
Lecture 6: Modeling
Complex Code

CSE 373: Data Structures and
Algorithms

1

Warm Up!

2

Take 2 Minutes

1. www.pollev.com/cse373
activity for participating
in our active learning
questions.

2. https://www.pollev.com
/cse373studentqs to ask
your own questions

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

𝑓1 𝑛 = 3"

𝑓2 𝑛 = 2𝑛# + 2

𝑓4 𝑛 = 7𝑛$ + 5𝑛

𝑓5 𝑛 = 5𝑛 + 1

𝑓3 𝑛 = 𝑛$ − 2𝑛 + 3

CSE 373 SP 20 – CHUN & CHAMPION

A. (answer this question A in the pollev)
which of the above functions are in O(𝑛$)?

B. which of the above functions are in Theta(𝑛$)?

http://www.pollev.com/cse373activity
https://www.pollev.com/cse373studentqs

Warm Up!

3

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

𝑓1 𝑛 = 3"

𝑓2 𝑛 = 2𝑛# + 2

𝑓4 𝑛 = 7𝑛$ + 5𝑛

𝑓5 𝑛 = 5𝑛 + 1

𝑓3 𝑛 = 𝑛$ − 2𝑛 + 3

CSE 373 SP 20 – CHUN & CHAMPION

For finding a tight Big-O of a function (process
from Monday / in quiz section):
- drop the constant multipliers
- drop the non dominant terms
- the remaining term is your tight big O or

Theta bound
- Remember Big-O is just an upperbound so

we can say stuff like
- f(n) = n is in O(n^2)

A. (answer this question A in the pollev)
which of the above functions are in O(𝑛$)?

B. which of the above functions are in Theta(𝑛$)?

Warm Up!

4

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

𝑓1 𝑛 = 3"

𝑓2 𝑛 = 2𝑛# + 2

𝑓4 𝑛 = 7𝑛$ + 5𝑛

𝑓5 𝑛 = 5𝑛 + 1

𝑓3 𝑛 = 𝑛$ − 2𝑛 + 3

CSE 373 SP 20 – CHUN & CHAMPION

For finding a tight Big-O of a function (process
from Monday / in quiz section):
- drop the constant multipliers
- drop the non dominant terms
- the remaining term is your tight big O or

Theta bound
- Remember Big-O is just an upperbound so

we can say stuff like
- f(n) = n is in O(n^2)

For theta it’s exactly the
same process here except
we don't need to consider
the loose upper bound
part so it's actually
simpler. We can just
consider the biggest term
directly. The only
functions that are
Theta(n^2) are those that
have some n^2 term as
the dominating term.

A. (answer this question A in the pollev)
which of the above functions are in O(𝑛$)?

B. which of the above functions are in Theta(𝑛$)?

A “recap” about big-O vs big-Theta going forward

Mainly we'll use big-Theta for the bounds from now on since it's the most specific while still
being generally direct process to go from f(n) = 2n^3 + 2 --> Theta(n^3) time

CSE 373 19 SU - ROBBIE WEBER

When to use Big-Theta (most of the time): When you have to use Big-O/Big-Omega:

for any function that's just the sum of its terms like

f(n) = 2^n + 3n^3 + 4n - 5 we can always just do the
approach of dropping constant multipliers / removing the
lower order terms to find the big Theta at a glance.

f(n) { n if n is prime, 1 otherwise}

since in this case, the big O (n) and the big Omega(1)
Omega don't overlap at the same complexity class, there
is no reasonable big-Theta and we couldn't use it here.

Administrivia
project1 released
- grader-only tests and rate limiting
- you get an additional submission every 10 minutes, can store up to 6 submissions (tokens)
- we don’t want you spamming the auto-grader (extra computation on the server + guess and check is generally not

that effective for your learning if you’re doing it a lot) – instead you can take a breather and investigate the problems
/ errors. We want to encourage you all to do more testing / reviewing your code to grow to become more
independent programmers throughout this course.

