Lecture 8: Hash Maps (with separate chaining) CSE 373: Data Structures and Algorithms ## Warm Up! Keep an eye on loop bounds! Write a mathematical model of the following code ### Take 2 Minutes - www.pollev.com/cse373 activity for participating in our active learning questions. - 2. https://www.pollev.com/cse373studentqs to ask your own questions Which of the following is a mathematical model for the runtime of the code given? a.) $$f(n) = 2n$$ $$b.) \quad f(n) = n + n$$ $$f(n) = n^2$$ **d.)** $$f(n) = \sum_{i=n}^{n-1} \sum_{j=0}^{j-1} 1$$ ## **Modeling Complex Loops** ``` for (int i = 0; i < n; i++) { for (int j = 0; j < i; j++) { System.out.print("Hello! "); +1 } Sysem.out.println(); }</pre> ``` $$T(n) = (0 + 1 + 2 + 3 + ... + i-1)$$ How do we model this part? Summations! $$1 + 2 + 3 + 4 + ... + n = \sum_{i=1}^{n} i$$ #### **Definition: Summation** $$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + f(a+2) + \dots + f(b-2) + f(b-1) + f(b)$$ T(n) = $$\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$ What is the Big O? ## Simplifying Summations Find closed form using summation identities (given on exams) for (int $$i = 0$$; $i < n$; $i++$) { for (int $j = 0$; $j < i$; $j++$) { System.out.println("Hello!"); } $$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$ closed form tight big O $$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1 \qquad = \sum_{i=0}^{n-1} 1 \cdot i$$ $$=1\sum_{i=0}^{n-1}i$$ $$=\frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n = \mathbf{0}(n^2)$$ Summation of a constant $$\sum_{i=0}^{n-1} c = cn$$ Factoring out a constant $$\sum_{i=a}^{b} cf(i) = c \sum_{i=a}^{b} f(i) \qquad \sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}$$ Gauss's Identity $$\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}$$ ## Traversing Data ``` Array for (int i = 0; i < arr.length; i++) { System.out.println(arr[i]); List for (int i = 0; i < myList.size(); i++) { System.out.println(myList.get(i)); Iterator! for (T item : list) { System.out.println(item); ``` ## Review: Iterators **iterator**: a Java interface that dictates how a collection of data should be traversed. Can only move in the forward direction and in a single pass. #### Iterator Interface #### behavior hasNext() - true if elements remain next() - returns next element #### supported operations: hasNext() – returns true if the iteration has more elements yet to be examined **next()** – returns the next element in the iteration and moves the iterator forward to next item ## Implementing an Iterator ## Administrivia ## Project 1 Due today - Experiments are also partner work submit via canvas - Individual Feedback on canvas for extra credit #### Project 2 out today - Due Wednesday April 29th (two weeks) ### Midterm next Friday - But we need your feedback ### Need feedback on remote logistics - Survey for extra credit #### **Current Exam Format Proposal** - 1 hour exam - 24 hour open window - 2 hour completion time from start - On Canvas ## Questions ## Roadmap for lecture content today - Maps/Dictionary review - DirectAccessMap - a map implemented with an array with only integer keys - SimpleHashMap - a more flexible version of DirectAccessMap that uses a hash function on the key of interest to figure out where it is in the array - SeparateChainingHashMap - fixes some limitations of the above Maps while still being very fast (in-practice). - It's what you'll implement in project 2 / what Java's official HashMap does -- it's the back-bone data structure that powers so many Java programs and that you will definitely use if you keep programming. Get hyped! ## Dictionaries (aka Maps) Every Programmer's Best Friend You'll probably use one in almost every programming project. - Because it's hard to make a big project without needing one sooner or later. ``` // two types of Map implementations supposedly covered in CSE 143 Map<String, Integer> map1 = new HashMap<>(); Map<String, String> map2 = new TreeMap<>(); ``` ## Review: Maps map: Holds a set of distinct *keys* and a collection of *values*, where each key is associated with one value. - a.k.a. "dictionary" ## Dictionary ADT #### state Set of items & keys Count of items #### behavior put(key, item) add item to collection indexed with key get(key) return item associated with key containsKey(key) return if key already in use remove(key) remove item and associated key size() return count of items ### supported operations: - put(key, value): Adds a given item into collection with associated