not
share a class so you need to rely on a chain of friends to pass the
note along for you. A note can only be passed from one student to
another when they share a class, meaning when two students have
the same teacher during the same class period.

Unfortunately, the school administration is not as romantic as you,
and passing notes is against the rules. If a teacher sees a note, they
will take it and destroy it. Figure out if there is a sequence of
handoffs to enable you to get your note to your crush.

In your breakouts you’ll discuss possible graph designs to help you
solve this problem given the following student schedules.

Period 1 Period 2 Period 3 Period 4

You Smith Patel Lee Brown

Anika Smith Lee Martinez Brown

Bao Brown Patel Martinez Smith

Carla Martinez Jones Brown Smith

Dan Lee Lee Brown Patel

Crush Martinez Brown Smith Patel

Break Outs!

Instructions
- Instructor will trigger breakout rooms

- Detailed instructions on how breakouts work

- Accept the invite that pops up
- Turn on your mic and camera (if possible) J
- Work with your partners to answer the questions on Part I of the worksheet

- how would you represent this scenario as a graph?
- how would you implement this graph?
- what graph algorithm would you use to find a route to your crush?
- TAs will be coming in and out. Fill out this form to request a TA’s assistance:

https://forms.gle/b9NiC1s11FKBcpm89

- Fill out the poll everywhere activity with your solution and upvote others
- Instructor will end the breakouts in ~5 minutes.

25CSE 373 20 SP – CHAMPION & CHUN

https://docs.google.com/presentation/d/15HiAPu6yYz2WWbkonRejBtUcq_FFhmoWFyT2l25G06o/edit
https://docs.google.com/document/d/1QW92zmgj1EN80sYbHHu761YoAgIcsa07_2GEpO9fEY8/edit%3Fusp=sharing
https://forms.gle/b9NiC1s11FKBcpm89

Possible Design
Vertices
- Students
- Fields: Name, have note

Edges
- Classes shared by students
- Not directed
- Could be left without weights
- Fields: vertex 1, vertex 2, teacher, period

26CSE 373 20 SP – CHAMPION & CHUN

You

Anika

Carla

Bao

Dan
Crush

Smith, 1

Martinez, 1

Patel, 2

Lee, 2

M
ar

tin
ez

, 3

Br
ow

n,
 3

Smith
, 4

Patel, 4

You

A

B

C

D

Crush

A B

B DYou

A CYou

D CrushB

C CrushA

C D

Adjacency List

Algorithm

BFS or DFS to see if You and your Crush are connected

More Design

27CSE 373 20 SP – CHAMPION & CHUN

Note Passing - Part II
Now that you know there exists a way to get your note to your crush, we can work on picking the best hand off
path possible.

Thought Experiments:

1. What if you want to optimize for time to get your crush the note as early in the day as possible?
- How can we use our knowledge of which period students share to calculate for time knowing that period 1

is earliest in the day and period 4 is later in the day?
- How can we account for the possibility that it might take more than a single school day to deliver the note?

2. What if you want to optimize for rick avoidance to make sure your note only gets passed in classes least likely
for it to get intercepted?

- Some teachers are better at intercepting notes than others. The more notes a teacher has intercepted, the more
likely it is they will take yours and it will never get to your crush. If we knew how many notes each teacher
has intercepted how might we incorporate that into our graph to find the least risky route?

Optimize for Time

28CSE 373 20 SP – CHAMPION & CHUN

You

Anika

Carla

Bao

Dan
Crush

1

12

2
3

34

4

1. Add the period number to each edge as its weight
2. Run Dijkstra’s from You to Crush

Vertex Distance Predecessor Process Order

You 0 -- 0

Anika 1 You 1

Bao 2 You 5

Carla 6 Dan 3

Dan 3 Anika 2

Crush 7 Carla 4*

*The path found wraps around to a new school day because the path
moves from a later period to an earlier one
- We can change our algorithm to check for wrap arounds and try other
routes

“Distance” will represent the sum of which periods the note is passed in, because smaller period values are
earlier in the day the smaller the sum the earlier the note gets there except in the case of a “wrap around”

Optimize for Risk

29CSE 373 20 SP – CHAMPION & CHUN

You

Anika

Carla

Bao

Dan
Crush

1

32

4
3

51

4

1. Add the number of
letters intercepted by
the teacher to each edge
as its weight

2. Run Dijkstra’s from You
to Crush

Vertex Distance Predecessor Process Order

You 0 -- 0

Anika 1 You 1

Bao 4 Anika 2

Carla 5 Bao 3

Dan 10 Carla 5

Crush 8 Carla 4

Teacher Notes
Intercepted

Smith 1

Martinez 3

Lee 4

Brown 5

Patel 2

“Distance” will represent the sum of notes intercepted across the
teachers in your passing route. The smaller the sum of notes the
“safer” the path.