- Most students don’t bump into the limit / run out of submissions and have to wait to recharge – the point of this
isn’t to block y’all. If you feel that it’s too strict then please bring it up for discussion after trying this assignment.

exercise1 - out by midnight tonight, due next Friday 11:59pm

Piazza
- try to use the search bar before you post / use descriptive summary titles when possible - thank you

CSE 373 19 SU - ROBBIE WEBER

Questions

7CSE 373 20 SP – CHAMPION & CHUN

Code Analysis Process

8CSE 373 20 SP – CHAMPION & CHUN

code
modeling

code

model of best-
case runtime f(n)

Best-case upper bound O(n)

Best-case lower bound Ω(n)

Best-case tight fit Θ(n)

best case

worst case model of worst-
case runtime f(n)

Worst-case upper bound O(n)

Worst-case lower bound Ω(n)

Worst-case tight fit Θ(n)

case
analysis

asymptotic
analysis

9

Modeling Recursive Code

CSE 373 20 SP – CHAMPION & CHUN

Recursive Patterns
Modeling and analyzing recursive code is all about finding patterns in how the input changes
between calls and how much work is done within each call

Let’s explore some of the more common recursive patterns

Pattern #1: Halving the Input

Pattern #2: Constant size input and doing work

Pattern #3: Doubling the Input

10CSE 373 20 SP – CHAMPION & CHUN

Binary Search
public int binarySearch(int[] arr, int toFind, int lo, int hi) {

if(hi < lo) {
return -1;

} if(hi == lo) {
if(arr[hi] == toFind) {

return hi;
}
return -1;

}
int mid = (lo+hi) / 2;
if(arr[mid] == toFind) {

return mid;
} else if(arr[mid] < toFind) {

return binarySearch(arr, toFind, mid+1, hi);
} else {

return binarySearch(arr, toFind, lo, mid-1);
}

}

ROBBIE WEBBER - CSE 373 SU 19

Binary Search Runtime
binary search: Locates a target value in a sorted array or list by successively eliminating half of
the array from consideration.
- Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

How many elements will be examined?
- What is the best case?

- What is the worst case?
element found at index 8, 1 item examined, O(1)

element not found, ½ elements examined, then ½ of that…

12CSE 373 20 SP – CHAMPION & CHUN

Pattern #1 – Halving the input

Take 1 min to respond to activity

www.pollev.conm/cse373activity
Take a guess! What is the tight Big-O
of worst case binary search?

http://www.pollev.conm/cse373activity

Binary search runtime
For an array of size N, it eliminates ½ until 1
element remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

- How many divisions does it take?

Think of it from the other direction:
- How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N
- Call this number of multiplications "x".

2x = N
x = log2 N

Binary search is in the logarithmic complexity
class.

Logarithm – inverse of exponentials

Examples:

2! = 4 ⇒ 2 = log! 4

3! = 9 ⇒ 2 = log" 9

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Log(n)

CSE 373 SP 20 – CHUN & CHAMPION

𝑦 = log! 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏" = 𝑥

Moving Forward
While this analysis is correct it relied on our ability to think through the pattern intuitively

This works for binary search, but most recursive code is too complex to rely on our intuition.

We need more powerful tools to form a proper code model.

intuit
patterns

Binary
search
code

Some constant
number of
operations

O(1)

Ω(1)

Θ(1)

Found in the
middle

Not found Logarithmic

O(logn)

Ω(logn)

Θ(logn)

case
analysis

asymptotic
analysis

CSE 373 SP 20 – CHUN & CHAMPION

Model
Let’s start by just getting a model. Let 𝐹(𝑛) be our model for the worst-case running time of binary search.
public int binarySearch(int[] arr, int toFind, int lo, int hi) {

if(hi < lo) {
return -1;

} if(hi == lo) {
if(arr[hi] == toFind) {

return hi;
}
return -1;

}
int mid = (lo+hi) / 2;
if(arr[mid] == toFind) {

return mid;
} else if(arr[mid] < toFind) {

return binarySearch(arr, toFind, mid+1, hi);
} else {

return binarySearch(arr, toFind, lo, mid-1);
}

}

15

2

4

6

2 + ??

How do you model
recursive calls?

With a recursive
math function!

