
Lecture 9: Administrivia and
Hash maps with Open

Addressing
CSE 373: Data Structures and
Algorithms

1

Administrivia (there’s a lot today but not a full
lecture’s worth of content today)
§grade changes

§midterm format

§resources reminder/updates

§ please fill out online logistics survey - we heard you!

Grades
- People are stressed about their grades, about learning, cheating, curved classes, etc. so
we’re going to make some changes to our grading policy, as we know this is a hard time
for people:

- We’re going to look at past grade data and figure out some groupings so that we can
give you some grade guarantees (AKA 90% is at least guaranteed some GPA)

- AKA this class will not be curved since if everyone does well percentage-wise everyone
can all do well GPA wise

- if not enough people are doing as well percentage-wise as we expected when we set
the grade guarantees, don’t worry -- we’ll adjust to make sure people get at least as good
grades as normal quarters

- we’ll talk more about the guarantees next week (we haven’t decided them yet)

Exams (more like a weekend assessment now)

Extend turn around from 24 to 48 hours
- Out on Friday morning 8:30am pdt, due sunday morning 8:30am pdt
- NO LATE ASSESSMENTS ACCEPTED

Previously: 2 hour time window from when you start to when it must be turned in
- You just have the full 48 hours

reminder:

- multiple versions of assessment (we’re going to make a bunch)

- should be done individually (you can do well solo, we believe in you)

- if other people do cheat (plz no), shouldn’t affect you bc of grade guarantees

- still done through canvas

What if something goes wrong and I can’t submit
or…?
§- during Saturday we’ll have a zoom call you can reach us at that we’ll try to just be in there
chilling. Link TBD

§- if you have bad internet connection and are worried about if something goes wrong, fill out this
form and we can try to figure out another alternative method of communication.
§ - https://forms.gle/tj626pRZVKWQ9fkx6

https://forms.gle/tj626pRZVKWQ9fkx6

weekend assessment topics list
Things that could be on the exam

§Code modeling (think lecture, exercise, section problems)
§ Code à big theta runtime
§ Case analysis
§ Recursive code (code → recurrence, master theorem)

§Asymptotic analysis (think lecture, section, exercise problems)
§ Function -> big o/big theta/big omega
§ Bounds for a given graph

§Tree method (think section problems)
§ Just till summation, we won’t ask you to simplify past that

§AVL/BST invariants
§ is this a BST/AVL?

§Hashing
§ Separate chaining mechanisms
§ Open addressing mechanisms

Things not on the exams:
§ Simplifying summations
§ AVL tree rotations
§ Writing code
§ Programming projects knowledge (but prepare for this on
the final)
§ Free response paragraph/sentence questions (we won’t ask
you to explain best/worst case in English)

Practice run through / resources
- most of the resources for the exam we’ve already released

- find section/lecture problems that are relevant to the topics list and do those

- check out the not-graded canvas quiz we’re going to publish later today that’ll show you a
rough idea of the format / how all the math stuff will work

Resources updates/reminders
§optional pre-lecture readings (sorry they might not line up perfectly, from different quarters)

§ going to post these tonight / over the weekend for next week

§draft slides which may have significant changes by actual lecture time, but will cover same topics
§ going to post these tonight / over the weekend for next week (same as above)

§ review videos
§ see on calendar!

§night time section (6:30PM Thursdays) / evening office hours Monday/Tuesday (9pm PDT)
§Piazza/slack/discord – class size is an asset – we can help each other learn more effectively because we can share

questions, knowledge, and tips :P

Other things that are useful to know
§ no more warm ups so we have more time for lecture - instead we will make sure the post
lecture review questions are there for you
§ (we know we’re behind on the solutions for Monday/posting Wednesday – Kasey and Zach have been managing this

but busy with other logistical stuff and it’s fallen off – going to re-delegate to amazing TAs to help out so they should
be up more consistently in the future.We’ll post all of the remaining post-lecture questions for MWF this week later
today. Thank you so much for your patience.)

