
Lecture 5:
Case Analysis

CSE 373 – Data Structures and
Algorithms

CSE 373 19 SU - ROBBIE WEBER

Warm Up!

Which of the following is in
O(n2)? Ω(n2)? Θ(n2)?

2

Take 2 Minutes

1. www.pollev.com/cse373
activity for participating
in our active learning
questions.

2. https://www.pollev.com
/cse373studentqs to ask
your own questions

!(#) ∈ &(' #) if there exist positive
constants (, #* such that for all # ≥ #*,

! # ≤ (⋅ ' #

Big-O

!(#) ∈ Ω(' #) if there exist positive
constants (, #* such that for all # ≥ #*,

! # ≥ (⋅ ' #

Big-Omega

!(#) ∈ Θ(' #) if
! # is &(' #) and ! # is Ω(' #).

Big-Theta

! # = 42

! # = 5# + 100

! # = 4#7 − 2# + 10

! # = 29

! # = #:;'2(3#)

a.

b.

c.

d.

e.

f(n) ∈ O(n2)

f(n) ∈ O(n2)

f(n) ∈ O(n2)

f(n) ∈ O(n2) f(n) ∈ Ω(n2)

f(n) ∈ Ω(n2)

f(n) ∈ Θ(n2)

CSE 373 SP 20 – CHUN & CHAMPION

http://www.pollev.com/cse373activity
https://www.pollev.com/cse373studentqs

Simplified, tight big-O
In this course, we’ll essentially use:
- Polynomials (!" where # is a constant: e.g. !, !%, !, 1)
- Logarithms log !
- Exponents (#* where # is a constant: e.g. 2*, 3*)

- Combinations of these (e.g. log log ! , ! log ! , log n .
)

For this course:
- A “tight big-O” is the slowest growing function among those listed.
- A “tight big-Ω” is the fastest growing function among those listed.
- (A Θ is always tight, because it’s an “equal to” statement)
- A “simplified” big-O (or Omega or Theta)

- Does not have any dominated terms.
- Does not have any constant factors – just the combinations of those functions.

CSE 332 SU 18 - ROBBIE WEBER 3

Administrivia

-Project 0 due 11:59pm PST tonight
- Project 1 out by midnight tonight, due Wednesday April 15th
-New post-lecture extra credit

-Available on website before 6pm PST day of lecture
-Closes 48 hours later

-collaboration policy (please don’t share code with not-your-
partner – but you can talk about it at a high level)

-come to OH! We’re lonely and Piazza is getting filled with
debugging questions that are easier to talk about in real-time.

CSE 373 SP 20 – CHUN & CHAMPION 4

Project notes
How to effectively work on partner projects:

Pair program! See the document on the webpage.
- Two brains is better than one when debugging
- We expect you to understand the full projects, not just half of the projects.

Meet in real-time with your partner (screen-share over a zoom call!).

Please don’t:
- Come to office hours and say “my partner wrote this code, I don’t understand it. Please help me debug it.”
- Just split the project in-half and each do half (or alternate projects)
- Be mean to your partner. Working with someone else will probably take some patience but the result is usually

awesome if we’re all respectful.

CSE 373 19 SU - ROBBIE WEBER

https://docs.google.com/document/d/1rLn4H3-jvDOqI16EqwzbXKF4Jx-cA6wiLaM1lrPO5tQ/edit

Questions

CSE 373 SP 18 - KASEY CHAMPION 6

Case Analysis

CSE 373 19 SU - ROBBIE WEBER

CSE 373 SP 18 - KASEY CHAMPION 8

a piece of
code

a function modeling
the runtime of a piece

of code

big O runtime

code modeling

asymptotic analysis

method1()
f(n) =

5n +3
code modeling

tight upper
bound: O(n)

Where we left off last time:

An example of the process

big Omega runtime

big Theta runtime

tight lower
bound: Ω(n)

Θ(n)

CSE 373 19 SU - ROBBIE WEBER

public void print(int n){

for(int i=0; i < n; i++){

System.out.println(i);

}

}

What’s the code model for the
runtime of `print` in terms of n?
(Assume System.out.println takes
constant runtime)

CSE 373 19 SU - ROBBIE WEBER

public void print(int n){

for(int i=0; i < n; i++){

System.out.println(i);

}

}

What’s the code model for the
runtime of `print` in terms of n?
(Assume System.out.println takes
constant runtime)

Maybe something like f(n) = 3n + 2
(note: this is made up, since the
details of the constants don’t matter)

CSE 373 19 SU - ROBBIE WEBER

public void print(int n){

for(int i=0; i < n; i++){

System.out.println(i);

}

}

What’s the code model for the
runtime of `print` in terms of n?
(Assume System.out.println takes
constant runtime)

Maybe something like f(n) = 3n + 2
(note: this is made up, since the
details of the constants don’t matter)

Cases
We defined !(#) to be (our model for) the number of operations the code does on an input of
size #.

