
Lecture 4: Code Modeling
and Asymptotic Analysis

CSE 373: Data Structures and
Algorithms

1

Warm Up

Respond to the poll everywhere
with what complexity class
(constant or linear) would best
the runtime of the following
situations.
Situation #1 – adding a new
element to an ArrayQueue when
there is still unused capacity in
the underlying array “data[]”

Situation #2 - adding a new
element to an ArrayQueue when
there is no unused capcity in the
underlying array “data[]”

Situation #3 – adding a new
element to a LinkedQueue

CSE 373 SP 20 - CHUN CHAMPION 2

Take 2 Minutes

1. www.pollev.com/cse3
73activity for
participating in our
active learning
questions. For this
question label your
answer with
- what situation #

- Constant or Linear

- why.

2. https://www.pollev.c
om/cse373studentqs
to ask your own
questions

ArrayQueue<E>

add – data[size] =
value, if out of room
grow data
remove – return
data[size - 1], size-
1
peek – return
data[size - 1]
size – return size
isEmpty – return size
== 0

state

behavior

data[]
Size
front index
back index

LinkedQueue<E>

add – add node to
back
remove – return and
remove node at front
peek – return node
at front
size – return size
isEmpty – return
size == 0

state

behavior

Node front
Node back
size

http://www.pollev.com/cse373activity
https://www.pollev.com/cse373studentqs

Review: Complexity Classes
complexity class – a category of algorithm efficiency based on the algorithm’s
relationship to the input size N

CSE 332 SU 18 - ROBBIE WEBER 3

Class Big O If you double N… Example algorithm

constant O(1) unchanged Add to front of
linked list

logarithmic O(log n) Increases slightly Binary search

linear O(n) doubles Sequential search

“n log n”* O(nlog n) Slightly more
than doubles

Merge sort

quadratic O(n2) quadruples Nested loops
traversing a 2D array

cubic O(n3) Multiplies by 8 Triple nested loop

polynomial O(nc)

exponential O(cn) Increases
drastically

http://bigocheatsheet.com/

*There’s no generally agreed on term. “near[ly]-linear” is sometimes used.

http://bigocheatsheet.com/

Administrivia

-Project 0 is due Wednesday at 11:59pm PST
-Office hours start this week, check out the calendar
-Project 1 will go live by Wednesday 11:59pm (you might want to find a
partner)

-Check out the slack!
- Find a partner

-Individual written exercise going out on Friday
-Feedback: too many breaks for questions

4CSE 373 SP 20 - CHUN CHAMPION

CSE 373 SP 18 - KASEY CHAMPION 5

a piece of
code

a mathematical
function modeling the
runtime of a piece of

code

big O runtimecode modeling
asymptotic
analysis

method1() f(n) = 5!"+3n+2code modeling
asymptotic
analysis

O(!")

General process

An example of the process

Disclaimer
This topic has lots of details/subtle relationships between concepts.

We’re going to try to introduce things one at a time (all at once can be overwhelming).

“We’ll see that later” might be the answer to a lot of questions.

“Could you go over ____ again? or “ ____ part of this topic is confusing” are totally valid
questions / opinions to voice. If you’re able to say those on pollev / chat we can probably all
learn and benefit from it.

CSE 373 SU 19 - ROBBIE WEBER 6

Code Modeling

code modeling – the process of mathematically representing how many operations a piece
of code will run in relation to the number of inputs !. (We’re going to turn code into a
function representing it’s runtime)

CSE 373 SU 19 - ROBBIE WEBER 7

What counts as an “operation”?

Basic operations
- Adding ints or doubles

- Variable update

- Return statement

- Accessing array index or object field

Consecutive statements
- Sum time of each statement

Function calls
- Count runtime of function body

- Remember that new calls a function!

Conditionals
- Time of test + appropriate branch

- We’ll talk about which branch to analyze when we get to cases.

Loops
- (Number of loop iterations) * (runtime of loop body)

Assume all basic operations run in equivalent time

Code Runtime function

public void method1(int n) {
int sum = 0;
int i = 0;
while (i < n) {

sum = sum + (i * 3);
i = i + 1;

}
return sum;

}

public void method2(int n) {
int sum = 0;
int i = 0;
while (i < n) {

int j = 0;
while (j < n) {

if (j % 2 == 0) {
// do nothing, just for fun!