CSE 373 SP 20 – CHUN & CHAMPION

Meet the Recurrence
A recurrence relation is an equation that defines a sequence based on a rule that gives
the next term as a function of the previous term(s)

It’s a lot like recursive code:
- At least one base case and at least one recursive case
- Each case should include the values for n to which it corresponds
- The recursive case should reduce the input size in a way that eventually triggers the

base case
- The cases of your recurrence usually correspond exactly to the cases of the code

CSE 373 SP 20 – CHUN & CHAMPION

𝑇 𝑛 = $
5 if 𝑛 < 3

2𝑇
𝑛
2
+ 10 otherwise

Write a Recurrence
public int recursiveFunction(int n){

if(n < 3) {

return 3;

}

for(int int i=0; i < n; i++) {

System.out.println(i);

}

int val1 = recursiveFunction(n/3);

int val2 = recursvieFunction(n/3);

return val1 * val2;

}

𝑇 𝑛 = 3
2 if 𝑛 < 3

2𝑇
𝑛
3
+ 𝑛 otherwise

Base Case

Recursive Case
Non-recursive work
Recursive work

2

+n

n+2
2*T(n/3)

CSE 373 SP 20 – CHUN & CHAMPION

Recurrence to Big-Θ

It’s still really hard to tell what the big-O is just by looking at it.

But fancy mathematicians have a formula for us to use!

𝑇 𝑛 = 9
2 if 𝑛 < 3

2𝑇
𝑛
3
+ 𝑛 otherwise

𝑇 𝑛 = 9
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛%

𝑇 𝑛 ∈ Θ 𝑛%log& 𝑎 < 𝑐
log& 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛% log 𝑛
log& 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛'()! *

If

If
If

then

then
then

Master Theorem
a=2	b=3	and	c=1	

logN 2 = 𝑥 ⇒ 3O = 2 ⇒ 𝑥 ≅ 0.63
logN 2 < 1
We’re	in	case	1
𝑇 𝑛 ∈ Θ(𝑛)

𝑦 = log! 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏" = 𝑥

CSE 373 SP 20 – CHUN & CHAMPION

Understanding Master Theorem
The case
- Recursive case does a lot of non recursive work in comparison

to how quickly it divides the input size
- Most work happens in beginning of call stack
- Non recursive work in recursive case dominates growth, nc

term

The case
- Recursive case evenly splits work between non recursive work

and passing along inputs to subsequent recursive calls
- Work is distributed across call stack

The case
- Recursive case breaks inputs apart quickly and doesn’t do

much non recursive work
- Most work happens near bottom of call stack

19

log! 𝑎 < 𝑐

log! 𝑎 = 𝑐

log! 𝑎 > 𝑐

𝑇 𝑛 = 9
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛%

𝑇 𝑛 ∈ Θ 𝑛%log& 𝑎 < 𝑐
log& 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛% log 𝑛
log& 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛'()! *

If

If
If

then

then
then

Master Theorem

§ A measures how many recursive calls are
triggered by each method instance

§ B measures the rate of change for input
§ C measures the dominating term of the non

recursive work within the recursive method
§ D measures the work done in the base case

CSE 373 SP 20 – CHUN & CHAMPION

Questions

20CSE 373 20 SP – CHAMPION & CHUN

Recursive Patterns
Pattern #1: Halving the Input

Pattern #2: Constant size input and doing work

Pattern #3: Doubling the Input

21CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort

Merge Sort

CSE 373 SP 18 - KASEY CHAMPION 22

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

Conquer
0

8

0

8

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine

Merge Sort

CSE 373 SP 18 - KASEY CHAMPION 23

mergeSort(input) {
if (input.length == 1)

return
else

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

1 if n<= 1
2T(n/2) + n otherwiseT(n) =

Pattern #2 – Constant size input and doing work

Take 1 min to respond to activity

www.pollev.conm/cse373activity
Take a guess! What is the Big-O
of worst case merge sort?

http://www.pollev.conm/cse373activity

Merge Sort Recurrence to Big-Θ

𝑇 𝑛 = 9
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛%

𝑇 𝑛 ∈ Θ 𝑛%log& 𝑎 < 𝑐
log& 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛% log 𝑛
log& 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛'()! *

If

If
If

then

then
then

Master Theorem a=2	b=2	and	c=1	

logP 2 = 𝑥 ⇒ 2O = 2 ⇒ 𝑥 = 1
logP 2 = 1
We’re	in	case	2
𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)