key, - if the map previously had a mapping for the given key, old value is replaced. - get(key): Retrieves the value mapped to the key - containsKey(key): returns true if key is already associated with value in map, false otherwise - remove(key): Removes the given key and its mapped value ## Implementing a Map with an Array #### Map ADT #### state Set of items & keys Count of items #### behavior put(key, item) add item to collection indexed with key get(key) return item associated with key containsKey(key) return if key already in use remove(key) remove item and associated key size() return count of items #### ArrayMap < K, V > #### state Pair<K, V>[] data #### behavior dictionary put find key, overwrite value if there. Otherwise create new pair, add to next available spot, grow array if necessary get scan all pairs looking for given key, return associated item if found containsKey scan all pairs, return if key is found remove scan all pairs, replace pair to be removed with last pair in collection ## Big O Analysis – (if key is the last one looked at / not in the dictionary) put() O(N) linear get() O(N) linear containsKey() O(N) linear remove() O(N) linear size() O(1) constant ## Big O Analysis – (if the key is the first one looked at) put() O(1) constant get() O(1) constant containsKey() O(1) constant remove() O(1) constant size() O(1) constant containsKey('c') get('d') put('b', 97) put('e', 20) 0 1 2 3 4 ('a', 1) ('b' 97) ('c', 3) ('d', 4) ('e', 20) size return count of items in COE 3/3 TA 20 - KORRIE MEREK ## Implementing a Map with Nodes #### Map ADT #### state Set of items & keys Count of items #### behavior put(key, item) add item to collection indexed with key get(key) return item associated with key containsKey(key) return if key already in use remove(key) remove item and associated key size() return count of items containsKey('c') get('d') put('b', 20) ## LinkedMap<K, V> #### state front size #### behavior dictionary put if key is unused, create new with pair, add to front of list, else replace with new value get scan all pairs looking for given key, return associated item if found containsKey scan all pairs, return if key is found remove scan all pairs, skip pair to be removed size return count of items in ## Big O Analysis – (if key is the last one looked at / not in the dictionary) put() O(N) linear get() O(N) linear containsKey() O(N) linear remove() O(N) linear size() O(1) constant ## Big O Analysis – (if the key is the first one looked at) put() O(1) constant qet() O(1) constant containsKey() O(1) constant remove() O(1) constant Size() O(1) constant CSE 373 19 SU - ROBBIE WEBER ## Can we do better? Let's simplify the problem we're working with + combine it with some facts about arrays. - problem simplification: only worry about supporting integer keys - array facts: accessing (data[i]) or updating an element (data[i] = ...) at a given index takes Theta(1) runtime. - If we store the Key-Value pairs at the data[key] then we don't have to do any looping to find it. For example consider `containsKey` or `get` -- we can just jump directly to data[key] to figure out the return answer. ## DirectAccessMap < Integer, V > #### state Data[] size #### behavior put put item at given index get get item at given index containsKey if data[] null at index, return false, return true otherwise remove nullify element at index size return count of items in dictionary ## Can we do better? Let's simplify the problem we're working with + combine it with some facts about arrays. - problem simplification: only worry about supporting integer keys - array facts: accessing (data[i]) or updating an element (data[i] = ...) at a given index takes Theta(1) runtime. - If we store the Key-Value pairs at the data[key] then we don't have to do any looping to find it. For example consider `containsKey` or `get` -- we can just jump directly to data[key] to figure out the return answer. ## DirectAccessMap < Integer, V > #### state Data[] #### behavior put put item at given index get get item at given index containsKey if data[] null at index, return false, return true otherwise remove nullify element at index size return count of items in dictionary | indices | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---------|---|---|---|---|---|---|---|---|---|---| | data | | | | | | | | | | | ``` put(3, "Sherdil"); get(3); ``` ## Can we do better? Let's simplify the problem we're working with + combine it with some facts about arrays. - problem simplification: