
Lecture 8: Hash Maps
(with separate chaining)

CSE 373: Data Structures and
Algorithms

1

Warm Up!

2

Take 2 Minutes
1. www.pollev.com/cse373

activity for participating
in our active learning
questions.

2. https://www.pollev.com
/cse373studentqs to ask
your own questions

CSE 373 SP 20 – CHUN & CHAMPION

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

Write a mathematical model of the following code

Which of the following is a mathematical model for the runtime of the code given?
! " = 2"

! " = " + "

! " = "&

! " = '
()*

*+,
'
-).

-+,
1

+1

f(n) = n2

Keep an eye on loop bounds!

nn

a.)

b.)

c.)

d.)

http://www.pollev.com/cse373activity
https://www.pollev.com/cse373studentqs

Modeling Complex Loops
for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {
System.out.print(“Hello! ”);

}
Sysem.out.println();

}

3

+1 0 + 1 + 2 + 3 +…+ i-1 n

Summations!
1 + 2 + 3 + 4 +… + n = !

"#$

%
& = f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

!
"#'

(
)(&)

T(n) = !
"#,

%-$
!
.#,

"-$
1

T(n) = (0 + 1 + 2 + 3 +…+ i-1)

How do we
model this part?

What is the Big O?

CSE 373 19 WI - KASEY CHAMPION

Simplifying Summations

CSE 373 19 SP – KASEY CHAMPION (THANKS TO MICHAEL LEE) 4

! " = $
%&'

()*
$
+&'

%)*
1

= $
%&'

()*
1�- = 1$

%&'

()*
- = " " − 1

2

Summation of a constant

$
%&'

()*
0 = 0"

Factoring out a constant

$
%&1

2
03 - = 0$

%&1

2
3(-)

Gauss’s Identity

$
%&'

()*
- = " " − 1

2

= 1
2"

6 − 12"

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

Find closed form using
summation identities

(given on exams)

closed form simplified
tight big O

! " = $
%&'

()*
$
+&'

%)*
1 = 7(89)

https://courses.cs.washington.edu/courses/cse373/19sp/resources/math/summation/

Traversing Data
Array
for (int i = 0; i < arr.length; i++) {

System.out.println(arr[i]);

}

List
for (int i = 0; i < myList.size(); i++) {

System.out.println(myList.get(i));

}

for (T item : list) {

System.out.println(item);

}

CSE 373 SP 18 - KASEY CHAMPION 5

Iterator!

Review: Iterators
iterator: a Java interface that dictates how a collection of data should be traversed. Can only
move in the forward direction and in a single pass.

6

Iterator Interface

hasNext() – true if elements
remain
next() – returns next element

behavior

supported operations:

hasNext() – returns true if the iteration has more elements yet to be
examined

next() – returns the next element in the iteration and moves the iterator
forward to next item

ArrayList<Integer> list = new ArrayList<Integer>();
//fill up list

Iterator itr = list.iterator();
while (itr.hasNext()) {

int item = itr.next();
}

ArrayList<Integer> list = new ArrayList<Integer>();
//fill up list

for (int i : list) {
int item = i;

}

CSE 373 19 WI - KASEY CHAMPION

Implementing an Iterator
hasNext()

7

next()

23 14front

itr

true

itr

itr

itr

23 14front false

23 14front 4

23 14front 2
CSE 373 19 WI - KASEY CHAMPION

Result

Administrivia
Project 1 Due today
- Experiments are also partner work – submit via canvas
- Individual Feedback on canvas for extra credit

Project 2 out today
- Due Wednesday April 29th (two weeks)

Midterm next Friday
- But we need your feedback

Need feedback on remote logistics
- Survey for extra credit

8CSE 373 20 SP – CHAMPION & CHUN

Current Exam Format Proposal
1 hour exam
24 hour open window
2 hour completion time from start
On Canvas

