
Lecture 15: Shortest Paths CSE 373: Data Structures and
Algorithms

CSE 373 19 SU - ROBBIE WEBER 1

Roadmap
- Graphs examples, shortest paths for unweighted graphs
- using BFS to find the shortest paths
- shortest paths for weighted graphs
- Idea 1: using BFS directly
- Idea 2: modifying the graph
- Idea 3: modifying the order of visiting nodes
- examples
- runtime if time?

CSE 373 SP 18 - KASEY CHAMPION 2

Shortest Paths
How does Google Maps figure out this is the fastest way to get from Kane Hall to the CS building?

CSE 373 19 SU - ROBBIE WEBER 3

Representing Maps as Graphs
How do we represent a map as a graph? What are the vertices and edges?

4CSE 373 19 SU - ROBBIE WEBER

Representing Maps as Graphs

5

K

R

D

P

HS

CSE 373 19 SU - ROBBIE WEBER

Shortest Path problem (unweighted graph)
§ For the graph on the right, find the shortest path (the
path that has the fewest number of edges) between the a
node and the g node. Describe the path by describing
each edge (i.e. (a, b) edge).

§ What’s the answer? How did we get that as humans?
How do we want to do it comprehensively defined in an
algorithm?

b

c

d

e f

g

h

a
s

t

Shortest Path problem (unweighted graph)
What’s the shortest path from a to a?

- Well….we’re already there.

What’s the shortest path from a to b or h?
- Just go on the edge from 0

From a to d or c or e?
- Can’t get there directly from a, if we want a length 2 path,
have to go through b or h.

From a to f?
- Can’t get there directly from a, if we want a length 3 path, have to go through e.

big idea for solving shortest paths: If we have all the nodes at distance k away from the source, then we
can check all the outgoing edges from those nodes and get to all the nodes at distance k + 1 (if we
haven’t seen these nodes at k +1 distance before then we’re just now seeing the shortest path to them)

As long as we have all the current vertices at a given distance, we can find the next distance (by
traveling to all the neighbors) and the next distance and the next distance… until we finally find our
target vertex and can stop.

7CSE 373 19 SU - ROBBIE WEBER

b

c

d

e f

g

h

a
s

t

Shortest Path problem (unweighted graph) key
idea
Do we already know an algorithm that can help us get all the nodes at a given level and help us
keep going through the graph level by level?

Yes! BFS! Let’s modify it to fit our needs.

8CSE 373 19 SU - ROBBIE WEBER

perimeter.add(start);
discovered.add(start);
start’s distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

to’s distance = from.distance + 1;
to’s predecessorEdge = edge;
perimeter.add(to);
discovered.add(to)

}
}

}

Changes from traversal BFS:
- Every node now will have an associated distance

(for convenience)
- Every node V now will have an associated

predecessor edge that is the edge that connects
V on the shortest path from S to V. The edges
that each of the nodes store are the final result.

Shortest Path problem
Use BFS to find shortest paths in this graph.

CSE 373 19 SU - ROBBIE WEBER

perimeter.add(start);
discovered.add(start);
start’s distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

to’s distance = from.distance + 1;
to’s predecessorEdge = edge;
perimeter.add(to);
discovered.add(to)

}
}

}

b

c

d

e f

g

h

a
s

t

In English:

- starting from the start vertex as the current node:
- look at all your undiscovered neighbors and record

them as distance + 1, and keep track of the edge that
led to them. Add them to a queue to be processed

- repeat until we traverse all that can be reached by the
start node

Shortest Path problem

10CSE 373 19 SU - ROBBIE WEBER

Use BFS to find shortest paths in this graph.

b

c

d

e f

g

h

a
s

tperimeter.add(start);
discovered.add(start);
start’s distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

to’s distance = from.distance + 1;
to’s predecessorEdge = edge;
perimeter.add(to);
discovered.add(to)