§ we will do a better job of pointing out important part of slides, but they will always have more
content than we can speak to so they can be a "living textbook"

We’ll respond to more ideas/suggestions/thoughts in more time (keep an eye on Piazza), but are
also waiting for more responses to come in. Thanks to everyone so far, we’re reading all of them
and are seriously considering all the feedback and ideas. We appreciate your effort to make this a
better experience for all of us.

What about non integer keys?

Let’s use define another hash function to change stuff like Strings into ints!

Best practices for designing hash functions:
Avoid collisions
- The more collisions, the further we move away from O(1+!)
- Produce a wide range of indices, and distribute evenly over them

Low computational costs
- Hash function is called every time we want to interact with the data

CSE 373 SU 19 - ROBBIE WEBER 10

Hash function definition

A hash function is any function that can be used to map data of arbitrary size to fixed-size values.

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_(computing)

(Before we % by length, we have to convert the
data into an int)
Implementation 1: Simple aspect of values
public int hashCode(String input) {

return input.length();
}

Implementation 2: More aspects of value
public int hashCode(String input) {

int output = 0;
for(char c : input) {

out += (int)c;
}
return output;

}

Implementation 3: Multiple aspects of value + math!
public int hashCode(String input) {

int output = 1;
for (char c : input) {

int nextPrime = getNextPrime();
out *= Math.pow(nextPrime, (int)c);

}
return Math.pow(nextPrime, input.length());

}

CSE 373 SU 19 - ROBBIE WEBER 11

Pro: super fast
Con: lots of collisions!

Pro: still really fast
Con: some collisions

Pro: few collisions
Con: slow, gigantic integers

Good Hashing

12CSE 373 20 WI – HANNAH TANG

The hash function of a HashDictionary gets called a LOT:
- When first inserting something into the map

- When checking if a key is already in the map
- When resizing and redistributing all values into new structure

This is why it is so important to have a “good” hash function. A good hash function is:
1. Deterministic – same input should generate the same output
2. Efficiency - it should take a reasonable amount o time
3. Uniformity – inputs should be spread “evenly” over output range

public int hashFn(String s) {
return random.nextInt()

}

public int hashFn(String s) {
int retVal = 0;
for (int I = 0; I < s.length(); i++) {

for (int j = 0; j < s.length(); j++) {
retVal += helperFun(s, I, j);

}
}
return retVal;

}

public int hashFn(String s) {
if (s.length() % 2 == 0) {

if (s.length(). % 2 == 0) {
return 17;

} else {
return 43;

}
}

}

NOT deterministic

NOT nicely spread out

NOT efficient

Java’s hashCode (relevant for project)

§ Luckily, most of these design decisions have been made for us by smart people. All objects in

java come with a `hashCode()` method that does some magic (see previous slide for the not-

magic version) to turn any object type (like String, ArrayList, Point, Scanner) into an integer.

These hashCodes are designed to distribute pretty evenly / not have lots of collisions, so we use

them as the starting point for determining the bucket index.

§high level steps to figure out which bucket a key goes into

§ call the key.hashCode() to get an int representation of the object

§% by the array table length to convert it to a valid index for your hash map

CSE 373 20 SP – CHAMPION & CHUN

Review: Handling Collisions
Solution 1: Chaining
Each space holds a “bucket” that can store multiple values. Bucket is often implemented with a
LinkedList

CSE 373 SP 18 - KASEY CHAMPION 14

Average Case:
Depends on average number of
elements per chain

Load Factor λ
If n is the total number of key-
value pairs
Let c be the capacity of array
Load Factor λ = !"

Operation Array w/ indices as keys

put(key,value)

best Θ(1)

In-practice Θ(λ) = Θ(1)

worst Θ(n)

get(key)

best Θ(1)

in-practice Θ(λ) = Θ(1)

worst Θ(n)

remove(key)

best Θ(1)

In-practice Θ(λ) = Θ(1)

worst Θ(n)

Handling Collisions
Solution 2: Open Addressing
Resolves collisions by choosing a different location to store a value if natural choice is already
full.