Questions

9CSE 373 20 SP – CHAMPION & CHUN

Roadmap for lecture content today
§ Maps/Dictionary review

§ DirectAccessMap
§a map implemented with an array with only integer keys

§ SimpleHashMap
§a more flexible version of DirectAccessMap that uses a hash function on the key of interest to figure out where it is

in the array

§ SeparateChainingHashMap
§ fixes some limitations of the above Maps while still being very fast (in-practice).
§ It’s what you’ll implement in project 2 / what Java’s official HashMap does -- it’s the back-bone data structure that

powers so many Java programs and that you will definitely use if you keep programming. Get hyped!

Dictionaries (aka Maps)
Every Programmer’s Best Friend

You’ll probably use one in almost every programming project.
- Because it’s hard to make a big project without needing one sooner or later.

CSE 373 19 SU - ROBBIE WEBER

// two types of Map implementations supposedly covered in CSE 143
Map<String, Integer> map1 = new HashMap<>();
Map<String, String> map2 = new TreeMap<>();

Review: Maps
map: Holds a set of distinct keys and a collection of
values, where each key is associated with one value.
- a.k.a. "dictionary"

CSE 373 19 SU - ROBBIE WEBER

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior
Set of items & keys
Count of items

supported operations:
- put(key, value): Adds a given item into

collection with associated key,
- if the map previously had a mapping for

the given key, old value is replaced.
- get(key): Retrieves the value mapped to the

key
- containsKey(key): returns true if key is

already associated with value in map, false
otherwise

- remove(key): Removes the given key and its
mapped value

Implementing a Map with an Array
ArrayMap<K, V>

put find key, overwrite value if there.
Otherwise create new pair, add to next
available spot, grow array if necessary
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, replace pair to
be removed with last pair in collection
size return count of items in
dictionary

state

behavior

Pair<K, V>[] data

Big O Analysis – (if key is the last one looked
at / not in the dictionary)

put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

0 1 2 3
containsKey(‘c’)
get(‘d’)
put(‘b’, 97)
put(‘e’, 20)

(‘a’, 1) (‘b’, 2)

Map ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

(‘c’, 3)97) (‘d’, 4)
CSE 373 19 SU - ROBBIE WEBER

Big O Analysis – (if the key is the first one
looked at)

put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant

O(1) constant

O(1) constant

O(1) constant
4

(‘e’, 20)

Implementing a Map with Nodes
LinkedMap<K, V>

put if key is unused, create new with
pair, add to front of list, else
replace with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in
dictionary

state

behavior

front
size

containsKey(‘c’)
get(‘d’)
put(‘b’, 20)

Map ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

front

‘c’ 9‘b’ 7 ‘d’ 4‘a’ 1 20

CSE 373 19 SU - ROBBIE WEBER

Big O Analysis – (if key is the last one looked
at / not in the dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear
O(N) linear

O(N) linear

O(N) linear

Big O Analysis – (if the key is the first one
looked at)
put()

get()

containsKey()

remove()

size()
O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant

Can we do better?
Let’s simplify the problem we’re working with + combine it with some facts about
arrays.

§ problem simplification: only worry about supporting integer keys

§ array facts: accessing (data[i]) or updating an element (data[i] = …) at a
given index takes Theta(1) runtime.

§ If we store the Key-Value pairs at the data[key] then we don’t have to do any
looping to find it. For example consider `containsKey` or `get` -- we can just jump
directly to data[key] to figure out the return answer.

CSE 373 SU 19 - ROBBIE WEBER 15

DirectAccessMap<Integer, V>

put put item at given index
get get item at given index
containsKey if data[] null at
index, return false, return
true otherwise
remove nullify element at index
size return count of items in
dictionary

state

behavior

Data[]
size

Can we do better?
Let’s simplify the problem we’re working with + combine it with some facts about
arrays.

