
Lecture 14: BFS, DFS,
Graph problems intro

CSE 373: Data Structures and
Algorithms

CSE 373 20 SP – CHAMPION / CHUN 1

Administrivia
Duedate reminders
- Project 3 due Wednesday May 6th

- Exercise 3 out tonight, due Friday May 8th

Project 2 hit a little hard
- Reminder – 7 late days
- Need a partner? Fill out the partner interest form on piazza
- Please don’t struggle alone for too long, we’re here to help
- Fill out the project feedback form on canvas

Midterm grades coming next week

Post-CSE 373 pathways session – fill out your time availability (google form on piazza) so we can
try to choose a time that works for the most people

Roadmap for today
§ review Wednesday intro to graphs key points

§ s-t path problem

§ BFS/DFS
§ visually
§pseudocode
§modifications to solve problems

§shortest path problem (for unweighted graphs)

Introduction to Graphs

CSE 373 SP 18 - KASEY CHAMPION 4

Inter-data Relationships
Arrays
Categorically associated

Sometimes ordered

Typically independent

Elements only store pure
data, no connection info

CSE 373 SP 18 - KASEY CHAMPION 5

A

B C

Trees
Directional Relationships

Ordered for easy access

Limited connections

Elements store data and
connection info

0 1 2

A B C

Graphs
Multiple relationship
connections

Relationships dictate
structure

Connection freedom!

Both elements and
connections can store data

A

B

C

Graphs
Everything is graphs.

Most things we’ve studied this quarter can be represented by graphs.
- BSTs are graphs
- Linked lists? Graphs.
- Heaps? Also can be represented as graphs.
- Those trees we drew in the tree method? Graphs.

But it’s not just data structures that we’ve discussed…
- Google Maps database? Graph.
- Facebook? They have a “graph search” team. Because it’s a graph
- Gitlab’s history of a repository? Graph.
- Those pictures of prerequisites in your program? Graphs.
- Family tree? That’s a graph

Applications

Physical Maps

- Airline maps

- Vertices are airports, edges are flight paths

- Traffic

- Vertices are addresses, edges are streets

Relationships

- Social media graphs

- Vertices are accounts, edges are follower relationships

- Code bases

- Vertices are classes, edges are usage

Influence

- Biology

- Vertices are cancer cell destinations, edges are migration paths

Related topics

- Web Page Ranking

- Vertices are web pages, edges are hyperlinks

- Wikipedia

- Vertices are articles, edges are links

SO MANY MORREEEE

www.allthingsgraphed.com

CSE 373 SP 18 - KASEY CHAMPION 7

http://www.allthingsgraphed.com/

Graph: Formal Definition

A graph is defined by a pair of sets G = (V, E) where…
- V is a set of vertices

- A vertex or “node” is a data entity

- E is a set of edges
- An edge is a connection between two vertices

CSE 373 SP 18 - KASEY CHAMPION 8

A

B

CD

E

F

G

H

V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H),
(C, B), (B, D), (D, E), (D, F),
(F, G), (G, H)}

Graph Vocabulary
Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges connected to that vertex

Karen : 1, Jim : 1, Pam : 1
- In-degree – the number of directed edges that point to a vertex

Gunther : 0, Rachel : 2, Ross : 1
- Out-degree – the number of directed edges that start at a vertex

Gunther : 1, Rachel : 1, Ross : 1
CSE 373 SP 20 - KASEY CHAMPION 9

Karen Jim

Pam

V = { Karen, Jim, Pam }
E = { (Jim, Pam), (Jim, Karen) } inferred (Karen, Jim) and (Pam, Jim)

V = { Gunther, Rachel, Ross }
E = { (Gunther, Rachel), (Rachel, Ross), (Ross, Rachel) }

Gunther
Rachel

Ross

Undirected Graph:

Directed Graph:

Some examples
For each of the following think about what you should choose for vertices and
edges.
The internet
- Vertices: webpages. Edges from a to b if a has a hyperlink to b.

Family tree
- Vertices: people. Edges: from parent to child, maybe for marriages too?