only worry about supporting integer keys - array facts: accessing (data[i]) or updating an element (data[i] = ...) at a given index takes Theta(1) runtime. - If we store the Key-Value pairs at the data[key] then we don't have to do any looping to find it. For example consider `containsKey` or `get` -- we can just jump directly to data[key] to figure out the return answer. ## DirectAccessMap < Integer, V > #### state Data[] size #### behavior put put item at given index get get item at given index containsKey if data[] null at index, return false, return true otherwise remove nullify element at index size return count of items in dictionary | indices | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---------|---|---|---|--------------|---|---|---|---|---|---| | data | | | | (3, Sherdil) | | | | | | | ``` put(3, "Sherdil"); get(3); ``` Can we do better? -- Direct Access Map impl. ``` public void put(int key, V value) { this.array[key] = value; public boolean containsKey(int key) return this.array[key] != null; public V get(int key) { return this.array[key]; public void remove(int key) { this.array[key] = null; ``` ### DirectAccessMap < Integer, V > #### state Data[] size #### behavior put put item at given index get get item at given index containsKey if data[] null at index, return false, return true otherwise remove nullify element at index size return count of items in dictionary | Opera | Array w/ indices as
keys | | |-------------------|-----------------------------|------| | put(kov valua) | best | Θ(1) | | put(key,value) | worst | Θ(1) | | oro#/kov/) | best | Θ(1) | | get(key) | worst | Θ(1) | | containe Kov/kov/ | best | Θ(1) | | containsKey(key) | worst | Θ(1) | ## Direct Access Map tradeoffs: take 1 seconds to review what DirectAccessMap is in your notes and send some ideas in the activity polleverywhere: - what's a benefit of using DirectAccessMap? - what's a bad thing when using DirectAccessMap? - wasted space - what if we want to store two key: 0 and 99999999999? Our current setup would just be wasting all that array space in-between - Only integer keys - kind of annoying that we could only have this for ints, but being able to quickly go from the key to the array index is super valuable because it's array lookups are fast (constant time). When we can just jump to the right position, we avoid the looping that ArrayMap/LinkedMap had to do where you might have to loop and look at every element. We'll keep this core idea of "knowing the index" and jumping there right away for all the versions of the dictionaries we talk about today. - \odot super fast though: $\Theta(1)$ runtime for everything ## Can we do this for any integer? #### Idea 1: Create a GIANT array with every possible integer as an index #### Problems: - Can we allocate an array big enough? - Super wasteful # 5000 1 202 202 202 202 5000 5000 ... 900007 900007 #### Idea 2: Create a smaller array, but create a way to translate given integer keys into available indices. Way less wasteful space-wise. #### Problem: - How can we pick a good translation? ## Hash functions: translating a piece of data to an int #### Hash function definition A hash function is any function that can be used to map data of arbitrary size to fixed-size values. In our case: we want to translate int keys to a valid index in our array. If our array is length 10 but our input key is 500, we need to make sure we have a way of mapping that to a number between 0 and 9 (the valid indices for a length 10 array). This mapping that we decide on is a **hash function**. One simple thing we can do (and that you will do when you implement this in your project): Hash function: take your key and % it by the length of the array. ex: key is 500, and array is length 10 – if you take 500 % 10, you will get the number 0, so we'd just plop 500 and it's value at index 0. ## "review": Integer remainder with % "mod" The % operator computes the remainder from integer division. $$14 \% 4 \text{ is } 2$$ $$4 \frac{3}{14}$$ 218 % 5 **is** 3 ## Applications of % operator: - Obtain last digit of a number: 230857 % 10 is 7 - See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0 - Limit integers to specific range: 8 % 12 is 8, 18 % 12 is 6 Limit keys to indices within array ## First Hash Function: % table size | indices | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |----------|-------|-------|---|---|---|-------|---|---|-------|---| | elements | "foo" | "biz" | | | | "bar" | | | "bop" | | ``` put(0, "foo"); 