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Announcements
- p2 due tonight – office hours all today. Fill out the optional P2 feedback quiz (on 
Canvas) so we can improve this for future quarters!

- p3 released (pull from skeleton repo as usual) and website instructions are up, due next 
Wed 11:59pm

- exercise 3 out Friday, due next Friday
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minHeap runtimes

removeMin():
- remove root node
- Find last node in tree and swap to top level
- Percolate down to fix heap invariant
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add():
- Insert new node into next available spot
- Percolate up to fix heap invariant

Finding the last node/next available spot is the hard part.
You can do it in Θ(log 𝑛) time on complete trees, with some extra class variables…
But it’s NOT fun

And there’s a much better way!
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Min Priority Queue ADT

removeMin() – returns the element 
with the smallest priority, removes it 
from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not remove 
the element with the smallest 
priority

add(value) – add a new element to 
the collection



Implement Heaps with an array
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Fill array in level-order from left to right

We map our binary-tree 
representation of a heap into an 
array implementation where you fill 
in the array in level-order from left to 
right.

The array implementation of a heap 
is what people actually implement, 
but the tree drawing is how to think 
of it conceptually.   Everything we’ve 
discussed about the tree 
representation still is true!



Implement Heaps with an array
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Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖 − 1
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 2

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[0]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 − 1]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]



Implement Heaps with an array
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Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[1]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 + 1]



Heap Implementation Runtimes
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Implementation add removeMin Peek

Array-based heap worst: Θ(log 𝑛)
in-practice: Θ(1)

worst: Θ(log 𝑛)
in−pracTce: Θ(log 𝑛)

Θ(1)

We’ve matched the asymptotic worst-case behavior of AVL trees, but we’re actually doing better!
- The constant factors for array accesses are better.
- The tree can be a constant factor shorter because of stricter height invariants.
- In-practice case for add is really good.
- A heap is MUCH simpler to implement. 

add()
• worst – the item added is the new minimum and has to traverse all the way to the

top of the tree
• in-practice – most nodes are near the bottom of the tree, so in practice new 

values rarely travel further than a level or two 

removeMin()
• worst – the item pulled from the bottom of the tree is large and has to percolate 

all the way back down
• in-practice – because we pull an item from the bottom level to replace the top 

node, that is probably where it belongs and has to percolate all the way back 
down



Are heaps always better? AVL vs Heaps
- The really amazing things about heaps over AVL implementations are the constant factors (e.g. 
1.2n instead of 2n) and the sweet sweet Theta(1) in-practice `add` time.

- The really amazing things about AVL implementations over heaps is that AVL trees are 
absolutely sorted, and they guarantee worst-case be able to find (contains/get) in Theta(log(n)) 
time.

If heaps have to implement methods like contains/get/ (more generally: finding a particular value 
inside the data structure) – it pretty much just has to loop through the array and incur a worst-
case Theta(n) runtime. 

Heaps are stuck at Theta(n) runtime and we can’t do anything more clever…. aha, just kidding.. 
unless…?



More Operations
We’ll use priority queues for lots of things later 
in the quarter. 

Let’s add them to our ADT now.

Some of these will be asymptotically faster for a 
heap than an AVL tree!

BuildHeap(elements 𝑒D, … , 𝑒E )  
Given 𝑛 elements, create a heap 
containing exactly those 𝑛 elements. 

Min Priority Queue ADT

removeMin() – returns the element 
with the smallest priority, removes it 
from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not remove 
the element with the smallest 
priority

add(value) – add a new element to 
the collection



Even More Operations
BuildHeap(elements 𝑒!, … , 𝑒" ) – Given 𝑛 elements, create a heap 
containing exactly those 𝑛 elements. 

Try 1: Just call insert 𝑛 times.
Worst case running time?
𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?
That proof isn’t valid. There’s no guarantee that we’re getting the worst case 
every time!
Proof is right if we just want an 𝑂() bound
- But it’s not clear if it’s tight.
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BuildHeap Running Time

Let’s try again for a Theta bound. 
The problem last time was making sure we always hit the worst case.
If we insert the elements in decreasing order we will!
- Every node will have to percolate all the way up to the root.

So we really have 𝑛 Θ(log 𝑛) operations. QED. 

There’s still a bug with this proof!
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BuildHeap Running Time (again)

Let’s try once more.
Saying the worst case was decreasing order was a good start.
What are the actual running times?

It’s Θ(ℎ), where ℎ is the current height.
- The tree isn’t height log 𝑛 at the beginning.

But most nodes are inserted in the last two levels of the tree.
-For most nodes, ℎ is Θ log 𝑛 . 

The number of operations is at least
"
#
⋅ Ω(log 𝑛) = Ω 𝑛 log 𝑛 .
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Can We Do Better?

What’s causing the 𝑛 insert strategy to take so long?
Most nodes are near the bottom, and they might need to percolate all the 
way up. 

What if instead we dumped everything in the array and then 
tried to percolate things down to fix the invariant?