Input data for the “6 Degrees of Kevin Bacon” game
- Vertices: actors. Edges: if two people appeared in the same movie
- Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
- Vertices: courses. Edge: from a to b if a is a prereq for b.

CSE 373 SU 19 – ROBBIE WEBBER

Adjacency Matrix

0 1 2 3 4 5 6
0 0 1 1 0 0 0 0
1 1 0 0 1 0 0 0
2 1 0 0 1 0 0 0
3 0 1 1 0 0 1 0
4 0 0 0 0 0 1 0
5 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0

6
2 3

4

5
0 1

In an adjacency matrix a[u][v] is 1 if
there is an edge (u,v), and 0 otherwise.
Worst-case Time Complexity
(|V| = n, |E| = m):

Add Edge:
Remove Edge:
Check edge exists from (u,v):
Get outneighbors of u:
Get inneighbors of u:

Space Complexity:

!(#)
!(#)

!(#)
!(%)

!(%)

!(%&)
CSE 373 SU 19 – ROBBIE WEBBER

Create a Dictionary of size V from type V to Collection of E

If (x,y) ∈ E then add y to the set associated with the key x

Adjacency List

CSE 373 SP 20 - KASEY CHAMPION 12

A

B

C

D
An array where the "#$ element contains a list of neighbors of ".
Directed graphs: list of out-neighbors (a[u] has v for all (u,v) in E)
Time Complexity (|V| = n, |E| = m):

Add Edge:
Remove Edge (u,v):
Check edge exists from (u,v):
Get neighbors of u (out):
Get neighbors of u (in):

Space Complexity:

%(')
%()*+(,))

%()*+ ,)
%(- + /)

%()*+(,))

%(- + /)

Linked Lists

0

1

2

3

A

B

C

D A

B C

B D

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Create a Dictionary of size V from type V to Collection of E

If (x,y) ∈ E then add y to the set associated with the key x

Adjacency List

CSE 373 SP 20 - KASEY CHAMPION 13

A

B

C

D
An array where the "#$ element contains a list of neighbors of ".
Directed graphs: list of out-neighbors (a[u] has v for all (u,v) in E)
Time Complexity (|V| = n, |E| = m):

Add Edge:
Remove Edge (u,v):
Check edge exists from (u,v):
Get neighbors of u (out):
Get neighbors of u (in):

Space Complexity:

Hash Tables

%(')
%(')

%(')
%()*+(,))
%(-)

%(- + /)

0

1

2

3

A

B

C

D

C

D

A

B

B

Questions /
clarifications on

anything?
relevant ideas for today
- vertices, edges, definitions
- graphs model relationships between real data (you can

choose your vertices and edges to
- different graph implementations exist

Roadmap for today
§ review Wednesday intro to graphs key points

§graph problems
§s-t path problem
§ detour: BFS/DFS
§ visually
§pseudocode
§modifications to solve problems (circling back to s-t path)

§shortest path problem (for unweighted graphs)

Graph problems
There are lots of interesting questions we can ask about a graph:

▪ What is the shortest route from S to T?

▪ What is the longest without cycles?

▪ Are there cycles?

▪ Is there a tour (cycle) you can take that only uses each node (station) exactly once?

▪ Is there a tour (cycle) that uses each edge exactly once?

HANNAH TANG 20WI

Graph problems
Some well known graph problems and their common names:
▪ s-t Path. Is there a path between vertices s and t?

▪ Connectivity. Is the graph connected?
▪ Biconnectivity. Is there a vertex whose removal disconnects the graph?
▪ Shortest s-t Path. What is the shortest path between vertices s and t?
▪ Cycle Detection. Does the graph contain any cycles?

▪ Euler Tour. Is there a cycle that uses every edge exactly once?
▪ Hamilton Tour. Is there a cycle that uses every vertex exactly once?
▪ Planarity. Can you draw the graph on paper with no crossing edges?
▪ Isomorphism. Are two graphs the same graph (in disguise)?
Graph problems are among the most mathematically rich areas of CS theory!

HANNAH TANG 20WI

s-t path Problem
s-t path problem
- Given source vertex s and a target vertex t, does there
exist a path between s and t?