}
}

}

If trying to recall the best path from a to f:
f’s predecessor edge is (f, e)
e’s predecessor edge is (e, h)
h’s predecessor edge is (a, h)
a was the start vertex

Note: this BFS modification stores these edges individually, but
there’s extra work to figure out a specific path from a start / target

Map<V, E> bfsFindShortestPathsEdges(G graph, V start) {
// stores the edge `E` that connects `V` in the shortest path from `start` to V
Map<V, E> edgeToV = empty map

// stores the shortest path length from `start` to `V`
Map<V, Double> distToV = empty map

Queue<V> perimeter = empty queue
Set<V> discovered = empty set

// setting up the shortest distance from start to start is just 0 with
// no edge leading to it
edgeTo.put(start, null);
distTo.put(start, 0.0);

perimeter.add(start);

while (!perimeter.isEmpty()) {
V from = perimeter.remove();
for (E e : graph.outgoingEdgesFrom(from)) {

V to = e.to();
if (!discovered.contains(to)) {

edgeTo.put(to, e);
distTo.put(to, distTo(from) + 1);
perimeter.add(to);
discovered.add(to)

}
}

}
return edgeToV;

}

b

c

d

e f

g

h

a
s

t

What about the target vertex?

12

Given: a directed graph G and vertices s,t
Find: the shortest path from s to t.

Shortest Path Problem

BFS didn’t mention a target vertex…
It actually finds the distance from s to every other vertex since we needed to traverse the graph
anyways. The resulting edges from our BFS shortest paths algorithm are called the shortest
path tree (SPT: the set of all edges that are used in the shortest paths from a particular start
vertex to every other vertex – see red edges above)

Both BFS modified to find the shortest paths and Dijkstra’s algorithm need to start computing a
shortest path tree in order to find the target.

But if you only care about one target, you can sometimes stop early (in bfsShortestPaths,
when the target gets removed from the queue) CSE 373 19 SU - ROBBIE WEBER

b

c

d

e f

g

h

a
s

t

BFS Shortest Path Summary
- BFS works to find the shortest path summary because BFS traverses the graph level by level
outwards from the start -- because we’re making sure we look at all the neighbors of all the
vertices on the current level, it means that the first time that we see some vertex u means that
we’ve found the shortest path to u. There’s no way there’s a shorter path because of how
comprehensively we’re searching the graph. (If there were a shorter path, it should have been
found at an earlier level!)

slightly more concrete example:
- If you start at level 0, there’s only the start node, and you’ve definitely found the shortest path to that by default (0 edges)
- If you look at the neighbors of the start node who are all at 1 edge/distance away, you’ve definitely found the shortest path to all of those since

they’re just 1 edge length away and it’s not like they could be 0 away.
- If you look at all the neighbors of the nodes who were at 1 edge/distance away, you’re looking at all the nodes who are 2 distance away (when you

ignore previously discovered nodes). Since you made sure we were comprehensive about finding all the nodes at 0 and 1 distance away, the nodes
we’re seeing for the first time here must be have 2 as the shortest possible distance.

- BFS shortest paths keeps track of the actual paths by just keeping track of for every vertex V, the
predecessorEdge that was used to attach V in the SPT. Which means to trace back a full path you
have to loop through all of the predecessorEdges to go back to the root of the SPT/start vertex.

CSE 373 SP 18 - KASEY CHAMPION 13

BFS Shortest Path Summary
another of way rephrasing this is through invariants:

- because we add vertices to the queue in level order and have the guarantee that the
information in the

when a vertex is added to the queue with its predecessorEdge and distance recorded, we’ve
guaranteed to have found the shortest path /distance to that vertex

CSE 373 SP 18 - KASEY CHAMPION 14

Questions?