For the code we’ve seen so far, how the variable n (the size of the input) affects the code has
been the only thing determining what the code model looks like. We’re now going to take a step
and start looking at some code that has more factors than just n.

CSE 373 19 SU - ROBBIE WEBER

Linear Search
/* given an array and int toFind, return index where toFind is located, or -1 if not in array.*/

int linearSearch(int[] arr, int toFind){

for(int i=0; i < arr.length; i++){

if(arr[i] == toFind) {

return i;

}

}

return -1;

}

CSE 373 19 SU - ROBBIE WEBER

How should we model this code’s runtime as a mathematical function?

Unlike before, the number of steps for this piece of code does not depend solely on the input size, n (length of the
array). In this case, there’s another factor which is: where does `toFind` appear in the input array (if at all)?

CSE 373 19 SU - ROBBIE WEBER

int linearSearch(int[] arr, int toFind){
for(int i=0; i < arr.length; i++){

if(arr[i] == toFind) {
return i;

}
}
return -1;

}

How should we model this
code’s runtime as a
mathematical function?

linearSearch Models: formulas

Unlike before, the number of steps for this piece of code does not depend solely on the input size, n (length of the
array). In this case, there’s another factor which is: where does `toFind` appear in the input array (if at all)?

If toFind is in arr[0], we’ll only need one iteration. One specific example input: arr = [1, 2, 4, 9, 16, 25, 36, 49, 64]
and toFind = 1

!1 # = 4

CSE 373 19 SU - ROBBIE WEBER

int linearSearch(int[] arr, int toFind){
for(int i=0; i < arr.length; i++){

if(arr[i] == toFind) {
return i;

}
}
return -1;

}

How should we model this
code’s runtime as a
mathematical function?

linearSearch Models: formulas

(note: the constants here were made-up since they don’t affect anything for this analysis)

Unlike before, the number of steps for this piece of code does not depend solely on the input size, n (length of the
array). In this case, there’s another factor which is: where does `toFind` appear in the input array (if at all)?

If toFind is in arr[0], we’ll only need one iteration. One specific example input: arr = [1, 2, 4, 9, 16, 25, 36, 49, 64]
and toFind = 1

!1 # = 4

If toFind is not in arr, we’ll need # iterations. One specific example input : arr = [1, 2, 4, 9, 16, 25, 36, 49, 64] and
toFind = -5

!2 # = 9# + 1

CSE 373 19 SU - ROBBIE WEBER

int linearSearch(int[] arr, int toFind){
for(int i=0; i < arr.length; i++){

if(arr[i] == toFind) {
return i;

}
}
return -1;

}

How should we model this
code’s runtime as a
mathematical function?

linearSearch Models: formulas

(note: the constants here were made-up since they don’t affect anything for this analysis)

Unlike before, the number of steps for this piece of code does not depend solely on the input size, n (length of the
array). In this case, there’s another factor which is: where does `toFind` appear in the input array (if at all)?

If toFind is in arr[0], we’ll only need one iteration. One specific example input: arr = [1, 2, 4, 9, 16, 25, 36, 49, 64]
and toFind = 1

!1 # = 4

If toFind is not in arr, we’ll need # iterations. One specific example input : arr = [1, 2, 4, 9, 16, 25, 36, 49, 64] and
toFind = -5

!2 # = 9# + 1

CSE 373 19 SU - ROBBIE WEBER

int linearSearch(int[] arr, int toFind){
for(int i=0; i < arr.length; i++){

if(arr[i] == toFind) {
return i;

}
}
return -1;

}

How should we model this
code’s runtime as a
mathematical function?

linearSearch Models: formulas

And what about in-between if toFind is somewhere inbetween? What if it’s at index 5? What if it’s index n – 5?
Every one of these situations deserves its own runtime function.

