
Lecture 11: Self Balancing 
Trees

CSE 373: Data Structures and 
Algorithms

1



Administrivia
Midterm Assessment
- Goes live Friday 8:30am PDT on Canvas
- Due Sunday 8:30am PDT (NO LATE ASSIGNMENTS ACCEPTED)
- Logistics

- Individual assignment
- Open notes
- Piazza going “private” for 48 hours
- TAs won’t be able to answer questions about exam, section problems or exercises for 48 hours
- Kasey & Zach will be available to answer questions – zoom call during PDT business hours Friday & Saturday

Project 2 due Wednesday April 29th

Exercise 2 due Friday April 24th

2CSE 373 20 SP – CHAMPION & CHUN

Seriously



Questions

3CSE 373 20 SP – CHAMPION & CHUN



AVL Trees
AVL Trees must satisfy the following properties: 
- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys 

in the right subtree must be larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the 

left subtree from the right. Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

CSE 373 SP 18 - KASEY CHAMPION 4



Measuring Balance
Measuring balance:

For each node, compare the heights of its two sub trees

Balanced when the difference in height between sub trees is no greater than 1

CSE 373 SP 18 - KASEY CHAMPION 5

10

15

12 18

8

7

7
8

7 9

Balanced

Unbalanced

Balanced

Balanced



Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 6

7

4 10

3 9 125

8 11 13

14

2 6

Is it…
- Binary
- BST
- Balanced?

yes
yes
yes



Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 7

6

2 8

1 7 124

9

10 13

11

3 5

Is it…
- Binary
- BST
- Balanced?

yes
yes
no

Height = 2Height = 0

2 Minutes



Insertion

What happens if when we do an insertion, we break the AVL condition?

1

2

3 1

2

3

The AVL rebalances itself!

AVL are a type of “Self Balancing Tree”
CSE 373 19 SU – ROBBIE WEBBER



Left Rotation

x

y

z

Rest of the 
tree UNBALANCED

Right subtree is 2 longer

A
B

C D

x

y

z

Rest of the 
tree

A B

C D

BALANCED
Right subtree is 1 longer

CSE 373 19 SU – ROBBIE WEBBER



10

6

8

1 3

10

9

72

4

5

11

CSE 373 19 SU – ROBBIE WEBBER



11

9

7

4

8

6

5

1 3

2

10

11

CSE 373 19 SU – ROBBIE WEBBER



Right rotation

1

2

3

1

2

3

Just like a left rotation, just reflected.

CSE 373 19 SU – ROBBIE WEBBER



It Gets More Complicated

1

3

2

Can’t do a left rotation
Do a “right” rotation around 3 first. 

1

3

2

Now do a left rotation.

1

2

3

There’s a “kink” in 
the tree where the 
insertion happened.

CSE 373 19 SU – ROBBIE WEBBER



Right Left Rotation

x

z

y

Rest of the 
tree

A

B C

D

x

y

z

Rest of the 
tree

A B

C D

BALANCED
Right subtree is 1 longerUNBALANCED

Right subtree is 2 longer

Left subtree is 
1 longer

CSE 373 19 SU – ROBBIE WEBBER



AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 15

8

9

10



AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 16

8

9

10



AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 17

8

11

9

10

12



AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 18

8

11

9

10

12



AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 19

8

9

10

11

12



Two AVL Cases

CSE 373 SP 18 - KASEY CHAMPION 20

1

3

2

1

2

3

Line Case
Solve with 1 rotation

Kink Case
Solve with 2 rotations

3

2

1

Rotate Right
Parent’s left becomes child’s right
Child’s right becomes its parent

Rotate Left
Parent’s right becomes child’s left
Child’s left becomes its parent

3

1

2

Right Kink Resolution
Rotate subtree left
Rotate root tree right

Left Kink Resolution
Rotate subtree right
Rotate root tree left



How Long Does Rebalancing Take?
Assume we store in each node the height of its subtree.
How do we find an unbalanced node?
- Just go back up the tree from where we inserted.

How many rotations might we have to do?
- Just a single or double rotation on the lowest unbalanced node. 
- A rotation will cause the subtree rooted where the rotation happens to have the same height it 

had before insertion

- log(n) time to traverse to a leaf of the tree
- log(n) time to find the imbalanced node
- constant time to do the rotation(s)
- Theta(log(n)) time for put (the worst case for all interesting + common AVL methods 

(get/containsKey/put is logarithmic time) 



Deletion

There is a similar set of rotations that will always let you rebalance an AVL 
tree after a deletion.
The textbook (or Wikipedia) can tell you more. 

We won’t test you on deletions but here’s a high-level summary about 
them:
- Deletion is similar to insertion.
- It takes Θ(log 𝑛) time on a dictionary with 𝑛 elements.
- We won’t ask you to perform a deletion.



Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:

AVL tree

Splay tree

2-3 tree

AA tree

Red-black tree

Scapegoat tree

Treap

(From https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

(Not covered in this class, but several are in the 
textbook and all of them are online!)