CSE 373 SP 18 - KASEY CHAMPION 15

- Shortest path problem in general
- BFS to solve and traverse in level order
- solving it like this produces a SPT
- to recover an actual path have to follow the

predecessor edges on the SPT

Roadmap
- Graphs examples, shortest paths for unweighted graphs

- using BFS to find the shortest paths

- shortest paths for weighted graphs
- Idea 1: using BFS directly
- Idea 2: modifying the graph
- Idea 3: modifying the order of visiting nodes
- examples
- runtime if time?

CSE 373 SP 18 - KASEY CHAMPION 16

Weighted Graphs
Each edge should represent the “time” or “distance” it takes to travel from one vertex to another.

Sometimes those aren’t uniform, so we put a weight on each edge to record that number.

The length of a path in a weighted graph is the sum of the weights along that path (instead of
just counting the # of edges).

We’ll assume all of the weights are positive
- For Google Maps that definitely makes sense.
- Sometimes negative weights make sense. Today’s algorithm doesn’t work for those graphs
- There are other algorithms that do work.

17CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 1
BFS works if the graph is unweighted.
Maybe it just works for weighted graphs too?

s tv
w

u
1

20

1

1 1

x
1

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 1
BFS works if the graph is unweighted. Maybe it just works for weighted graphs too?

19

s tv

w

u

What went wrong? When we found a shorter path from s to u, we needed to update the
distance to v (and anything whose shortest path went through u) but BFS doesn’t do that.

1

20

1

1 10

∞

∞ ∞ ∞

x

∞11

20 21

2

223

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 2

You already do this all the time.

Any time you use a library, you’re reducing your problem to the one the
library solves.
Can we reduce finding shortest paths on weighted graphs to finding them
on unweighted graphs?

Using an algorithm for Problem B to solve Problem A.
Reduction (informally)

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 2
Given a weighted graph, how do we turn it into an unweighted one without
messing up the path lengths?

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: A Reduction

s

u

v
t2

2

2

1

1

s

u

v

t

s
u

v
t 2

s
u

v
t2

2

2

1

1
2

Transform Input

Unweighted Shortest Paths

Transform Output

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: A Reduction

What is the running time of our
reduction on this graph?

BFS relies on traversing the vertices and edges, so if
there are suddenly 5000x more of each the runtime will
get a lot worse.

Does our reduction even work
on this graph?

Ummm….

tl;dr: If your graph’s weights are all small positive integers, this reduction
might work great.
Otherwise we probably need a new idea.

s
u

v
t200

5000

5000

150

1
s

u

v
t!0.5

5000

3

1

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 3

So we can’t just do a reduction.

Instead figure out why BFS worked in the unweighted case,
try to make the same thing happen in the weighted case.

How did we avoid this problem:

s
tv

w

u

1

20

1

1 10 3

x

11

21

2

22

CSE 373 19 SU - ROBBIE WEBER

Weighted Graphs: Take 3

s
tv

w

u

1

6

1

1 1

x

1

CSE 373 19 SU - ROBBIE WEBER

s
tv

w

u

x

In the unweighted case, we have this
guarantee that the way we traverse the graph
level-by-level, we’re always finding the
shortest distance to each vertex along the
way.

When we tried to do the same BFS on the weighted graph
earlier, we weren’t taking the edge weights into account and
we ended up processing u and updating its out neighbors
before we knew u’s true shortest path / distance. So it seems
we did things out of order and should have processed u after
processing x (and w).

Idea: what if we copy the level-by-level idea but instead traverse distance-by-distance?

Weighted Graphs: Take 3 -Visiting nodes in

distance-order (should seem similar to BFS still)

- One way to think about our new algorithm: imagine that every edge weight represents the distance it takes to traverse that
edge, and that we’ll simulate the order of traversal by trying to explore all of our outgoing edges at the same time but with
respect to the edge weight distances.

- Say we start at search at s and want to traverse to our neighbors 1 distance/time away: since we’re thinking of this process
traversing in all possible directions, how far do we get? Well S à W is only distance 1, so we actually get to W. The S àU
edge that we know about is distance 6, so even though we started traversing it, we only get 1/6 of the way through that
edge.