Why does this problem matter? Some possible context:
q real life maps and trip planning – can we get from one location (vertex) to

another location (vertex) given the current available roads (edges)
q family trees and checking ancestry – are two people (vertices) related by

some common ancestor (edges for direct parent/child relationships)
q game states (Artificial Intelligence) can you win the game from the current

vertex (think: current board position)? Are there moves (edges) you can
take to get to the vertex that represents an already won game?

18

1

2

3

4

5

6

7

8

0
s

t

s-t path Problem
s-t path problem

- Given source vertex s and a target vertex t, does there

exist a path between s and t?

19

1

2

3

4

5

6

7

8

0
s

t

v What’s the answer for this graph on the left, and

how did we get that answer as humans?

v We can see there’s edges that are visually in between s

and t, and we can try out an example path and make sure

that by traversing that path you can get from s to t.

v We know that doesn’t scale that well though, so now

let’s try to define a more algorithmic (comprehensive) way

to find these paths. The main idea is: starting from the

specified s, try traversing through every single possible

path possible that’s not redundant to see if it could lead to

t.
traversals are really important to solving this

problem / problems in general, so slight detour

to talk about them, we’ll come back to this

though

Graph traversals: DFS (should feel similar to 143 in

the tree context)

Depth First Search - a traversal on graphs (or on trees since those are also graphs) where you

traverse “deep nodes” before all the shallow ones

High-level DFS: you go as far as you can down one path till you hit a dead end (no neighbors are

still undiscovered or you have no neighbors). Once you hit a dead end, you backtrack / undo

until you find some options/edges that you haven’t actually tried yet.

Kind of like wandering a

maze – if you get stuck at a

dead end (since you

physically have to go and try

it out to know it’s a dead

end), trace your steps

backwards towards your last

decision and when you get

back there, choose a

different option than you did

before.

one valid DFS traversal: 10, 5, 3, 2, 4, 8, 7,6, 9, 15, 12, 14, 18

Graph traversals: BFS
Breadth First Search - a traversal on graphs (or on trees since those are also graphs) where you traverse
level by level. So in this one we’ll get to all the shallow nodes before any “deep nodes”.
Intuitive ways to think about BFS:
- opposite way of traversing compared to DFS
- a sound wave spreading from a starting point, going outwards in all directions possible.
- mold on a piece of food spreading outwards so that it eventually covers the whole surface

one valid BFS traversal: 10, 5, 15, 3, 8, 12, 18, 2, 4, 7, 9, 14, 6

Graph traversals: BFS and DFS on more graphs

Take 2 minutes and try to come up
with two possible traversal orderings
starting with the 0 node:

-a BFS ordering (ordering within each
layer doesn’t matter / any ordering is
valid)

-a DFS ordering (ordering which path
you choose next at any point doesn’t
matter / any is valid as long as you
haven’t explored it before)

@ordering choices will be more stable
when we have code in front of us, but
not the focus / point of the traversals
so don’t worry about it

In DFS, you go as far as you can down one path till you hit a dead end
(no neighbors are still undiscovered or you have no neighbors).
Once you hit a dead end, you backtrack / undo until you find some
options/edges that you haven’t actually tried yet.

In BFS, you traverse level by level

Graph traversals: BFS and DFS on more graphs

Take a minute and try to come up
with two possible traversal
orderings starting with the 0 node:

-a BFS ordering (ordering within
each layer doesn’t really matter /
any ordering is valid)
- 0, [1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 12, 13, 14,

15, 16, 17], [11, 18], [19]

-a DFS ordering (ordering which
path you choose next at any point
doesn’t matter / any is valid as
long as you haven’t explored it
before)
- 0, 2, 9, 3, 10, 11, 19, 4, 12, 18,

5, 13, 14, 6, 15, 7, 16, 1,17, 8

In DFS, you go as far as you can down one path till you hit a dead end
(no neighbors are still undiscovered or you have no neighbors).
Once you hit a dead end, you backtrack / undo until you find some
options/edges that you haven’t actually tried yet.