}
sum = sum + (i * 3) + j;
j = j + 1;

}
i = i + 1;

} return sum;
}

CSE 373 SP 18 - KASEY CHAMPION 8

Approach
-> start with basic operations
- Each basic operation = +1
- Loop = #iterations * (operations in loop body)

+1

+1

+2
+3

+1

+1
- the loop runs n times
- 6 steps per iteration

+1

+1
+1

+1
+1

+4
+2

+2

- inner loop:
runs n times
- 8 steps per
iteration

+1

= 6n

= 8n

- outer loop:
runs n times
- 8n + 3 steps
per iteration

= n(8n+3)

f(n) = 6n + 3

f(n) =
n(8n+3) + 3

CSE 373 SP 18 - KASEY CHAMPION 9

a piece of
code

a function modeling
the runtime of a piece

of code
big O runtimecode modeling

asymptotic
analysis

method1()

f(n) = 5!"+3n+2

or

visual plot
representation

code modeling
asymptotic
analysis

O(!")

General process

An example of the process

Finding a Big-O
We have an expression for !(#).
How do we get the %() that we’ve been talking about?

1. Find the “dominating term” and delete all others.
- The “dominating” term is the one that is largest as # gets bigger. In

this class, often the largest power of #.

2. Remove any constant factors.

3. Write the final big-O – (basically just putting the O
symbol around your remaining n-term)

! # = n(8n+3) + 3

! # = n(8n+3) + 3 = 8#+ + 3# + 3

! # = 8#+ + 3# + 3 ≈ 8#+

! # ≈ 8#+ ≈ #+

! # is %(#+)

CSE 373 SU 19 - ROBBIE WEBER 10

Wait, what? Asymptotic Analysis - big ideas
Why did we just throw out all of that information? Big-O is like the “significant digits” of
computer science.

Asymptotic Analysis is how a function behaves as n→ ∞ so when we do asymptotic
analysis (putting functions inside a big-O), we only care about what happens when ! gets bigger
and approaches infinity.

We don’t care about smaller values because all code is “fast enough” for small ! in practice. If
you’re only focusing on small inputs /small n, you’re not doing asymptotic analysis.

Since we’re dealing with infinity, constants and lower-order terms don’t meaningfully add to the
final result. The highest-order term is what matters and drives growth, and is why we hone in on
it and drop everything else.

CSE 373 SU 19 - ROBBIE WEBER/HANNAH TANG 11

Caring about infinity and the highest
order term are big ideas!

Using the constants isn’t more accurate either
public static void method1(int[] input)
{

int n = input.length;
input[n-1] = input[3] + input[4];
input[0]+= input[1];

}

public static void method2(int[] input)
{

int five = 5;
input[five] = input[five] + 1;
input[five]--;

}

public static void method1(int[]); Code:
0: aload_0
1: arraylength
2: istore_1
3: aload_0
4: iload_1
5: iconst_1
6: isub
7: aload_0
8: iconst_3
9: iaload

10:
aload_0
11:
iconst_4
12:
iaload
13: iadd
14:
iastore
15:
aload_0
16:
iconst_0

20:
iconst_1
21: iaload
22: iadd
23:
iastore
24: return

0:
iconst_5
1:
istore_1
2:
aload_0
3:
iload_1
4:
aload_0
5:
iload_1
6: iaload

10: aload_0
11: iload_1
12: dup2
13: iaload
14: iconst_1
15: isub
16: iastore
17: return

public static void method2(int[]); Code:

CSE 373 SU 19 - ROBBIE WEBER 12

Code Modeling anticipating asymptotic analysis

We can’t accurately model the constant factors just by staring at the code.

And the lower-order terms matter even less than the constant factors.

So we just ignore them for the big-O.

This does not mean you shouldn’t care about constant factors ever – they are important in real
code!
- Our theoretical tools aren’t precise enough to analyze them well.

CSE 373 SU 19 - ROBBIE WEBER 13

Code modeling: more practice

Write the specific mathematical code model for the following code and
indicate the big-O runtime in terms of !.
public void method3 (int k) {

int j = 0;

while (j < k) {

for (int i = 0; i < k; i++) {

System.out.println(“Hello world”);

}

j = j + 5;

}

}

CSE 373 SU 19 - ROBBIE WEBER 14

+1

+2

+1

+k(body)

+k/5 (body) " ! = ! ! + 2
5

quadratic -> ' !(

Approach
-> start with basic operations, work inside out for control structures
- Each basic operation = +1
- Loop = #iterations * (operations in loop body)

Code modeling takeaways
- We talked about counting +1s to give you an intuition and point out what’s not important
(variable assignments, math operators, etc.) and what is important (loops, method calls, etc.)