- Say another unit of time passes in our constant traversal and we traverse 1 more distance in all the directions, and now the
upper path has traversed WàX (total distance from S is 2), and meanwhile S à U is only 2/6 done.

- Say another unit of time passes and we get to U through XàU (total dist from S is 3), and SàU is 3/6 done.

This order of processing nodes guarantees that when we finally reach a node U (with the constant rate of travel idea) we’ve
guaranteed we found the shortest path to it (just like BFS if there were a shorter path, we would’ve gotten here sooner since
we’re exploring all the paths simultaneously).

CSE 373 SP 18 - KASEY CHAMPION 26

s

tv

w

u

1

6

1

1 1

x

1

Weighted Graphs: Take 3
Goal: Process the vertices in order of distance from s (instead of level order)
Idea:

Have a set of vertices that are “known”
- (we know at least one path from s to them).

Record an estimated distance
- (the best way we know to get to each vertex).

If we process only the vertex closest in estimated distance, we won’t ever find a shorter path to a
processed vertex. This takes a jump from the previous way of distance-by-distance, but is the
same high-level idea.
For example, there are some cases in the distance-by-distance approach where you could say
we’d be 3/7 of the way through one edge and 3/9 way through another edge. Instead of
manually stepping through +1 each time, this is like cutting to the answer and just realizing that
the 7 edge would finish before the 9 (we should process the edge with weight 7 first) if they both
started at the same time.
- This statement is the key to proving correctness.

CSE 373 19 SU - ROBBIE WEBER

Questions?

CSE 373 SP 18 - KASEY CHAMPION 28

- weighted graph shortest paths
- using BFS directly
- modifying the graph
- traversing in distance-order

Dijkstra’s algorithm (pseudocode + English)

CSE 373 SP 18 - KASEY CHAMPION 29

- propose all the estimated distances to all
nodes is infinity, except for the start which is 0

- start at your start vertex

- for the current vertex, look at all of the
outgoing neighbors/their edges. If the
distance to the current node + that edge
weight is smaller than the proposed estimated
distance for that neighbor, relax the neighbor
node (update the proposed estimated distance
and predecessor edge).

- update the current vertex to be the vertex
w the next smallest estimated distance that
hasn’t been processed

Dijkstra(Graph G, Vertex source)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u.dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}

Dijkstra’s Algorithm

s tv
w

u
1

20

1

1 1

x1

Vertex Distance Predecessor Processed
s
w
x
u
v
t

Dijkstra(Graph G, Vertex source)
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u.dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}

CSE 373 19 SU - ROBBIE WEBER

Dijkstra’s Algorithm
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u.dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}
s tv

w
u

1

20

1

1 1

x
1

Vertex Distance Predecessor Processed
s 0 -- Yes
w 1 (s,w) Yes
x 2 (w, x) Yes
u 20 3 (s,u) (x, u) Yes
v 4 (u, v) Yes
t 5 (v, t) Yes

CSE 373 19 SU - ROBBIE WEBER

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 32

Vertex Distance Predecessor Processed

S

C

B

T

E

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u.dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 33

Vertex Distance Predecessor Processed

S 0 No

C ∞ No

B ∞ No

T ∞ No

E ∞ No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u.dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 34

Vertex Distance Predecessor Processed

S 0 -- No

C 6 S No

B 1 S No

T ∞ No

E ∞ No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u.dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 35

Vertex Distance Predecessor Processed

S 0 -- Yes

C 6 S No

B 1 S No

T ∞ No

E ∞ No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u.dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 36

Vertex Distance Predecessor Processed

S 0 -- Yes

C 6 S No

B 1 S Yes

T 6 B No

E 2 B No

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u.dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 37

Vertex Distance Predecessor Processed

S 0 -- Yes

C 6 S No

B 1 S Yes

T 6 3 E No

E 2 B Yes

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u.dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}