𝑦 = log! 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏" = 𝑥

CSE 373 SP 20 – CHUN & CHAMPION

1 if n<= 1
2T(n/2) + n otherwise

T(n) =

Questions

25CSE 373 20 SP – CHAMPION & CHUN

Recursive Patterns
Pattern #1: Halving the Input

Pattern #2: Constant size input and doing work

Pattern #3: Doubling the Input

26CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort Θ(nlogn)

Calculating Fibonacci

Calculating Fibonacci
public int fib(int n) {

if (n <= 1) {

return 1;

}

return fib(n-1) + fib(n-1);

}

27CSE 373 20 WI – HANNAH TANG

Almost

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

• Each call creates 2 more calls
• Each new call has a copy of the

input, almost
• Almost doubling the input at

each call

Pattern #3 – Doubling the Input

Calculating Fibonacci Recurrence to Big-Θ
public int f(int n) {

if (n <= 1) {

return 1;

}

return f(n-1) + f(n-1);

}

28CSE 373 20 WI – HANNAH TANG

d

2T(n-1) + c

𝑇 𝑛 = F 𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏
+ 𝑓 𝑛 otherwise

Master Theorem

Can we use master theorem?

Uh oh, our model doesn’t match that format…

Maybe geometry can help!

Can we intuit a pattern?
T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +25c
Looks like something’s happening but it’s tough

Take 1 min to respond to activity

www.pollev.conm/cse373activity
Finish the recurrence, what is the
model for the recursive case?

http://www.pollev.conm/cse373activity

Calculating Fibonacci Recurrence to Big-Θ

29CSE 373 20 WI – HANNAH TANG

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

𝑇 𝑛 = Q 𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

How many layers in the function call tree?

How many layers will it take to transform “n”
to the base case of “1” by subtracting 1

For our example, 4 -> Height = n

How many function calls per layer?

Layer Function
calls

1 1

2 2

3 4

4 8

How many function calls on layer k?

2k-1

How many function calls TOTAL
for a tree of k layers?

1 + 2 + 3 + 4 + … + 2k-1

Calculating Fibonacci Recurrence to Big-Θ
Patterns found:

30CSE 373 20 SP – CHAMPION & CHUN

How many function calls on layer k? 2k-1

How many function calls TOTAL for a tree of k layers?

1 + 2 + 4 + 8 + … + 2k-1

Total runtime = (total function calls) x (runtime of each function call)

Total runtime = (1 + 2 + 4 + 8 + … + 2k-1) x (constant work)

1 + 2 + 4 + 8 + … + 2k-1 = Z
+,-

./-

2+ =
2. − 1
2 − 1 = 2. − 1

How many layers in the function call tree? n

𝑻 𝒏 = 𝟐𝒏 − 𝟏 ∈ 𝚯(𝟐𝒏)

Summation Identity
Finite Geometric Series

Z
+,-

./-

𝑥+ =
𝑥. − 1
𝑥 − 1

Recursive Patterns
Pattern #1: Halving the Input

Pattern #2: Constant size input and doing work

Pattern #3: Doubling the Input

31CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort Θ(nlogn)

Calculating Fibonacci Θ(2n)

0

5

10

15

20

25

30

35

1 2 3 4 5

Runtime Comparison

logn nlogn 2^n

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Runtime Comparison

logn nlogn 2^n

0

2E+14

4E+14

6E+14

8E+14

1E+15

1.2E+15

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Runtime Comparison

logn nlogn 2^n

32

Appendix

CSE 373 20 SP – CHAMPION & CHUN

Another example

public int Mystery(int n){

if(n == 1) {

return 1;

} else {

for(int i = 0; i < n; i++){

for(int j = 0; j < n; j++){

System.out.println(“hi!”);

}

}

return Mystery(n/2)

}

}

CSE 332 - SU 18 ROBBIE WEBER 33

𝑇 𝑛 = B 𝐶 𝑤ℎ𝑒𝑛 𝑛 = 1
𝑇 𝑛/2 + 𝑛# if n > 1

+1

+1

+1 n n

There is no magic shortcut for these problems (except in a few well-behaved cases).

We’ll expect you to know these two summations since they’re common patterns.

Strategies.

Find the exact count of steps.

Write out examples.

Use a geometric argument–visualizations!

34CSE 373 20 SP – CHAMPION & CHUN