-Once you’ve gotten some practice with a couple of these, you’ll find that you won’t need to
count up the individual +1s. Those +1s won’t really matter at a high-level (for the most part we’re
going to drop constants when we turn the code model function into a big-O), we instead look at
what the more expensive operations are (loops, method calls, recursion) and see how the +n’s or
the *n’s add up;

CSE 373 SP 18 - KASEY CHAMPION 15

Questions

CSE 373 SP 18 - KASEY CHAMPION 16

Formal Definition of Big-O

CSE 373 SP 18 - KASEY CHAMPION 17

Formal Definitions: Why?
If you’re analyzing simple functions that are similar to those you’ve analyzed
before, you don’t bother with the formal definition. You can just be comfortable
using your intuitive definition.

If you’re analyzing more complex code or functions, however, this formal
definition is a good fallback.

We’re going to be making more subtle big-O statements in this class.
- We need a mathematical definition to be sure we know exactly where we are.

We’re going to teach you how to use the formal definition, so if you get lost (come
across a weird edge case) you know how to get your bearings.

CSE 332 SU 18 - ROBBIE WEBER 18

Function growth and what we want out of our
formal definition

CSE 332 SU 18 - ROBBIE WEBER19

…but since both are linear
eventually look similar at large
input sizes
whereas h(n) has a distinctly
different growth rate

The growth rate for f(n) and
g(n) looks very different for
small numbers of input

But for very small input values
h(n) actually has a slower growth
rate than either f(n) or g(n)

Imagine you have three possible algorithms to choose between.
Each has already been reduced to its mathematical model ! " = " $ " = 4" ℎ " = "'

("

"

("

"

("

"

Definition: Big-O
We wanted to find an upper bound on our algorithm’s
running time, but
- We only care about what happens as ! gets large.
- We don’t want to care about constant factors.

20

"(!) is %(& !) if there exist positive
constants ', !) such that for all ! ≥ !),

" ! ≤ ' ⋅ & !

Big-O

We also say that & ! “dominates” "(!)

CSE 332 SU 18 - ROBBIE WEBER

Why !)?

Why '?

f1(n)=0.01n2

f2(n)=n

- !

!
f1(n)=5n

f2(n)=n

Big O Definition Proofs

CSE 332 SU 18 - ROBBIE WEBER 21

! " = 10" + 15 ("Show that is

!(") is ((+ ") if there exist positive
constants ,, ". such that for all " ≥ ".,

! " ≤ , ⋅ + "

Big-O

Apply definition term by term
10" ≤ ,�" when , = 10 for all values of ". ?@ 10" ≤ 10"

15 ≤ ,�" when , = 15 !@A " ≥ 1. ?@ 15 ≤ 15"

Add up all your truths
10" + 15 ≤ 10" + 15" = 25" for " ≥ 1
10n	+	15	<=	25n	for	n	>=	1.

which is in the form of the definition

f(n) <= c * g(n)

where c = 25 and n0 = 1.

Big O Definition Proofs: more practice

Demonstrate that 5"2 + 3" + 6 is dominated by "2 (i.e.
that 5"' + 3" + 6 is ("' , by finding a) and "0 that
satisfy the definition of domination

5n2 + 3n + 6 ≤ 5n2 + 3n2 + 6n2 when n ≥ 1

5n2 + 3n2 + 6n2 = 14n2

5n2 + 3n + 6 ≤ 14n2 for n ≥ 1

14n2 ≤ c*n2 for c = ? n >= ?

+ = 14 & ,- = 1

CSE 332 SU 18 - ROBBIE WEBER 22

.(") is ((1 ") if there exist positive
constants), "3 such that for all " ≥ "3,

. " ≤) ⋅ 1 "

Big-O

Big-O Definition Proofs: outline
Steps to a big-O proof, to show ! " is # $ " .

1. Find a %, "' that fit the definition for each of the terms of !.
- Each of these is a mini, easier big-O proof.

2. Add up all your %, take the max of your "'.
3. Add up all your inequalities to get the final inequality you want.
4. Clearly tell us what your % and "' are!
For any big-O proof, there are many % and "' that work.
You might be tempted to find the smallest possible % and "' that work.
You might be tempted to just choose % = 1,000,000,000 and "' = 73,000,000 for all the proofs.
Don’t do either of those things.
A proof is designed to convince your reader that something is true. They should be able to easily verify
every statement you make. – We don’t care about the best %, just an easy-to-understand one.
We have to be able to see your logic at every step.