In BFS, you traverse level by level

Graph traversals: BFS and DFS on more graphs
https://visualgo.net/en/dfsbfs

-click on draw graph to create your own
graphs and run BFS/DFS on them!

-check out visualgo.net for more really cool
interactive visualizations

-or do your own googling – there are a lot of
cool visualizations out there J!

https://visualgo.net/en/dfsbfs

BFS pseudocode (some details not Java specific)
bfs(Graph graph, Vertex start) {

// stores the remaining vertices to visit in the BFS
Queue<Vertex> perimeter = new Queue<>();

// stores the set of discovered vertices so we don't revisit them multiple times
Set<Vertex> discovered = new Set<>();

// kicking off our starting point by adding it to the perimeter
perimeter.add(start);
discovered.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

perimeter.add(to);
discovered.add(to)

}
}

}

1

2

3

4

5

6

7

8

0
s

t

BFS pseudocode (some details not Java specific)
//. . . this is the main loop/code for BFS
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

perimeter.add(to);
discovered.add(to)

}
}

}

1

2

3

4

5

6

7

8

0
s

t

Perimeter queue:

Discovered set:

Expected levels starting the BFS from 0:

• 0
• 1
• 2 4
• 3 5
• 6 8
• 7

DFS pseudocode (some details not Java specific)
dfs(Graph graph, Vertex start) {

// stores the remaining vertices to visit in the DFS
Stack<Vertex> perimeter = new Stack<>(); //the only change you need to make to do DFS!

// stores the set of discovered vertices so we don't revisit them multiple times
Set<Vertex> discovered = new Set<>();

// kicking off our starting point by adding it to the perimeter
perimeter.add(start);
discovered.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

perimeter.add(to);
discovered.add(to)

}
}

}

1

2

3

4

5

6

7

8

0
s

t

Modifying BFS and DFS
BFS and DFS are like the for loops over arrays for graphs. They’re super fundamental to so many
ideas, but when they’re by themselves they don’t do anything. Consider the following code:
for (int i = 0; i < n; i++) {

int x = arr[i];

}

We actually need to do something with the data for it to be useful!
A lot of times to solve basic graph problems (which show up in technical interviews at this level),
and often the answer is that you just need to describe / implement BFS/DFS with a small
modification for your specific problem.

Now back to the s-t path problem…

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

perimeter.add(to, newDist);
discovered.add(to)

}
}

}

Modifying BFS for the s-t path problem
//. . . this is the main loop/code for BFS
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

perimeter.add(to);
discovered.add(to)

}
}

}

// with modifications to return true if
// there is a path where s can reach t
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
if (from == t) {

return true;
}
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

perimeter.add(to);
discovered.add(to)

}
}

}
return false;

Small note: for this s-t problem, we didn’t really need the power of BFS in particular, just some
way of looping through the graph starting at a particular point and seeing everything it was
connected to. So we could have just as easily used DFS.

There are plenty of unique applications of both, however, and we’ll cover some of them in this
course – for a more comprehensive list, feel free to google or check out resources like:

- https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/

- https://www.geeksforgeeks.org/applications-of-depth-first-search/

https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/
https://www.geeksforgeeks.org/applications-of-depth-first-search/

Questions /
clarifications on

anything?
we covered:
- s-t path problem
- BFS/DFS visually + high-level
- BFS/DFS pseudocode
- modifying BFS/DFS to solve s-t path problem

Roadmap for today
§ review Wednesday intro to graphs key points

§graph problems

§s-t path problem

§ detour: BFS/DFS
§ visually
§pseudocode
§modifications to solve problems (circling back to s-t path)

§shortest path problem (for unweighted graphs)

Shortest Path problem (unweighted graph)
§ For the graph on the right, find the shortest path (the
path that has the fewest number of edges) between the 0
node and the 5 node. Describe the path by describing
each edge (i.e. (0, 1) edge).

§ What’s the answer? How did we get that as humans?
How do we want to do it comprehensively defined in an
algorithm?

1

2

4

5 6

7

8

0
s

t

Shortest Path problem (unweighted graph)
how do we find a shortest paths?