CSE 373 SU 17 – LILIAN DE GREEF

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/2-3_tree
https://en.wikipedia.org/wiki/AA_tree
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/Scapegoat_tree
https://en.wikipedia.org/wiki/Treap
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree


Questions

25CSE 373 20 SP – CHAMPION & CHUN



26

Your toolbox so far…
ADT
- List – flexibility, easy movement of elements within structure
- Stack – optimized for first in last out ordering
- Queue – optimized for first in first out ordering
- Dictionary (Map) – stores two pieces of data at each entry

Data Structure Implementation
- Array – easy look up, hard to rearrange
- Linked Nodes – hard to look up, easy to rearrange
- Hash Table – constant time look up, no ordering of data
- BST – efficient look up, possibility of bad worst case
- AVL Tree – efficient look up, protects against bad worst case, hard to implement

CSE 373 20 SP – CHAMPION & CHUN

<- It’s all about data baby!
SUPER common in comp sci 
- Databases
- Network router tables
- Compilers and Interpreters



Review: Dictionaries
Why are we so obsessed with Dictionaries? 

CSE 373 SU 19 - ROBBIE WEBER 27

Dictionary ADT

put(key, item) add item to 
collection indexed with key
get(key) return item 
associated with key
containsKey(key) return if key 
already in use
remove(key) remove item 
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

When dealing with data:
• Adding data to your collection
• Getting data out of your collection
• Rearranging data in your collection

Operation ArrayList LinkedList HashTable BST AVLTree

put(key,value)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

get(key)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

remove(key)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(logn)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn) 



Design Decisions
Before coding can begin engineers must carefully consider the design of their code will organize and 
manage data

Things to consider:

What functionality is needed?
- What operations need to be supported?
- Which operations should be prioritized?

What type of data will you have?
- What are the relationships within the data?
- How much data will you have?
- Will your data set grow?
- Will your data set shrink?

How do you think things will play out?
- How likely are best cases?
- How likely are worst cases?

28CSE 373 20 SP – CHAMPION & CHUN



You have been asked to create a new system for organizing students in a course and their 
accompanying grades

What type of data will you have?
What are the relationships within the data?

How much data will you have?

Will your data set grow?
Will your data set shrink?

How do you think things will play out?
How likely are best cases?
How likely are worst cases?

Example: Class Gradebook

29

What functionality is needed?
What operations need to be supported?

Add students to course
Add grade to student’s record
Update grade already in student’s record
Remove student from course
Check if student is in course
Find specific grade for student

Organize students by name, keep grades in time order…

A couple hundred students, < 20 grades per student

Which operations should be prioritized?

A lot at the beginning,
Not much after that

Lots of add and drops?
Lots of grade updates?
Students with similar identifiers?

pollev.com/cse373activity
What operations do you think the 
grade book needs to support? 
Please upvote which ones should be prioritized



Example: Class Gradebook

What data should we use to identify students? (keys)
- Student IDs – unique to each student, no confusion (or collisions)
- Names – easy to use, support easy to produce sorted by name

How should we store each student’s grades? (values)
- Array List – easy to access, keeps order of assignments
- Hash Table – super efficient access, no order maintained

Which data structure is the best fit to store students and their grades?
- Hash Table – student IDs as keys will make access very efficient
- AVL Tree - student names as keys will maintain alphabetical order

30CSE 373 20 SP – CHAMPION & CHUN

pollev.com/cse373activity
Which data structure is the best fit to store the 
dictionary of students and their grades? Please 
upvote which you think is optimal



Practice: Music Storage
You have been asked to create a new system for organizing songs in a music service. For each 
song you need to store the artist and how many plays that song has. 

31CSE 373 20 SP – CHAMPION & CHUN

What functionality is needed?
• What operations need to be supported?
• Which operations should be prioritized?

What type of data will you have?
• What are the relationships within the data?
• How much data will you have?
• Will your data set grow?
• Will your data set shrink?

How do you think things will play out?
• How likely are best cases?
• How likely are worst cases?

Update number of plays for a song
Add a new song to an artist’s collection
Add a new artist and their songs to the service
Find an artist’s most popular song
Find service’s most popular artist

more…

Artists need to be associated with their songs, 
songs need t be associated with their play counts
Play counts will get updated a lot
New songs will get added regularly

Some artists and songs will need to be accessed a lot more than others
Artist and song names can be very similar

pollev.com/cse373activity
What operations do you think the 
music system needs to support? 
Please upvote which ones should be prioritized



Practice: Music Storage
How should we store songs and their play counts?
Hash Table – song titles as keys, play count as values, quick access for 
updates
Array List – song titles as keys, play counts as values, maintain order of 
addition to system
How should we store artists with their associated songs?
Hash Table – artist as key, 

Hash Table of their (songs, play counts) as values
AVL Tree of their songs as values

AVL Tree – artists as key, hash tables of songs and counts as values

32CSE 373 20 SP – CHAMPION & CHUN

pollev.com/cse373activity
Which data structure is the best fit to store the 
artists with their associated songs & play counts? 
Please upvote which you think is optimal