CSE 332 SU 18 - ROBBIE WEBER 23

Note: Big-O definition is just an upper-bound, not

always an exact bound

True or False: 10#$ + 15# is '(#))
It’s true – it fits the definition

CSE 332 SU 18 - ROBBIE WEBER 24

10#2 ≤ -�#3 /ℎ1# - = 10 345 # ≥ 1
15# ≤ -�#3 /ℎ1# - = 15 345 # ≥ 1
10#2 + 15# ≤ 10#3 + 15#3 ≤ 25#3 345 # ≥ 1
10#$ + 15# is '(#)) because 10#$ + 15# ≤ 25#3 345 # ≥ 1

Big-O is just an upper bound that may be loose and not describe the function fully. For

example, all of the following are true:

10#$ + 15# is '(#))
10#$ + 15# is ' #7
10#$ + 15# is ' #8
10#$ + 15# is '(#9)
10#$ + 15# is '(#!) … and so on

This is a big idea!

Note: Big-O definition is just an upper-bound, not
always an exact bound (plots)
What do we want to look for on a plot to determine if one function is in the big-O of the other?

You can sanity check that your g(n) function (the dominating one) overtakes or is equal to your
f(n) function after some point and continues that greater-than-or-equal-to trend towards infinity

CSE 373 SP 18 - KASEY CHAMPION 25

10#$ + 15# is '(#))
10#$ + 15# is ' #+
10#$ + 15# is ' #,

… and so on …

- #

#

n3

n5

n4

10n2 + 15n

The visual representation
of big-O and

asymptotic analysis is a
big idea!

Tight Big-O Definition Plots

If we want the most-informative upper bound, we’ll ask you for a simplified, tight big-O bound.

! "# is the tight bound for the function f(n) = 10n2+15n. See the graph below – the tight big-O bound is
the smallest upperbound within the definition of big-O.

Computer scientists It is almost always technically correct to say your code runs in time !("!). (Warning:
don’t try this trick in an interview or exam)

If you zoom out a bunch,

the your tight bound and your function will

be overlapping compared to other

complexity classes.

CSE 373 SP 18 - KASEY CHAMPION 26

' "

"

n2

10n2 + 15n

Questions

CSE 373 SP 18 - KASEY CHAMPION 27

Uncharted Waters: a different type of code model

Find a model ! " for the running time of this code on input " → What’s the Big-O?
boolean isPrime(int n){

int toTest = 2;
while(toTest < n){

if(n % toTest == 0) {
return true;

} else {
toTest++;

}
}
return false;

}

Operations per iteration: let’s just call it 1 to keep all the future slides simpler.

Number of iterations?
- Smallest divisor of "

CSE 332 SU 18 - ROBBIE WEBER 28

Remember, !(") = the number
of basic operations performed
on the input ".

Prime Checking Runtime

CSE 332 SU 18 - ROBBIE WEBER 29

Is the running time of
the code ! 1 or ! # ?

More than half the time
we need 3 or fewer
iterations. Is it !(1)?

But there’s still always
another number where
the code takes #
iterations. So ! # ?

This is why we have definitions!

'(#)

CSE 332 SU 18 - ROBBIE WEBER 30

!(#) is %(& #) if there exist positive
constants ', #) such that for all # ≥ #),

! # ≤ ' ⋅ & #

Big-O

Is the running time %(#)?
Can you find constants ' and #)?

How about ' = 1 and #) = 5,
! # =smallest divisor of # ≤ 1 ⋅ # for # ≥ 5

Is the running time %(1)?
Can you find constants ' and #)?

No! Choose your value of '. I can find a prime
number 0 bigger than '.
And ! 0 = 0 > ' ⋅ 1 so the definition isn’t met!

It’s %(#) but not % 1

!(#)

Big-O isn’t everything

Our prime finding code is ! " as tight bound. But so is printing all the elements of a list.

CSE 332 SU 18 - ROBBIE WEBER 31

Your experience running these two pieces of code is going to be very different.
It’s disappointing that the !() are the same – that’s not very precise.
Could we have some way of pointing out the list code always takes AT LEAST " operations?

!(") !(")

Big-Ω [Omega]

CSE 332 SU 18 - ROBBIE WEBER 32

"($) is Ω(& $) if there exist positive
constants ', $) such that for all $ ≥ $),

" $ ≥ ' ⋅ & $

Big-Omega

,($)

Ω(1)

The formal definition of Big-Omega is the
flipped version of Big-Oh.

When we make Big-Oh statements about a
function and say f(n) is O(g(n)) we’re saying
that f(n) grows at most as fast as g(n).

But with Big-Omega statements like f(n) is
Ω(g(n)), we’re saying that f(n) will grows at
least as fast as g(n).

Visually: what is the lower limit of this function?
What is bounded on the bottom by?