Seems like it might be faster
- The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes.
- Maybe we can make “most nodes” go a constant distance.
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Is It Really Faster?
Assume the tree is perfect
- the proof for complete trees just gives a different constant factor.

percolateDown() doesn’t take log 𝑛 steps each time!

Half the nodes of the tree are leaves
- Leaves run percolate down in constant time

1/4 of the nodes have at most 1 level to travel
1/8 the nodes have at most 2 levels to travel
etc…

work(n) ≈ !
"
⋅ 1 + !

#
⋅ 2 + !

$
⋅ 3 + ⋯+ 1 ⋅ (log 𝑛)
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Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last index

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9



Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9
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Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 102 9
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5 6

11

keep percolating down
like normal here and swap 5 and 4



Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9
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Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9
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Relevant hint for project 3: 
- When coming up with data structures, we can actually combine them with existing tools to 
improve our algorithms and runtimes.  We can improve the worst-case runtime of get/contains 
to be a lot better than Theta(n) time depending on how we have our heap utilize an extra data-
structure. 

- For project 3, you should use an additional data structure to improve the runtime for 
changePriority(). It does not affect the correctness of your PQ at all (i.e. you can 
implement it correctly without the additional data structure). Please use a built-in Java collection 
instead of implementing your own (although you could in-theory).

-For project 3, feel free to try the following development strategy for the changePriority
method
- implement changePriority without regards to efficiency (without the extra data structure) at first
- then, analyze your code’s runtime and figure out which parts are inefficient
- reflect on the data structures we’ve learned and see how any of them could be useful in improving the slow parts in 

your code



Questions
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Introduction to Graphs
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Inter-data Relationships
Arrays

Categorically associated

Sometimes ordered

Typically independent

Elements only store pure 
data, no connection info
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A

B C

Trees

Directional Relationships

Ordered for easy access

Limited connections

Elements store data and 
connection info

0 1 2

A B C

Graphs

Multiple relationship 
connections

Relationships dictate 
structure

Connection freedom!

Both elements and 
connections can store data

A

B

C



Graphs
Everything is graphs.

Most things we’ve studied this quarter can be represented by graphs.
- BSTs are graphs
- Linked lists? Graphs.
- Heaps? Also can be represented as graphs.
- Those trees we drew in the tree method? Graphs. 

But it’s not just data structures that we’ve discussed…
- Google Maps database? Graph.
- Facebook? They have a “graph search” team. Because it’s a graph
- Gitlab’s history of a repository? Graph.
- Those pictures of prerequisites in your program? Graphs.
- Family tree? That’s a graph



Graph: Formal Definition

A graph is defined by a pair of sets G = (V, E) where…
- V is a set of vertices

- A vertex or “node” is a data entity

- E is a set of edges
- An edge is a connection between two vertices
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A

B

CD

E

F

G

H

V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H), 
(C, B), (B, D), (D, E), (D, F),
(F, G), (G, H)}



Applications
Physical Maps
- Airline maps

- Vertices are airports, edges are flight paths

- Traffic
- Vertices are addresses, edges are streets

Relationships
- Social media graphs

- Vertices are accounts, edges are follower relationships

- Code bases
- Vertices are classes, edges are usage

Influence
- Biology

- Vertices are cancer cell destinations, edges are migration paths 

Related topics
- Web Page Ranking

- Vertices are web pages, edges are hyperlinks

- Wikipedia
- Vertices are articles, edges are links

SO MANY MORREEEE
www.allthingsgraphed.com
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http://www.allthingsgraphed.com/


Graph Vocabulary
Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges connected to that vertex

Karen : 1, Jim : 1, Pam : 1
- In-degree – the number of directed edges that point to a vertex

Gunther : 0, Rachel : 2, Ross : 1
- Out-degree – the number of directed edges that start at a vertex

Gunther : 1, Rachel : 1, Ross : 1
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Karen Jim

Pam

V = { Karen, Jim, Pam }
E = { (Jim, Pam), (Jim, Karen) } inferred (Karen, Jim) and (Pam, Jim)

V = { Gunther, Rachel, Ross }
E = { (Gunther, Rachel), (Rachel, Ross), (Ross, Rachel) }

Gunther
Rachel

Ross

Undirected Graph:

Directed Graph:



Connected Graphs
Connected graph – a graph where every vertex is 
connected to every other vertex via some path. It 
is not required for every vertex to have an edge to 
every other vertex

There exists some way to get from each vertex to 
every other vertex
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Sansa

Robb

Bran

Arya

Rickon

Jon

Dany

Connected Component – a subgraph in 
which any two vertices are connected via 
some path, but is connected to no 
additional vertices in the supergraph
- There exists some way to get from each vertex 

within the connected component to every other 
vertex in the connected component

- A vertex with no edges is itself a connected 
component

Viserys



Graph Vocabulary
Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges
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Andy Michael

Kanye
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Leslie
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Ben



Graph Terms

Walk – A sequence of adjacent vertices. Each connected to next by an edge.