§ problem simplification: only worry about supporting integer keys

§ array facts: accessing (data[i]) or updating an element (data[i] = …) at a
given index takes Theta(1) runtime.

§ If we store the Key-Value pairs at the data[key] then we don’t have to do any
looping to find it. For example consider `containsKey` or `get` -- we can just jump
directly to data[key] to figure out the return answer.

CSE 373 SU 19 - ROBBIE WEBER 16

DirectAccessMap<Integer, V>

put put item at given index
get get item at given index
containsKey if data[] null at
index, return false, return
true otherwise
remove nullify element at index
size return count of items in
dictionary

state

behavior

Data[]
size

indices 0 1 2 3 4 5 6 7 8 9

data

put(3, “Sherdil”);
get(3);

Can we do better?
Let’s simplify the problem we’re working with + combine it with some facts about
arrays.

§ problem simplification: only worry about supporting integer keys

§ array facts: accessing (data[i]) or updating an element (data[i] = …) at a
given index takes Theta(1) runtime.

§ If we store the Key-Value pairs at the data[key] then we don’t have to do any
looping to find it. For example consider `containsKey` or `get` -- we can just jump
directly to data[key] to figure out the return answer.

CSE 373 SU 19 - ROBBIE WEBER 17

DirectAccessMap<Integer, V>

put put item at given index
get get item at given index
containsKey if data[] null at
index, return false, return
true otherwise
remove nullify element at index
size return count of items in
dictionary

state

behavior

Data[]
size

indices 0 1 2 3 4 5 6 7 8 9

data
(3, Sherdil)

put(3, “Sherdil”);
get(3);

Can we do better? -- Direct Access Map impl.
public void put(int key, V value) {

this.array[key] = value;
}

public boolean containsKey(int key) {
return this.array[key] != null;

}

public V get(int key) {
return this.array[key];

}

public void remove(int key) {
this.array[key] = null;

}

18

DirectAccessMap<Integer, V>

put put item at given index
get get item at given index
containsKey if data[] null at
index, return false, return true
otherwise
remove nullify element at index
size return count of items in
dictionary

state

behavior

Data[]
size

Operation Array w/ indices as
keys

put(key,value)
best Θ(1)
worst Θ(1)

get(key)
best Θ(1)
worst Θ(1)

containsKey(key)
best Θ(1)
worst Θ(1)

Direct Access Map tradeoffs:

§ L wasted space
§what if we want to store two key: 0 and 99999999999? Our current setup would just be wasting all that array space

in-between

§ L only integer keys
§ kind of annoying that we could only have this for ints, but being able to quickly go from the key to the array index is

super valuable because it’s array lookups are fast (constant time). When we can just jump to the right position, we
avoid the looping that ArrayMap/LinkedMap had to do where you might have to loop and look at every element.
We’ll keep this core idea of ”knowing the index” and jumping there right away for all the versions of the dictionaries
we talk about today.

§ J super fast though: Θ(1) runtime for everything

take 1 seconds to review what DirectAccessMap is in your notes and send some ideas in the activity polleverywhere:
- what’s a benefit of using DirectAccessMap?
- what’s a bad thing when using DirectAccessMap?

Can we do this for any integer?
Idea 1:
Create a GIANT array with every possible integer as
an index

Problems:
- Can we allocate an array big enough?
- Super wasteful

Idea 2:
Create a smaller array, but create a way to translate
given integer keys into available indices. Way less
wasteful space-wise.
Problem:
- How can we pick a good translation?

CSE 373 SU 19 - ROBBIE WEBER 20

202

5000

900007

1
2

202

5000

1

900007

0
indices

1

202

5000

900007

..

..

..

..

indices

1

202

5000

900007

1
2

0

7

202

900007

5000
1

2
3
4
5
6
7
8

1

9

0

Hash functions: translating a piece of data to an
int

In our case: we want to translate int keys to a valid index in our array. If our array is length 10 but
our input key is 500, we need to make sure we have a way of mapping that to a number between
0 and 9 (the valid indices for a length 10 array). This mapping that we decide on is a hash
function.