"($) is ,(& $) if there exist positive
constants ', $) such that for all $ ≥ $),

" $ ≤ ' ⋅ & $

Big-O

Big-Omega definition Plots
2"# is Ω(1)
2"# is Ω(n)
2"# is Ω("))
2"# is Ω("#)

2"# is lowerbounded by all the complexity classes listed above (1, n, "), "#)

CSE 373 SP 18 - KASEY CHAMPION 33

> "

"

2n3

n2

n

1

n3

Examples
4n2 ∈ Ω(1)

true
4n2 ∈ Ω(n)

true
4n2 ∈ Ω(n2)

true
4n2 ∈ Ω(n3)

false
4n2 ∈ Ω(n4)

false

CSE 332 SU 18 - ROBBIE WEBER 34

4n2 ∈ O(1)

false
4n2 ∈ O(n)

false
4n2 ∈ O(n2)

true
4n2 ∈ O(n3)

true
4n2 ∈ O(n4)

true

"($) ∈ &(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≤ (⋅ ' $

Big-O

"($) ∈ Ω(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≥ (⋅ ' $

Big-Omega

Tight Big-O and Big-Ω bounds shown together

CSE 332 SU 18 - ROBBIE WEBER 35

Note: this right graph’s tight O bound is O(n) and its
tight Omega bound is Omega(n). This is what most
of the functions we’ll deal with will look like, but there
exists some code that would produce runtime
functions like on the left.

f(n) = n
prime runtime function

.(0) .(0)

Ω(1) Ω(n)

O, and Omega, and Theta [oh my?]

Big-O is an upper bound
- My code takes at most this long to run

Big-Omega is a lower bound
- My code takes at least this long to run

Big Theta is “equal to”
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order terms

CSE 332 SU 18 - ROBBIE WEBER 36

!(#) is Ω(& #) if there exist positive constants
', #) such that for all # ≥ #),

! # ≥ ' ⋅ & #

Big-Omega

!(#) is Θ(& #) if
! # is -(& #) and ! # is Ω(& #).
(in	other	words:	there exist positive constants '1, c2, #) such
that for all # ≥ #))
c1 ⋅ & # ≤ ! # ≤ c2 ⋅ & #

Big-Theta

!(#) is -(& #) if there exist positive
constants ', #) such that for all # ≥ #),

! # ≤ ' ⋅ & #

Big-O

O, and Omega, and Theta [oh my?]

Big Theta is “equal to”
- My code takes “exactly”* this long to run

- *Except for constant factors and lower order terms

CSE 332 SU 18 - ROBBIE WEBER 37

!(#) is Θ(& #) if
! # is '(& #) and ! # is Ω(& #).
(in	other	words:	there exist positive constants 51, c2, #: such
that for all # ≥ #:)
c1 ⋅ & # ≤ ! # ≤ c2 ⋅ & #

Big-Theta

'(#) Ω(n) Θ(#)

f(n) = n

To define a big-Theta, you expect the
tight big-Oh and tight big-Omega
bounds to be touching on the graph
(meaning they’re the same complexity
class)

CSE 373 SP 18 - KASEY CHAMPION 38

a piece of
code

a function modeling
the runtime of a piece

of code
big O runtimecode modeling

asymptotic
analysis

method1()

f(n) = 5!"+3n+2

or

visual plot
representation

code modeling
asymptotic
analysis

O(!")

Initial general process

An example of the process

CSE 373 SP 18 - KASEY CHAMPION 39

a piece of
code

a function modeling
the runtime of a piece

of code

big O runtime

code modeling

asymptotic analysis

method1()
f(n) =

5n +3
code modeling

tight upper
bound: O(n)

General process after knowing about Omega and Theta

An example of the process

big Omega runtime

big Theta runtime

tight lower
bound: Ω(n)

Θ(n)
Most code is more straightforward and the tight O and tight Omega are the same, so we can just
refer to the Theta runtime.

CSE 373 SP 18 - KASEY CHAMPION 40

a piece of
code

a function modeling
the runtime of a piece

of code

big O runtime

code modeling

asymptotic analysis

isPrime(n)

f(n) =

5n +3 when n is prime

or 4 otherwise

code modeling

tight upper
bound: O(n)

General process

An example of the process

big Omega runtime

big Theta runtime

tight lower
bound: Ω(1)

#$ %&'($#')*&
+ℎ&-')$.#/isPrime example (unusual odd case)

Questions

CSE 373 SP 18 - KASEY CHAMPION 41

CSE 373 SP 18 - KASEY CHAMPION 42

- rough idea of how to turn a piece of code into a function
that we can categorize with big-O, Omega, and Theta

- definition of big O, Omega Theta and how functions fit
into them:
- visually with plots
- through formal math definitions
- tight/loose bounds

Takeaways