0 % 10 = 0 put(5, "bar"); 5 % 10 = 5 put(11, "biz") 11 % 10 = 1 put(18, "bop"); 18 % 10 = 8 ``` ## Implement First Hash Function ``` public void put(int key, int value) { data[hashToValidIndex(key)] = value; } public V get(int key) { return data[hashToValidIndex(key)]; } ``` ``` public int hashToValidIndex(int k) { return k % this.data.length; } ``` Note: % is just a math operator like +, -, /, *, so it's constant runtime ### SimpleHashMap < Integer > #### state Data[] size behavior put mod key by table size, put item at result get mod key by table size, get item at result containsKey mod key by table size, return data[result] == null remove mod key by table size, nullify element at result size return count of items in dictionary | Opera | Array w/ indices as keys | | | |----------------|--------------------------|------|--| | put/kovvelue) | best | Θ(1) | | | put(key,value) | worst | Θ(1) | | | | best | Θ(1) | | | get(key) | worst | Θ(1) | | | containsKey(ke | best | Θ(1) | | | у) | worst | Θ(1) | | ## Questions? ### things we talked about: - review of ArrayMap + LinkedMap - DirectAccessMap - % as a hash function andSimpleHashMap ## First Hash Function: % table size ``` indices 0 1 2 3 4 5 6 7 8 9 elements ":("' "biz" "bar" "bop" ``` ## Hash Obsession: Collisions Collision: multiple keys translate to the same location of the array Future big idea: the fewer the collisions, the better the runtime! (we'll see this when we figure out that resolving these leads to worse runtime) ## Two questions: - 1. When we have a collision, how do we resolve it? - 2. How do we minimize the number of collisions? ## Roadmap for lecture content today - Maps/Dictionary review - DirectAccessMap - a map implemented with an array with only integer keys - SimpleHashMap - a more flexible version of DirectAccessMap that uses a hash function on the key of interest to figure out where it is in the array ## SeparateChainingHashMap - fixes some limitations of the above Maps while still being very fast (in-practice). - It's what you'll implement in project 2 / what Java's official HashMap does -- it's the back-bone data structure that powers so many Java programs and that you will definitely use if you keep programming. Get hyped! ## Strategies to handle hash collision There are multiple strategies. In this class, we'll cover the following ones: - 1. Separate chaining - 2. Open addressing - Linear probing - Quadratic probing - Double hashing ## Separate chaining ## **Solution 1: Separate Chaining** Each index in our array represents a "bucket". When an item x hashes to index h: - If the bucket at index h is empty: create a new list containing x - If the bucket at index h is already a list: add x if it is not already present #### in other words: If multiple things hash to the same index, then we'll just put all of those in that same index bucket. Often, you'll see the data structure chosen is a linked-list like structure. indices ## Separate chaining put/get/containsKey are all very similar, and almost always will Reminder: the implementations of have the same complexity class runtime ``` // some pseudocode public boolean containsKey(int key) { int bucketIndex = key % data.length; loop through data[bucketIndex] return true if we find the key in data[bucketIndex] return false if we get to here (didn't find it) ``` ## indices ## Separate chaining put/get/containsKey are all very similar, and almost always will Reminder: the implementations of have the same complexity class runtime ``` // some pseudocode public boolean containsKey(int key) { int bucketIndex = key % data.length; loop through data[bucketIndex] return true if we find the key in data[bucketIndex] return false if we get to here (didn't find it) ``` runtime analysis: Take a second to think about this question: are there different possible states for our Hash Map that make this code run slower/faster, assuming there are already n key-value pairs being stored? ## indices ## Separate chaining put/get/containsKey are all very similar, and almost always will Reminder: the implementations of have the same complexity class runtime ``` // some pseudocode public boolean containsKey(int key) { int bucketIndex = key % data.length; loop through data[bucketIndex] return true if we find the key in data[bucketIndex] return false if we get to here (didn't find it) ``` runtime analysis: Take a second to think about this question: are there different possible states for our Hash Map that make this code