(note: the constants here were made-up since they don’t affect anything for this analysis)

linearSearch Models: visually

CSE 373 19 SU - ROBBIE WEBER

9n + 1

4

int linearSearch(int[] arr, int toFind){
for(int i=0; i < arr.length; i++){

if(arr[i] == toFind) {
return i;

}
return -1;

}

7n + 4

6n + 3

4n + 2

2n + 1

Code we’ve looked at before:
the `print` method only had one
model/runtime function. The runtime
function will ALWAYS be 2n + 1.

CSE 373 19 SU - ROBBIE WEBER

public void print(int n){
for(int i=0; i < n; i++){

System.out.println(i);
}

}

public int linearSearch(int[] arr, int toFind){
for(int i=0; i < arr.length; i++){

if(arr[i] == toFind)

return i;
}
return -1;

Code we’re looking at now: the `linearSearch`
method has multiple possible models/runtime
functions. Which runtime function is applicable
depends on deciding which case we want to
talk about.

2n + 1
9n + 1

7n + 4

6n + 3

4n + 2

2n + 1

4

These points
are big
ideas!

Usually we care about the longest our code could
run on an input of size !.

This is worst-case analysis

But sometimes we care about the fastest our code
could finish on an input of size !.

This is best-case analysis

CSE 373 19 SU - ROBBIE WEBER

9n + 1

7n + 4

6n + 3

4n + 2

2n + 1

4

For linearSearch,
- the model for the worst case is " ! = 9! + 1
- the model for the best case is " ! = 4.

Note: the best case and worst case situations for this method actually have
different complexity class runtimes!

CSE 373 19 SU - ROBBIE WEBER

So every different possible runtime function (see graph) that comes from some particular state of the
parameters/data structure is a different case!

Usually we’ll only ask explicitly about best/worst in this course, but there are plenty of other useful
cases to discuss, however (next slide).

Case (rough definition): a description of the state of
parameters and relevant state for a
method/algorithm that is specific enough that a
code model (runtime function) can be determined
whose only parameters are the input size(s).

example cases from before:
- toFind is in arr[0](best case)à 4
- toFind is not in arr(worst case)à9n + 1

Other useful types of cases (beyond best/worst)

“Assume X won’t happen case”
- Assume our array won’t need to resize is the most common.

“Average case”
- Assume your input is random
- Need to specify what the possible inputs are and how likely they are.
- !(#) is now the average number of steps on a random input of size #.

“In-practice case”
- This isn’t a real term. (We just made it up)
- Make some reasonable assumptions about how the real-world is probably going to work

- We’ll tell you the assumptions, and won’t ask you to come up with these assumptions on your
own.

- Then do worst-case analysis under those assumptions.

CSE 373 19 SU - ROBBIE WEBER

CSE 373 SP 18 - KASEY CHAMPION 23

a piece of
code

a function modeling
the runtime of a piece

of code

big O runtime

code modeling

asymptotic analysis

method1()
f(n) =

5n +3

code modeling

tight upper
bound: O(n)

Where we left off last time:

An example of the process

big Omega runtime

big Theta runtime

tight lower
bound: Ω(n)

Θ(n)

CSE 373 SP 18 - KASEY CHAMPION 24

a piece of
code

a function modeling
the runtime of a piece

of code

big O runtime

code modeling

asymptotic analysis

method1()

f(n) =
3

tight upper bound: O(1)

Where we left off last time:

big Omega runtime

big Theta runtime

tight lower bound: Ω(1)

Θ(1)
best case analysis

worst case analysis

some other case analysis

f(n) =
5n2 +3n

tight upper bound: O(n2)
tight lower bound: Ω(n2)

Θ(n2)

f(n) =
20n +3

tight upper bound: O(n)
tight lower bound: Ω(n)

Θ(n)

case analysis

Questions?

CSE 373 19 SU - ROBBIE WEBER

Common Questions
How can you tell if there’s a different best/worst case code model for a given piece of code?

How does this relate to big O / big Omega / big Theta?

Can you choose n = 0 to be the best case? Can we choose n = infinity to be our worst case?

CSE 373 19 SU - ROBBIE WEBER

How can you tell if there’s a different best/worst
case code model for a given piece of code?

CSE 373 19 SU - ROBBIE WEBER

boolean isPrime(int n){
int toTest = 2;
while(toTest < n){

if(n % toTest == 0) {
return true;

} else {
toTest++;

}
}
return false;

}

Are there other possible code models for this piece of code?
In other words: if n is given, are there still other factors that determine the runtime?