One simple thing we can do (and that you will do when you implement this in your project):

Hash function: take your key and % it by the length of the array.

ex: key is 500, and array is length 10 – if you take 500 % 10, you will get the number 0, so we’d
just plop 500 and it’s value at index 0.

Hash function definition

A hash function is any function that can be used to map data of arbitrary size to fixed-size values.

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_(computing)

“review”: Integer remainder with % “mod”
The % operator computes the remainder from integer division.
14 % 4 is 2

3 43
4) 14 5) 218

12 20
2 18

15
3

Applications of % operator:
- Obtain last digit of a number: 230857 % 10 is 7
- See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0
- Limit integers to specific range: 8 % 12 is 8, 18 % 12 is 6

CSE 142 SP 18 – BRETT WORTZMAN 22

218 % 5 is 3

For more review/practice, check out https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

Limit keys to indices
within array

Equivalently, to find a % b (for a,b > 0):
while(a > b-1)

a -= b;
return a;

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

First Hash Function: % table size

indices 0 1 2 3 4 5 6 7 8 9

elements

CSE 373 SU 19 - ROBBIE WEBER 23

put(0, “foo”);
put(5, “bar”);
put(11, “biz”)
put(18, “bop”);

“foo”

0 % 10 = 0
5 % 10 = 5
11 % 10 = 1
18 % 10 = 8

“bop”“bar”“biz”

Implement First Hash Function
public void put(int key, int value) {

data[hashToValidIndex(key)] = value;
}

public V get(int key) {
return data[hashToValidIndex(key)];

}

public int hashToValidIndex(int k) {
return k % this.data.length;

}

CSE 373 SU 19 - ROBBIE WEBER 24

SimpleHashMap<Integer>

put mod key by table size, put item at
result
get mod key by table size, get item at
result
containsKey mod key by table size,
return data[result] == null remove mod
key by table size, nullify element at
result
size return count of items in
dictionary

state

behavior

Data[]
size

Operation Array w/
indices as keys

put(key,value)
best Θ(1)

worst Θ(1)

get(key)
best Θ(1)

worst Θ(1)

containsKey(ke
y)

best Θ(1)

worst Θ(1)

Note: % is just a math operator like +, -, /, *, so it’s constant runtime

Questions?
things we talked about:
- review of ArrayMap + LinkedMap
- DirectAccessMap
- % as a hash function andSimpleHashMap

First Hash Function: % table size

indices 0 1 2 3 4 5 6 7 8 9

elements

CSE 373 SU 19 - ROBBIE WEBER 26

put(0, “foo”);
put(5, “bar”);
put(11, “biz”)
put(18, “bop”);
put(20, “:(”); Collision!

“foo”

0 % 10 = 0
5 % 10 = 5
11 % 10 = 1
18 % 10 = 8

20 % 10 = 0

“bop”“bar”“biz”“:(”

Hash Obsession: Collisions

Collision: multiple keys translate to the same location of the array

Future big idea: the fewer the collisions, the better the runtime! (we’ll see
this when we figure out that resolving these leads to worse runtime)

Two questions:
1. When we have a collision, how do we resolve it?

2. How do we minimize the number of collisions?

CSE 373 SU 19 - ROBBIE WEBER 27

Roadmap for lecture content today
§ Maps/Dictionary review

§ DirectAccessMap
§a map implemented with an array with only integer keys

§ SimpleHashMap
§a more flexible version of DirectAccessMap that uses a hash function on the key of interest to figure out where it is

in the array

§ SeparateChainingHashMap
§ fixes some limitations of the above Maps while still being very fast (in-practice).
§ It’s what you’ll implement in project 2 / what Java’s official HashMap does -- it’s the back-bone data structure that

powers so many Java programs and that you will definitely use if you keep programming. Get hyped!