run slower/faster, assuming there are already n key-value pairs being stored? ## indices Yes! If we had to do a lot of loop iterations to find the key in the bucket, our code will run slower. ## A worst case situation for separate chaining (15, e) (75, g) (115, bb) We'd have to go to index 5 and check all n elements in the bucket to see if they were the key `555`. Note: we lost our $\Theta(1)$ worst-case runtime from DirectAccessMap when we have to deal with collisions, but we'll see in a bit how to prevent this situation as best we can. ## A best case situation for separate chaining It's possible (and likely if you follow some best-practices) that everything is spread out across the buckets pretty evenly. This is the opposite of the last slide: when we have minimal collisions, our runtime should be less. For example, if we have a bucket with only 0 or 1 element in it, checking containsKey for something in that bucket will only take a constant amount of time. We're going to try a lot of stuff we can to make it more likely we achieve this beautiful state ©. ## In-practice situations for separate chaining Generally we can achieve something close to the best case situation from the previous slide and maintain our Hash Map so that every bucket only has a small constant number of items. There may be some outliers that have slightly more buckets, but generally if we follow all the best practices, the runtime will still be $\Theta(1)$ for most cases! (The worst case is still $\Theta(n)$ but again, we'll try really hard to prevent that) | Оре | Operation | | | | | | |----------------|------------------|------|--|--|--|--| | | best | Θ(1) | | | | | | put(key,value) | In-practice | Θ(1) | | | | | | | worst | Θ(n) | | | | | | | In-practice | Θ(1) | | | | | | get(key) | average | Θ(1) | | | | | | | worst | Θ(n) | | | | | | | best | Θ(1) | | | | | | remove(key) | In-practice | Θ(1) | | | | | | | worst | Θ(n) | | | | | Reminder: the in-practice runtimes are assuming an even distribution of the keys inside the array and following of best-practices to ensure the average chain length is low. ## Best practices (pay attention to this for the hw) - what about resizing? - for data structures like ArrayMap or ArrayList or ArrayStack we had to resize when we're full just because we couldn't store any more things! But our Separate Chaining Hash Map is a little bit different: we aren't ever *forced* to resize our main array, since the buckets are flexible size. It turns out we still want to resize "every so often" to make sure the average/expected length of each bucket is a small number. Consider what happens if we had the array length 10 like on the left, but had 100 key-value pairs? Assuming our in-practice niceness (not-worst case) you would expect on average each of the 10 buckets has about 10 key-value pairs in it. What happens if we stick with the same size array but add 100 more key-value pairs? Each bucket gets about 10 more –key-value pairs and the runtime is getting worse and worse. ## Best practices (pay attention to this for the hw) It turns out we still want to resize "every so often" to make sure the average/expected length of each bucket is a small number. Consider what happens if we had the array length 10 like on the left, but had 100 key-value pairs? Assuming our in-practice niceness (not-worst case) you would expect on average each of the 10 buckets has about 10 key-value pairs in it. What happens if we stick with the same size array but add 100 more key-value pairs? Each bucket gets about 10 more –key-value pairs and the runtime is getting worse and worse. The pattern we're getting to is that the expected runtime is approximately: # of pairs / array.length (AKA n / c where n is the number of elements and c is the number of possible chains). If array.length is fixed for your whole program, then this is an order-n runtime, but if the array.length also increases (because you re-size) and you redistribute out the values evenly across the buckets, you can keep your runtime low. In particular, if you resize when when your n / c ratio increases to about 1, you're expected to have 1 element or fewer in each bucket at all times. (do this on your homework). Tip: make sure you re-hash (re-distribute) your keys by the new array length after re-sizing so they don't get clustered in the old array length range. ## Lambda + resizing rephrased To be more precise, the in-practice runtime depends on λ , the current average chain length. However, if