How can you tell if there’s a different best/worst
case code model for a given piece of code?
boolean isPrime(int n){

int toTest = 2;
while(toTest < n){

if(n % toTest == 0) {
return true;

} else {
toTest++;

}
}
return false;

}

Are there other possible code models for this piece of code?
In other words: if n is given, are there still other factors that determine the runtime?

Sometimes, there aren’t
significantly different cases for

a piece of code and there’s
only one possible runtime

function.

No! This is actually pretty similar to the
print method we saw earlier – the
only variable / possible thing that can
affect the runtime is the input
parameter number, n.

Common Questions
How can you tell if there’s a different best/worst case code model for a given piece of code?

How does case analysis relate to asymptotic analysis (big O / big Omega / big Theta)?

Can you choose n = 0 to be the best case? Can we choose n = infinity to be our worst case?

CSE 373 19 SU - ROBBIE WEBER

CSE 373 SP 18 - KASEY CHAMPION 30

a piece of
code

a function modeling
the runtime of a piece

of code

big O runtime

code modeling

asymptotic analysis

method1()

f(n) =
3

tight upper bound: O(1)

Where we left off last time:

big Omega runtime

big Theta runtime

tight lower bound: Ω(1)

Θ(1)
best case analysis

worst case analysis

some other case analysis

f(n) =
5n2 +3n

tight upper bound: O(n2)
tight lower bound: Ω(n2)

Θ(n2)

f(n) =
20n +3

tight upper bound: O(n)
tight lower bound: Ω(n)

Θ(n)

case analysis

Common Questions

How can you tell if there’s a different best/worst case code model for a given piece of code?

How does case analysis relate to asymptotic analysis (big O / big Omega / big Theta)?

Can you choose n = 0 to be the best case? Can we choose n = infinity to be our worst case?

CSE 373 19 SU - ROBBIE WEBER

Common Questions
How can you tell if there’s a different best/worst case code model for a given piece of code?

How does case analysis relate to asymptotic analysis (big O / big Omega / big Theta)?

Can you choose n = 0 to be the best case? Can we choose n = infinity to be our worst case?

Because this is all in the lens of code à mathematical function, this mathematical function has to
be defined for all values of n. If you just scope it to the n = 0, what does your function look like?
Basically you can’t decide on a specific input size since that’s supposed to be the x-axis for our
graph. Doing so would be like honing in on one specific x/y point instead of defining a full
function that can plug in any n.

CSE 373 19 SU - ROBBIE WEBER

How to do case analysis
1. Determine if there are actually significantly different cases.
- Are there any other variables/parameters that could affect the runtime other than the input size? If the input/ data

structure size is the only factor, then there aren’t any other significant cases (think isPrime and print).

2. Look at the code, and try to figure out more specifically how things could change depending
on the input (except for the input size).
- How can you exit loops early (for determining the best case)?

- Conversely, How can you make sure loops run for as long as possible (for determining the worst case)?

- Can you return (exit the method) early? (for determining the best case)
- Are some if/else branches much slower than others?

3.. Figure out what inputs can cause you to hit the (best/worst) parts of the code. (e.g. what does
the input array look like? What parameter values/ combinations of values trigger the expensive
logic?)

CSE 373 19 SU - ROBBIE WEBER

Some previous data structure runtimes / code
snippets + something new
ArrayList

- size

- insert(key, value) // ignore resizing

LinkedDictionary

- get

Bubble Sort code

CSE 373 19 SU - ROBBIE WEBER

We’re going to try breakouts again for these! See this google doc for the problems and instructions for breakouts!

solutions (link)

https://docs.google.com/document/d/1vgSAuTqETk4EWsGZGGWiWaLXz3Vz4ERdh2SznPhjLWQ/edit?usp=sharing
https://docs.google.com/document/u/1/d/156MCZKtcf6CLKHxb-3CGS34gfDJkZ3ApV0cJGK5YhnQ/edit

Breakout Instructions
1. Instructor will trigger breakout rooms

2. Accept the invite that pops up

3. Work with your partners to answer the question on slide 16

4. TAs will be coming in and out. Fill out this form to request a TA’s assistance:
https://forms.gle/b9NiC1s11FKBcpm89

5. Instructor will end the breakouts in 5 minutes

For detailed instructions on how breakouts work:
https://docs.google.com/presentation/d/15HiAPu6yYz2WWbkonRejBtUcq_FFhmoWFyT2l25G06
o/edit#slide=id.g8289eae46a_0_694