There are multiple strategies. In this class, we’ll cover the following ones:

1. Separate chaining

2. Open addressing
- Linear probing
- Quadratic probing
- Double hashing

Strategies to handle hash collision

CSE 373 AU 18 – SHRI MARE 29

Separate chaining
Solution 1: Separate Chaining
Each index in our array represents a “bucket”. When an
item x hashes to index h:
- If the bucket at index h is empty: create a new list containing x
- If the bucket at index h is already a list: add x if it is not already

present

in other words:

If multiple things hash to the same index, then we’ll
just put all of those in that same index bucket. Often,
you’ll see the data structure chosen is a linked-list like
structure.

CSE 373 ROBBIE WEBER + HANNAH TANG 30

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7

44

21

Separate chaining
// some pseudocode

public boolean containsKey(int key) {

int bucketIndex = key % data.length;

loop through data[bucketIndex]

return true if we find the key in

data[bucketIndex]

return false if we get to here (didn’t

find it)

}

CSE 373 ROBBIE WEBER + HANNAH TANG 31

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7

44

21

Reminder: the implementations of
put/get/containsKey are all very
similar, and almost always will
have the same complexity class
runtime

Separate chaining
// some pseudocode

public boolean containsKey(int key) {

int bucketIndex = key % data.length;

loop through data[bucketIndex]

return true if we find the key in

data[bucketIndex]

return false if we get to here (didn’t

find it)

}

CSE 373 ROBBIE WEBER + HANNAH TANG 32

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7

44

21

runtime analysis: Take a second to think about this question: are there different
possible states for our Hash Map that make this code run slower/faster, assuming
there are already n key-value pairs being stored?

Reminder: the implementations of
put/get/containsKey are all very
similar, and almost always will
have the same complexity class
runtime

Separate chaining
// some pseudocode

public boolean containsKey(int key) {

int bucketIndex = key % data.length;

loop through data[bucketIndex]

return true if we find the key in

data[bucketIndex]

return false if we get to here (didn’t

find it)

}

CSE 373 ROBBIE WEBER + HANNAH TANG 33

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7

44

21

Yes! If we had to do a lot of loop iterations to find the key in the bucket, our code will run slower.

Reminder: the implementations of
put/get/containsKey are all very
similar, and almost always will
have the same complexity class
runtime

runtime analysis: Take a second to think about this question: are there different
possible states for our Hash Map that make this code run slower/faster, assuming
there are already n key-value pairs being stored?

A worst case situation for separate chaining
0 1 2 3 4 5 6 7 8 9

(5, b)

(25, h)

(35, c)

(95, d)

(45, a)

(15, e)

(115, bb)

(75, g)

It’s possible that everything (by chance) hashes to the same
bucket! (in other words: this is how collisions will hurt our
runtime)

If all n of our key-value pairs are in the same bucket,
containsKey could take Θ(n) runtime in the worst case.

Consider what happens if we ask `containsKey(555)` on this
dictionary?

We’d have to go to index 5 and check all n elements in the
bucket to see if they were the key `555`.

Note: we lost our Θ(1) worst-case runtime
from DirectAccessMap when we have to deal
with collisions, but we’ll see in a bit how to
prevent this situation as best we can.

// some pseudocode
public boolean containsKey(int key) {

int bucketIndex = key % data.length;
loop through data[bucketIndex]

return true if we find the key in
data[bucketIndex]

if we didn’t find it, return false
}

A best case situation for separate chaining
0 1 2 3 4 5 6 7 8 9

(0, b) (2, b) (3, b) (4, b) (5, b) (6, b) (7, b) (8, b)

It’s possible (and likely if you follow some best-practices) that everything is spread out across the buckets pretty evenly.
This is the opposite of the last slide: when we have minimal collisions, our runtime should be less. For example, if we have
a bucket with only 0 or 1 element in it, checking containsKey for something in that bucket will only take a constant amount
of time.