you resize once you hit that 1:1 threshold, the current λ is expected to be less than 1 (which is a constant / constant runtime, so we can simplify to O(1)). | Oper | Operation | | | | | |----------------|------------------|-------------------------------|--|--|--| | | best | Θ(1) | | | | | put(key,value) | In-practice | $\Theta(\lambda) = \Theta(1)$ | | | | | | worst | Θ(n) | | | | | | best | Θ(1) | | | | | get(key) | in-practice | $\Theta(\lambda) = \Theta(1)$ | | | | | | worst | Θ(n) | | | | | | best | Θ(1) | | | | | remove(key) | In-practice | $\Theta(\lambda) = \Theta(1)$ | | | | | | worst | Θ(n) | | | | #### "In-Practice" Case: Depends on average number of elements per chain #### Load Factor λ If n is the total number of keyvalue pairs Let c be the capacity of array Load Factor $\lambda = \frac{n}{c}$ ## What about non integer keys? #### Hash function definition A hash function is any function that can be used to map data of arbitrary size to fixed-size values. Let's use define another hash function to change stuff like Strings into ints! ### Best practices for designing hash functions: #### **Avoid collisions** - The more collisions, the further we move away from $O(1+\lambda)$ - Produce a wide range of indices, and distribute evenly over them #### Low computational costs - Hash function is called every time we want to interact with the data # (Before we % by length, we have to convert the data into an int) ``` Implementation 1: Simple aspect of values Pro: super fast public int hashCode(String input) { return input.length(); Con: lots of collisions! Implementation 2: More aspects of value public int hashCode(String input) { int output = 0; for(char c : input) { Pro: still really fast out += (int)c; Con: some collisions return output; Implementation 3: Multiple aspects of value + math! public int hashCode(String input) { int output = 1; Pro: few collisions for (char c : input) { Con: slow, gigantic integers int nextPrime = getNextPrime(); out *= Math.pow(nextPrime, (int)c); return Math.pow(nextPrime, input.length()); ``` ## Java's hashCode (relevant for project) • Luckily, most of these design decisions have been made for us by smart people. All objects in java come with a `hashCode()` method that does some magic (see previous slide for the not-magic version) to turn any object type (like String, ArrayList, Point, Scanner) into an integer. These hashCodes are designed to distribute pretty evenly / not have lots of collisions, so we use them as the starting point for determining the bucket index. - high level steps to figure out which bucket a key goes into - call the key.hashCode() to get an int representation of the object - % by the array table length to convert it to a valid index for your hash map # Best practices for an nice distribution of keys recap - resize when lambda (number of elements / number of buckets) increases up to 1 - when you resize, you can choose a the table length that will help reduce collisions if you multiply the array length by 2 and then choose the nearest prime number - design the hashCode of your keys to be somewhat complex and lead to a distribution of different output numbers ## **Practice** Consider an Integer Dictionary using separate chaining with an internal capacity of 10. Assume our buckets are implemented using a LinkedList where we append new key-value pairs to the end. Now, suppose we insert the following key-value pairs. What does the dictionary internally look like? (1, a) (5,b) (11,a) (7,d) (12,e) (17,f) (1,g) (25,h) ## **Practice** Consider a StringDictionary using separate chaining with an internal capacity of 10. Assume our buckets are implemented using a LinkedList. Use the following hash function: ``` public int hashCode(String input) { return input.length() % arr.length; } ``` Now, insert the following key-value pairs. What does the dictionary internally look like? ("a", 1) ("ab", 2) ("c", 3) ("abc", 4) ("abcd", 5) ("abcdabcd", 6) ("five", 7) ("hello world", 8) ## Java and Hash Functions Object class includes default functionality: - equals - hashCode If you want to implement your own hashCode you should: Override BOTH hashCode() and equals() If a.equals(b) is true then a.hashCode() == b.hashCode() MUST also be true That requirement is part of the Object interface. Other people's code will assume you've followed this rule. Java's HashMap (and HashSet) will assume you follow these rules and conventions for your custom objects if you want to use your custom objects as keys.