Type 1: Linear Probing

If there is a collision, keep checking the next element until we find an open spot.
int findFinalLocation(Key s)

int naturalHash = this.getHash(s);
int index = natrualHash % TableSize;
while (index in use) {

i++;
index = (naturalHash + i) % TableSize;

}
return index;

CSE 373 SP 18 - KASEY CHAMPION 15

Linear Probing

0 1 2 3 4 5 6 7 8 9

CSE 373 SP 18 - KASEY CHAMPION 16

Insert the following values into the Hash Table using a hashFunction of % table size and
linear probing to resolve collisions
1, 5, 11, 7, 12, 17, 6, 25

1 511 712 17625

Linear Probing

CSE 373 SP 18 - KASEY CHAMPION 17

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and

linear probing to resolve collisions

38, 19, 8, 109, 10

38 1988 10910

Problem:

• Linear probing causes clustering

• Clustering causes more looping when probing

Primary Clustering

When probing causes long chains of

occupied slots within a hash table

3 Minutes

Runtime
When is runtime good?
When we hit an empty slot
- (or an empty slot is a very short distance away)

When is runtime bad?
When we hit a “cluster”

Maximum Load Factor?
λ at most 1.0

When do we resize the array?
λ ≈ ½ is a good rule of thumb

CSE 373 SP 18 - KASEY CHAMPION 18

Can we do better?

Clusters are caused by picking new space near natural index

Solution 2: Open Addressing
Type 2: Quadratic Probing

Instead of checking ! past the original location, check !" from the original location.
int findFinalLocation(Key s)

int naturalHash = this.getHash(s);
int index = natrualHash % TableSize;
while (index in use) {

i++;
index = (naturalHash + i*i) % TableSize;

}
return index;

CSE 373 SP 18 - KASEY CHAMPION 19

Quadratic Probing

CSE 373 SP 18 - KASEY CHAMPION 20

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9

(49 % 10 + 1 * 1) % 10 = 0

(58 % 10 + 0 * 0) % 10 = 8

(58 % 10 + 1 * 1) % 10 = 9

(58 % 10 + 2 * 2) % 10 = 2

8918 49

Insert the following values into the Hash Table using a hashFunction of % table size and

quadratic probing to resolve collisions

89, 18, 49, 58, 79, 27

58 79

(79 % 10 + 0 * 0) % 10 = 9

(79 % 10 + 1 * 1) % 10 = 0

(79 % 10 + 2 * 2) % 10 = 3

Problems:
If λ≥ ½ we might never find an empty spot

Infinite loop!

Can still get clusters

27

Now try to insert 9.

Uh-oh

Quadratic Probing
There were empty spots. What gives?

Quadratic probing is not guaranteed to check every possible spot in the hash table.

The following is true:

Notice we have to assume ! is prime to get that guarantee.

If the table size is a prime number !, then the first !/2 probes check
distinct indices.

Secondary Clustering

CSE 373 SP 18 - KASEY CHAMPION 22

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and
quadratic probing to resolve collisions
19, 39, 29, 9

39 29 199

Secondary Clustering
When using quadratic probing sometimes need
to probe the same sequence of table cells, not
necessarily next to one another

3 Minutes

Probing
- h(k) = the natural hash
- h’(k, i) = resulting hash after probing
- i = iteration of the probe
- T = table size

Linear Probing:
h’(k, i) = (h(k) + i) % T

Quadratic Probing
h’(k, i) = (h(k) + i2) % T

CSE 373 SP 18 - KASEY CHAMPION 23

Questions

24

Topics Covered:
- Writing good hash functions
- Open addressing to resolve collisions:

- Linear probing
- Quadratic probing

CSE 373 20 SP – CHAMPION & CHUN

Double Hashing
Probing causes us to check the same indices over and over- can we check different ones instead?