35CSE 373 20 SP – CHAMPION & CHUN

https://forms.gle/b9NiC1s11FKBcpm89
https://docs.google.com/presentation/d/15HiAPu6yYz2WWbkonRejBtUcq_FFhmoWFyT2l25G06o/edit

Another example together: ArrayList insert
data; // a field for the array that stores all the values

size; // a field to keep track of the number of valid values

// inserts the given value at the given index

public void insert (index, value) {

for (int i = size; i > index; i--) {

data[i] = data[i - 1];

}

data[index] = value;

size++;

}

CSE 373 19 SU - ROBBIE WEBER

What are the different code models (are there
multiple? is there just one?) if n = the size of the
ArrayList.

Some previous quarter
slides that say the stuff

we talked about in a
different way

CSE 373 19 SU - ROBBIE WEBER

Caution! !

Keep separate the ideas of best/worse case and !,Ω, Θ.

Big-! is an upper bound, regardless of whether we’re doing worst or best-case analysis.

Worst case vs. best case is a question once we’ve fixed % to choose the state of our data
that decides how the code will evolve.

What is the exact state of our data structure, which value did we choose to insert?
!,Ω, Θ are choices of how to summarize the information in the model.

CSE 373 19 SU - ROBBIE WEBER

Big-O Big-Omega Big-Theta
Worst Case No matter what, as !

gets bigger, the code
takes at most this much
time

Under certain
circumstances, as ! gets
bigger, the code takes
at least this much time

On the worst input, as !
gets bigger, the code
takes precisely this much
time (up to constants).

Best Case Under certain
circumstances, even as !
gets bigger, the code
takes at most this much
time.

No matter what, even
as ! gets bigger, the
code takes at least this
much time.

On the best input, even
as ! gets bigger, the
code takes precisely this
much time (up to
constants)

“worst input”: input that causes the code to run slowest.

CSE 373 19 SU - ROBBIE WEBER

Big-O Big-Omega Big-Theta
Worst Case No matter what, as !

gets bigger, the code
takes at most this much
time

Under certain
circumstances, as ! gets
bigger, the code takes
at least this much time

On the worst input, as !
gets bigger, the code
takes precisely this much
time (up to constants).

Best Case Under certain
circumstances, even as !
gets bigger, the code
takes at most this much
time.

No matter what, even
as ! gets bigger, the
code takes at least this
much time.

On the best input, even
as ! gets bigger, the
code takes precisely this
much time (up to
constants)

“worst input”: input that causes the code to run slowest.

CSE 373 19 SU - ROBBIE WEBER

Big-O Big-Omega Big-Theta
Worst Case No matter what, as !

gets bigger, the code
takes at most this much
time

Under certain
circumstances, as ! gets
bigger, the code takes
at least this much time

On the worst input, as !
gets bigger, the code
takes precisely this much
time (up to constants).

Best Case Under certain
circumstances, even as !
gets bigger, the code
takes at most this much
time.

No matter what, even
as ! gets bigger, the
code takes at least this
much time.

On the best input, even
as ! gets bigger, the
code takes precisely this
much time (up to
constants)

“worst input”: input that causes the code to run slowest.

CSE 373 19 SU - ROBBIE WEBER

Some more notes: Simplified, tight big-O
Why not always just say ! " is # ! " .

It’s always true! (Take $ = 1, "(= 1).

The goal of big-O/Ω/Θ is to group similar functions together.

We want a simple description of !, if we wanted the full description of ! we wouldn’t
use #

CSE 373 19 SU - ROBBIE WEBER

Simplified, tight big-O
In this course, we’ll essentially use our complexity classes (the different orders of growth):
- Polynomials (!" where # is a constant: e.g. !, !%, !, 1)
- Logarithms log !
- Exponents (#* where # is a constant: e.g. 2*, 3*)

- Combinations of these (e.g. log log ! , ! log ! , log n .
)

For this course:
- A “tight big-O” is the slowest growing function among those listed.
- A “tight big-Ω” is the fastest growing function among those listed.
- (A Θ is always tight, because it’s an “equal to” statement)
- A “simplified” big-O (or Omega or Theta)

- Does not have any dominated terms.
- Does not have any constant factors – just the combinations of those functions.

CSE 373 19 SU - ROBBIE WEBER