Dijkstra’s Run Through

CSE 373 19 SU - ROBBIE WEBER 38

Vertex Distance Predecessor Processed

S 0 -- Yes

C 6 S No

B 1 S Yes

T 6 3 E Yes

E 2 B Yes

Pseudocode
Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark all vertices unprocessed
mark source as distance 0
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
for each(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){
v’s dist = u.dist+weight(u,v)
v’s predecessor = (u,v)

}
}
mark u as processed

}

Dijkstra’s Pseuodocode

CSE 373 19 SU - ROBBIE WEBER 39

Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark source as distance 0

mark all vertices unprocessed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){

v.dist = u.dist+weight(u,v)

v.predecessor = (u,v)

}

}

mark u as processed

}

Huh?

Min Priority Queue ADT

removeMin() – returns and removes
element with the smallest priority

state

behavior

Set of comparable values -
Ordered by “priority”

peek() – find the element with the
smallest priority

insert(value) – add new element to
collection

Dijkstra’s Pseuodocode

CSE 373 19 SU - ROBBIE WEBER 40

Dijkstra(Graph G, Vertex source)

initialize distances to ∞
mark source as distance 0

mark all vertices unprocessed

initialize MPQ as a Min Priority Queue, add source

while(there are unprocessed vertices){

u = MPQ.removeMin();

foreach(edge (u,v) leaving u){

if(u’s dist+weight(u,v) < v’s dist){

v.dist = u.dist+weight(u,v)

v.predecessor = (u,v)

}

}

mark u as processed

}

Min Priority Queue ADT

removeMin() – returns and removes
element with the smallest priority

state

behavior

Set of comparable values -
Ordered by “priority”

peek() – find the element with the
smallest priority

insert(value) – add new element to
collection

How?

What are the high-level differences between using
BFS and Dijkstra’s algorithm?

findShortestPathsTree(G weightedGraph, V start) {
Map<V, E> edgeToV = empty map
Map<V, Double> distToV = empty map

PQ<V> orderedPerimeter = empty pq

initialize all distTo's to ∞ so the best paths
can be updated if any path is found to that vertex

orderedPerimeter.add(start, 0);
distTo.put(start, 0.0);

while (!orderedPerimeter.isEmpty()) {
V from = orderedPerimeter.removeMin();
for (E e : weightedGraph.outgoingEdgesFrom(from)) {

V to = e.to();
double oldDist = distTo.get(to);
double newDist = distTo.get(from) + e.weight();
if (newDist < oldDist) {

edgeToV.put(to, e);
distToV.put(to, newDist);
if (pq contain to) {

orderedPerimeter.changePriority(to, newDist);
} else {

orderedPerimeter.add(to, newDist);
}

}
}

}
}

CSE 373 SP 18 - KASEY CHAMPION 41

findShortestPathsTree(G unweightedGraph, V start) {
Map<V, E> edgeToV = empty map
Map<V, Double> distToV = empty map

Queue<V> perimeter = empty queue
Set<V> discovered = empty set

perimeter.add(start);
distTo.put(start, 0.0);

while (!perimeter.isEmpty()) {
V from = perimeter.remove();
for (E e : unweightedGraph.outgoingEdgesFrom(from)) {

V to = e.to();
if (!discovered.contains(to)) {

edgeTo.put(to, e);
distTo.put(to, distTo(from) + 1);
perimeter.add(to);
discovered.add(to)

}
}

}
}

What are the high-level differences between using
BFS and Dijkstra’s algorithm?

CSE 373 SP 18 - KASEY CHAMPION 42

BFS iterates in level order, ordering in-between levels is not important by default. So BFS uses a
Queue as it’s internal data structure to keep track of the ordering.

Dijkstra’s iterates in priority order, prioritizing processing nodes with the next smallest estimated
distance (so that we get that guarantee that we’re looking at correct information). So Dijkstra’s
uses a PriorityQueue as it’s internal data structure to keep track of the ordering.