We’re going to try a lot of stuff we can to make it more likely we achieve this beautiful state J.

In-practice situations for separate chaining
Generally we can achieve something close to the best case situation from the previous slide and
maintain our Hash Map so that every bucket only has a small constant number of items. There
may be some outliers that have slightly more buckets, but generally if we follow all the best
practices, the runtime will still be Θ(1) for most cases!

(The worst case is still Θ(n) but again, we’ll try really hard to prevent that)

Operation Array w/ indices as keys

put(key,value)

best Θ(1)

In-practice Θ(1)

worst Θ(n)

get(key)

In-practice Θ(1)

average Θ(1)

worst Θ(n)

remove(key)

best Θ(1)

In-practice Θ(1)

worst Θ(n)

Reminder: the in-practice
runtimes are assuming an
even distribution of the
keys inside the array and
following of best-practices
to ensure the average
chain length is low.

Best practices (pay attention to this for the hw)

§ what about resizing?
§ for data structures like ArrayMap or ArrayList or ArrayStack we had to resize when we’re full just because we

couldn’t store any more things! But our Separate Chaining Hash Map is a little bit different: we aren’t ever forced to
resize our main array, since the buckets are flexible size.

It turns out we still want to resize “every so often” to
make sure the average/expected length of each bucket is
a small number.

Consider what happens if we had the array length 10 like
on the left, but had 100 key-value pairs?

Assuming our in-practice niceness (not-worst case) you
would expect on average each of the 10 buckets has
about 10 key-value pairs in it.

What happens if we stick with the same size array but
add 100 more key-value pairs? Each bucket gets about
10 more –key-value pairs and the runtime is getting
worse and worse.

Best practices (pay attention to this for the hw)
It turns out we still want to resize “every so often” to make sure the average/expected length of each
bucket is a small number.

Consider what happens if we had the array length 10 like on the left, but had 100 key-value pairs?

Assuming our in-practice niceness (not-worst case) you would expect on average each of the 10 buckets
has about 10 key-value pairs in it.

What happens if we stick with the same size array but add 100 more key-value pairs? Each bucket gets
about 10 more –key-value pairs and the runtime is getting worse and worse.

The pattern we’re getting to is that the expected runtime is approximately: # of pairs / array.length (AKA n
/ c where n is the number of elements and c is the number of possible chains). If array.length is fixed for
your whole program, then this is an order-n runtime, but if the array.length also increases (because you
re-size) and you redistribute out the values evenly across the buckets, you can keep your runtime low. In
particular, if you resize when when your n / c ratio increases to about 1, you’re expected to have 1
element or fewer in each bucket at all times. (do this on your homework).

Tip: make sure you re-hash (re-distribute) your keys by the new array length after re-sizing so they don’t
get clustered in the old array length range.

Lambda + resizing rephrased
To be more precise, the in-practice runtime depends on
λ, the current average chain length.

However, if you resize once you hit that 1:1 threshold, the
current λ is expected to be less than 1 (which is a constant
/ constant runtime, so we can simplify to O(1)).

CSE 373 SU 19 - ROBBIE WEBER 39

Operation Array w/ indices as keys

put(key,value)

best Θ(1)

In-practice Θ(λ) = Θ(1)

worst Θ(n)

get(key)

best Θ(1)

in-practice Θ(λ) = Θ(1)

worst Θ(n)

remove(key)

best Θ(1)

In-practice Θ(λ) = Θ(1)

worst Θ(n)

“In-Practice” Case:
Depends on average number of
elements per chain

Load Factor λ
If n is the total number of key-
value pairs
Let c be the capacity of array
Load Factor λ = "#

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7

44

21

What about non integer keys?

Let’s use define another hash function to change stuff like Strings into ints!