Path – A walk that doesn’t repeat a vertex. A,B,C,D is a path. A,B,A is not.
(Directed) Walk–must follow the direction of the edges

Cycle – path with an extra edge from last vertex back to first.
Length – The number of edges in a walk/path/cycle. (A,B,C,D) has length 3.

UW Cap 
Hill

West
lake

Univ
St

Sleep Eat Work Cry

A,B,C,D is a walk.
So is A,B,A

A,B,C,D,B is a directed walk.
A,B,A is not.
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Implementing a Graph
Implement with nodes…

Implementation gets super messy

What if you wanted a vertex without an edge?

How can we implement without requiring edges to access nodes?

Implement using some of our existing data structures!
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Making Graphs

If your problem has data and relationships, you might want to represent it 
as a graph
How do you choose a representation?

Usually:
Think about what your “fundamental” objects are
- Those become your vertices.

Then think about how they’re related
- Those become your edges.
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Some examples

For each of the following think about what you should choose for vertices 
and edges.
The internet 

Family tree

Input data for the “6 degrees of Kevin Bacon” game

Course Prerequisites
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Poll Everywhere!
Pollev.com/cse373activity



Some examples
For each of the following think about what you should choose for vertices and 
edges.
The internet 
- Vertices: webpages. Edges from a to b if a has a hyperlink to b. 

Family tree
- Vertices: people. Edges: from parent to child, maybe for marriages too?

Input data for the “6 Degrees of Kevin Bacon” game
- Vertices: actors. Edges: if two people appeared in the same movie
- Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
- Vertices: courses. Edge: from a to b if a is a prereq for b.
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Adjacency Matrix

0 1 2 3 4 5 6
0 0 1 1 0 0 0 0
1 1 0 0 1 0 0 0
2 1 0 0 1 0 0 0
3 0 1 1 0 0 1 0
4 0 0 0 0 0 1 0
5 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0

6
2 3

4

5
0 1

In an adjacency matrix a[u][v] is 1 if 
there is an edge (u,v), and 0 otherwise.
Worst-case Time Complexity 
(|V| = n, |E| = m):

Add Edge: 
Remove Edge: 
Check edge exists from (u,v): 
Get outneighbors of u: 
Get inneighbors of u:

Space Complexity:

𝚯(𝟏)
𝚯(𝟏)

𝚯(𝟏)
𝚯(𝒏)

𝚯(𝒏)

𝚯(𝒏𝟐)
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Create a Dictionary of size V from type V to Collection of E

If (x,y) ∈ E then add y to the set associated with the key x

Adjacency List
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A

B

C

D
An array where the 𝑢!" element contains a list of neighbors of 𝑢.
Directed graphs: list of out-neighbors (a[u] has v for all (u,v) in E)
Time Complexity (|V| = n, |E| = m):

Add Edge: 
Remove Edge (u,v): 
Check edge exists from (u,v): 
Get neighbors of u (out):
Get neighbors of u (in):

Space Complexity:

𝚯(𝟏)
𝚯( 𝐝𝐞𝐠(𝒖) )

𝚯(𝐝𝐞𝐠 𝒖 )
𝚯(𝒏 + 𝒎)

𝚯( 𝐝𝐞𝐠(𝒖) )

𝚯(𝒏 + 𝒎)

Linked Lists

0

1

2

3

A

B

C

D A

B C

B D



0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Create a Dictionary of size V from type V to Collection of E

If (x,y) ∈ E then add y to the set associated with the key x

Adjacency List
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A

B

C

D
An array where the 𝑢!" element contains a list of neighbors of 𝑢.
Directed graphs: list of out-neighbors (a[u] has v for all (u,v) in E)
Time Complexity (|V| = n, |E| = m):

Add Edge: 
Remove Edge (u,v): 
Check edge exists from (u,v): 
Get neighbors of u (out):
Get neighbors of u (in):

Space Complexity:

Hash Tables

𝚯(𝟏)
𝚯( 𝟏 )

𝚯( 𝟏 )
𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏 )

𝚯(𝒏 + 𝒎)
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D

C

D

A

B

B



Tradeoffs
Adjacency Matrices take more space, and have slower Θ() bounds, why would you use them?
- For dense graphs (where 𝑚 is close to 𝑛!), the running times will be close
- And the constant factors can be much better for matrices than for lists. 
- Sometimes the matrix itself is useful (“spectral graph theory”)

What’s the tradeoff between using linked lists and hash tables for the list of neighbors?
- A hash table still might hit a worst-case
- And the linked list might not

- Graph algorithms often just need to iterate over all the neighbors, so you might get a better guarantee with the 
linked list. 

For this class, unless we say otherwise, we’ll assume the hash tables operations on graphs are all 
𝑂 1 .
- Because you can probably control the keys.

Unless we say otherwise, assume we’re using an adjacency list with hash tables for each list.