Overall they’re really similar and Dijkstra’s just has a few more steps than BFS, so if you’re
confused, start with understanding BFS shortest paths and then after you feel comfortable with
that, tackle practicing / understanding Dijktra’s.

Questions?

CSE 373 SP 18 - KASEY CHAMPION 43

BFS/DFS runtime
All of the data structure operations (remove, add, contains) are all
constant runtime and so are getting values out of the graph
(neighbors, distance, etc.).

So the main runtime is going to come from just how much we’re
looping / how many things we’re looking at. Since we know that
we could loop through all vertices, we know it’s going to take at
least n time (where n is the number of nodes)

And for each of those vertices, we loop through all of it’s edges.
Caution: m represents the number of edges in the whole graph, so
we can’t just use n * m for our runtime, because each vertex only
looks at its own neighbors, not the entire edge list for the whole
graph.

It turns out the way to model this standard traversal is n + m
runtime (in the worst case if the whole graph is actually explored).
This is because we look at every vertex once and we actually look at
every unique edge twice (from the perspectives of the 2 different
vertices attached to the edge).

Another way to think about this is that the inner for each loop
actually runs in m/n time, where m/n represents the average
number of edges per node. If you multiply this happening actually
n times, then you get that the code inside the inner for loop runs m
times. (And the code inside the while loop and outside of the for
loop like the Queue.remove runs n times).

CSE 373 SP 18 - KASEY CHAMPION 44

perimeter.add(start);
discovered.add(start);
start’s distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

to’s distance = from.distance + 1;
to’s predecessorEdge = edge;
perimeter.add(to);
discovered.add(to)

}
}

}

Dijkstra’s Runtime

CSE 373 19 SU - ROBBIE WEBER 45

Dijkstra(Graph G, Vertex source)

for (Vertex v : G.getVertices()) { v.dist = INFINITY; }

G.getVertex(source).dist = 0;

initialize MPQ as a Min Priority Queue, add source

while(MPQ is not empty){

u = MPQ.removeMin();

for (Edge e : u.getEdges(u)){

oldDist = v.dist; newDist = u.dist+weight(u,v)

if(newDist < oldDist){

v.dist = newDist

v.predecessor = u

if(oldDist == INFINITY) { MPQ.insert(v) }

else { MPQ.updatePriority(v, newDist) }

}

}

}

+logV

+logV

This actually doesn’t run ! times
for every iteration of the outer
loop. It actually will run ! times in
total; if every vertex is only
removed from the priority queue
(processed) once, then we
examine each edge once. Each line
inside this foreach gets multiplied
by a single E instead of E * V.
Tight O Bound = O(n log n + m log
n)

Just like when we analyzed BFS,
don’t just work inside out; try to
figure out how many times each line
will be executed.

Dijkstra’s Wrap-up
The details of the implementation depend on what data structures you have available.

Your implementation in the programming project will be different in a few spots.

Our running time is Θ(# log' + ' log') i.e. Θ(* log + + + log +) .

CSE 373 SU 19 - ROBBIE WEBER 46

CSE 373 SU 19 - ROBBIE WEBER 47

Dijkstra’s Wrap-up
The details of the implementation depend on what data structures you have available.
Your implementation in the programming project will be different in a few spots.

Our running time is Θ(# log' + ' log') i.e. Θ(* log + + + log +) .
If you go to Wikipedia right now, they say it’s -(# + ' log')
They’re using a Fibonacci heap instead of a binary heap.
Θ(# log' + ' log') is the right running time for this class.

Shortest path summary:
- BFS works great (and fast -- Θ(* + +) time) if graph is unweighted.
- Dijkstra’s works for weighted graphs with no negative edges, but a bit slower Θ(* log + + + log +)
- Reductions!

CSE 373 SU 19 - ROBBIE WEBER 48