What’s the shortest path from 0 to 0?
- Well….we’re already there.

What’s the shortest path from 0 to 1 or 8?
- Just go on the edge from 0

From 0 to 4 or 2 or 5?
- Can’t get there directly from 0, if we want a length 2 path, have to go through 1 or 8.

From 0 to 6?
- Can’t get there directly from 0, if we want a length 3 path, have to go through 5.

34CSE 373 19 SU - ROBBIE WEBER

1

2

4

5 6

7

8

0
s

t

Shortest Path problem (unweighted graph) key
idea
To find the set of vertices at distance k, just find the set of vertices at distance k-1, and see if any of them
have an outgoing edge to an undiscovered vertex. Basically, if we traverse level by level and we’re checking
all the nodes that show up at each level comprehensively (and only recording the earliest time they show
up), when we find our target at level k, we can keep using the edge that led to it from the previous level to
justify the shortest path.

Do we already know an algorithm that can help us traverse the graph level by level?

Yes! BFS! Let’s modify it to fit our needs.

35CSE 373 19 SU - ROBBIE WEBER

perimeter.add(start);
discovered.add(start);
start.distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

to.distance = from.distance + 1;
to.predecessorEdge = edge;
perimeter.add(to);
discovered.add(to)

}
}

}

Changes from traversal BFS:
- Every node now will have an associated distance

(for convenience)
- Every node V now will have an associated

predecessor edge that is the edge that connects
V on the shortest path from S to V. The edges
that each of the nodes store are the final result.

Unweighted Graphs
Use BFS to find shortest paths in this graph.

CSE 373 19 SU - ROBBIE WEBER

perimeter.add(start);
discovered.add(start);
start.distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

to.distance = from.distance + 1;
to.predecessorEdge = edge;
perimeter.add(to);
discovered.add(to)

}
}

}

1

2

4

5 6

7

8

0
s

t

Unweighted Graphs

37CSE 373 19 SU - ROBBIE WEBER

Use BFS to find shortest paths in this graph.

1

2

4

5 6

7

8

0
s

t

perimeter.add(start);
discovered.add(start);
start.distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

to.distance = from.distance + 1;
to.predecessorEdge = edge;
perimeter.add(to);
discovered.add(to)

}
}

}

If trying to recall the best path from 0 to 5:

5’s predecessor edge is (8, 5)

8’s predecessor edge is (0, 8)

0 was the start vertex

Note: this BFS modification produces these edges, but there’s extra

work to figure out a specific path from a start / target

What about the target vertex?

38

Given: a directed graph G and vertices s,t
Find: the shortest path from s to t.

Shortest Path Problem

BFS didn’t mention a target vertex…
It actually finds the distance from s to every other vertex. The resulting edges are called
the shortest path tree.

All our shortest path algorithms have this property.
If you only care about one target, you can sometimes stop early (in
bfsShortestPaths, when the target pops off the queue)

CSE 373 19 SU - ROBBIE WEBER

Map<V, E> bfsFindShortestPathsEdges(G graph, V start) {
// stores the edge `E` that connects `V` in the shortest path from s to V
Map<V, E> edgeToV = empty map

// stores the shortest path length from `start` to `V`
Map<V, Double> distToV = empty map

Queue<V> perimeter = new Queue<>();
Set<V> discovered = new Set<>();

// setting up the shortest distance from start to start is just 0 with
// no edge leading to it
edgeTo.put(start, null);
distTo.put(start, 0.0);

perimeter.add(start);

while (!perimeter.isEmpty()) {
V from = perimeter.remove();
for (E e : graph.outgoingEdgesFrom(from)) {

V to = e.to();
if (!discovered.contains(to)) {

edgeTo.put(to, e);
distTo.put(to, distTo(from) + 1);
perimeter.add(to, newDist);
discovered.add(to)

}
}

}
return edgeToV;

}

1

2

4

5 6

7

8

0
s

t

This is an alternative way to
implement bfsShortestPaths that has
an easier time accessing the actual
paths / distances by using Maps