Best practices for designing hash functions:
Avoid collisions
- The more collisions, the further we move away from O(1+!)
- Produce a wide range of indices, and distribute evenly over them

Low computational costs
- Hash function is called every time we want to interact with the data

CSE 373 SU 19 - ROBBIE WEBER 40

Hash function definition

A hash function is any function that can be used to map data of arbitrary size to fixed-size values.

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_(computing)

(Before we % by length, we have to convert the
data into an int)
Implementation 1: Simple aspect of values
public int hashCode(String input) {

return input.length();
}

Implementation 2: More aspects of value
public int hashCode(String input) {

int output = 0;
for(char c : input) {

out += (int)c;
}
return output;

}

Implementation 3: Multiple aspects of value + math!
public int hashCode(String input) {

int output = 1;
for (char c : input) {

int nextPrime = getNextPrime();
out *= Math.pow(nextPrime, (int)c);

}
return Math.pow(nextPrime, input.length());

}

CSE 373 SU 19 - ROBBIE WEBER 41

Pro: super fast
Con: lots of collisions!

Pro: still really fast
Con: some collisions

Pro: few collisions
Con: slow, gigantic integers

Java’s hashCode (relevant for project)

§ Luckily, most of these design decisions have been made for us by smart people. All objects in
java come with a `hashCode()` method that does some magic (see previous slide for the not-
magic version) to turn any object type (like String, ArrayList, Point, Scanner) into an integer.
These hashCodes are designed to distribute pretty evenly / not have lots of collisions, so we use
them as the starting point for determining the bucket index.

§high level steps to figure out which bucket a key goes into
§ call the key.hashCode() to get an int representation of the object

§% by the array table length to convert it to a valid index for your hash map

Best practices for an nice distribution of keys
recap
§ resize when lambda (number of elements / number of buckets) increases up to 1

§ when you resize, you can choose a the table length that will help reduce collisions if you
multiply the array length by 2 and then choose the nearest prime number

§ design the hashCode of your keys to be somewhat complex and lead to a distribution of
different output numbers

Practice
Consider an IntegerDictionary using separate chaining with an internal capacity of 10.
Assume our buckets are implemented using a LinkedList where we append new key-value
pairs to the end.

Now, suppose we insert the following key-value pairs. What does the dictionary internally
look like?

(1, a) (5,b) (11,a) (7,d) (12,e) (17,f) (1,g) (25,h)

CSE 373 SU 19 - ROBBIE WEBER 44

0 1 2 3 4 5 6 7 8 9

(1, a) (5, b)

(11, a) (17, f)

(1, g) (12, e) (7, d)

(25, h)

3 Minutes

Practice
Consider a StringDictionary using separate chaining with an internal capacity of 10. Assume our
buckets are implemented using a LinkedList. Use the following hash function:

public int hashCode(String input) {
return input.length() % arr.length;

}

Now, insert the following key-value pairs. What does the dictionary internally look like?

(“a”, 1) (“ab”, 2) (“c”, 3) (“abc”, 4) (“abcd”, 5) (“abcdabcd”, 6) (“five”, 7) (“hello world”, 8)

CSE 373 SU 19 - ROBBIE WEBER 45

0 1 2 3 4 5 6 7 8 9

(“a”, 1) (“abcd”, 5)

(“c”, 3)

(“five”, 7)

(“abc”, 4)(“ab”, 2)

(“hello world”, 8)

(“abcdabcd”, 6)

3 Minutes

Java and Hash Functions
Object class includes default functionality:
- equals
- hashCode

If you want to implement your own hashCode you should:
- Override BOTH hashCode() and equals()

If a.equals(b) is true then a.hashCode() == b.hashCode() MUST also be true

That requirement is part of the Object interface.
Other people’s code will assume you’ve followed this rule.

Java’s HashMap (and HashSet) will assume you follow these rules and conventions for your
custom objects if you want to use your custom objects as keys.

CSE 373 SU 19 - ROBBIE WEBER 46