Use a second hash function!
h’(k, i) = (h(k) + i * g(k)) % T

int findFinalLocation(Key s)
int naturalHash = this.getHash(s);
int index = natrualHash % TableSize;
while (index in use) {

i++;
index = (naturalHash + i*jumpHash(s)) % TableSize;

}
return index;

CSE 373 SP 18 - KASEY CHAMPION 25

<- Most effective if g(k) returns value relatively prime to table size

Second Hash Function
Effective if g(k) returns a value that is relatively prime to table size
- If T is a power of 2, make g(k) return an odd integer
- If T is a prime, make g(k) return anything except a multiple of the TableSize

CSE 373 SP 18 - KASEY CHAMPION 26

Resizing: Open Addressing
How do we resize? Same as separate chaining
- Remake the table
- Evaluate the hash function over again.
- Re-insert.

When to resize?
- Depending on our load factor ! AND our probing strategy.
-Hard Maximums:

- If ! = 1, put with a new key fails for linear probing.
- If ! > 1/2 put with a new key might fail for quadratic probing, even with a prime tableSize

- And it might fail earlier with a non-prime size.
- If ! = 1 put with a new key fails for double hashing

- And it might fail earlier if the second hash isn’t relatively prime with the tableSize

What are the running times for:
insert

Best: Θ(1)
Worst: Θ(%) (we have to make sure the key isn’t already in the bucket.)

find
Best: Θ(1)
Worst: Θ &(%)

delete
Best: Θ(1)
Worst: Θ(%)

Running Times

CSE 332 SU 18 – ROBBIE WEBER

In-Practice
For open addressing:

We’ll assume you’ve set ! appropriately, and that all the operations are Θ 1 .

The actual dependence on ! is complicated – see the textbook (or ask on piazza)

And the explanations are well-beyond the scope of this course.

Summary
1. Pick a hash function to:
- Avoid collisions
- Uniformly distribute data
- Reduce hash computational costs

2. Pick a collision strategy
- Chaining

- LinkedList
- AVL Tree

- Probing
- Linear
- Quadratic
- Double Hashing

CSE 373 SP 18 - KASEY CHAMPION 30

No clustering
Potentially more “compact” (λ can be higher)

Managing clustering can be tricky
Less compact (keep λ < ½)
Array lookups tend to be a constant factor faster than traversing pointers

Summary

Separate Chaining
- Easy to implement
- Running times !(1 + %) in practice

Open Addressing
- Uses less memory (usually).
- Various schemes:
- Linear Probing – easiest, but lots of clusters
- Quadratic Probing – middle ground, but need to be more careful about %.
- Double Hashing – need a whole new hash function, but low chance of clustering.

Which you use depends on your application and what you’re worried about.

Extra optimizations

Idea 1: Take in better keys
- Really up to your client, but if you can control them, do!

Idea 2: Optimize the bucket
- Use an AVL tree instead of a Linked List
- Java starts off as a linked list then converts to AVL tree when buckets get large

Idea 3: Modify the array’s internal capacity
- When load factor gets too high, resize array

- Increase array size to next prime number that’s roughly double the array size
- Let the client fine-tune the ! that causes you to resize

CSE 373 SP 18 - KASEY CHAMPION 32

Other Hashing Applications

We use it for hash tables but there are lots of uses! Hashing is a really good way of taking arbitrary
data and creating a succinct and unique summary of data.

33CSE 373 20 WI – HANNAH TANG

Cryptography
Hashing also ”hides” the data by translating it, this can be
used for security
§ For password verification: Storing passwords in

plaintext is insecure. So your passwords are stored as
a hash

§ Digital signatures

Fingerprinting
git hashes (“identification”)
§ That crazy number that is attached to each of your

commits
§ SHA-1 hash incorporates the contents of your change, the

name of the files and the lines of the files you changes
Ad Tracking
§ track who has seen an ad if they saw it on a different

device (if they saw it on their phone don’t want to show it
on their laptop)

§ https://panopticlick.eff.org will show you what is being
hashed about you

YouTube Content ID
§ Do two files contain the same thing? Copyright

infringement
§ Change the files a bit!

Caching
§ you’ve downloaded a large video file, You want to

know if a new version is available, Rather than re-
downloading the entire file, compare your file’s
hash value with the server's hash value.

File Verification / Error Checking:
§ compare the hash of a file instead of the file itself
§ Find similar substrings in a large collection of

strings – detecting plagiarism

https://panopticlick.eff.org/

