
Lecture 3: Stacks, Queues,
and Dictionaries

CSE 373: Data Structures and
Algorithms

1

Warm Up

1. www.pollev.com/cse37
3activity for
participating in our
active learning
questions. For this
particular question
label your answer with

- what situation #
- ArrayList/LinkedList
- why.

2. https://www.pollev.co
m/cse373studentqs to
ask your own
questions

CSE 373 19 SU -- ROBBIE WEBER 2

ArrayList

get return data[index]
set data[index] = value
add data[size] = value,
if out of space grow
data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

ArrayList
uses an Array as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0

list free space

LinkedList

get loop until index,
return node’s value
set loop until index,
update node’s value
add create new node,
update next of last
node
insert create new
node, loop until
index, update next
fields
delete loop until
index, skip node
size return size

state

behavior

Node front
size

LinkedList
uses nodes as underlying storage

88.6 26.1 94.4

Q: Would you use a LinkedList or ArrayList
implementation for each of these scenarios?

Instructions
Take 2 Minutes

Situation #1: Choose a data
structure that implements the List
ADT that will be used to store a
list of songs in a playlist.

Situation #2: Choose a data
structure that implements the List
ADT that will be used to store the
history of a bank customer’s
transactions.

Situation #3: Choose a data
structure that implements the List
ADT that will be used to store the
order of students waiting to speak
to a TA at a tutoring center

http://www.pollev.com/cse373activity
https://www.pollev.com/cse373studentqs

Design Decisions
Situation #1: Write a data structure that implements the List ADT that will be used to store a list
of songs in a playlist.

ArrayList – I want to be able to shuffle play on the playlist
Situation #2: Write a data structure that implements the List ADT that will be used to store the
history of a bank customer’s transactions.

ArrayList – optimize for addition to back and accessing of elements
Situation #3: Write a data structure that implements the List ADT that will be used to store the
order of students waiting to speak to a TA at a tutoring center

LinkedList - optimize for removal from front
ArrayList – optimize for addition to back

3CSE 373 19 SU -- ROBBIE WEBER

List ADT tradeoffs
Last time: we used “slow” and “fast” to describe running times. Let’s be a little more precise.

Recall these basic Big-O ideas from 14X: Suppose our list has N elements
- If a method takes a constant number of steps (like 23 or 5) its running time is O(1)
- If a method takes a linear number of steps (like 4N+3) its running time is O(N)

For ArrayLists and LinkedLists, what is the O() for each of these operations?
- Time needed to access !"# element:
- Time needed to insert at end (the array is full!)

What are the memory tradeoffs for our two implementations?
- Amount of space used overall
- Amount of space used per element

4

0 1 2 3 4

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘h’ ‘o’ /‘e’ ‘l’ ‘l’

ArrayList<Character> myArr

front

LinkedList<Character> myLl

CSE 373 19 SU -- ROBBIE WEBER

List ADT tradeoffs
Time needed to access !"# element:
- ArrayList: O(1) constant time
- LinkedList: O(N) linear time

Time needed to insert at !"# element (the array is full!)
- ArrayList: O(N) linear time
- LinkedList: O(N) linear time

Amount of space used overall
- ArrayList: sometimes wasted space
- LinkedList: compact

Amount of space used per element
- ArrayList: minimal
- LinkedList: tiny extra

5

0 1 2 3 4

‘h’ ‘e’ ‘l’ ‘l’ ‘o’

‘h’ ‘o’ /‘e’ ‘l’ ‘l’front

CSE 373 19 SU -- ROBBIE WEBER

ArrayList<Character> myArr

LinkedList<Character> myLl

Administrivia
- reminder: P0 released on Wednesday, due next Wednesday. Lots of good setup questions on

Piazza, continue to use that resource
- 4/1 Lecture is a panopto recording because we had to make some edits -- sorry for the
inconvenience. If it's not published immediately in the future, it'll also be on Panopto and a little
bit delayed.
- Section -- video/recording is being worked on and edited by our TAs right now, should be up
soon. Handouts/Solutions/Slides always posted on the website -- the solutions/slides are up now.
We'll make a Piazza announcement when the video is up.
- Student Slack -- Totally optional chatroom for y'all to join to build a community for this class
(beyond piazza which is kinda rigid). You can use it to find a partner/coordinate with them, plan
study sessions, or just chat with people in general! We won’t be monitoring this closely, but
please be kind and respectful to others. Feel free to report any incidents and we can look into it.
Everyone registered should have received an invite.
- Office Hours today, see the calendar on course website for schedule and the Zoom tab on
Canvas for meeting link

CSE 373 19 SU -- ROBBIE WEBER 6

Questions?

CSE 373 SP 18 - KASEY CHAMPION 7

Review: What is a Stack?

stack: A collection based on the principle of adding elements and

retrieving them in the opposite order.

- Last-In, First-Out ("LIFO")

- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine the last element added (the "top").

CSE 143 SP 17 – ZORA FUNG 8

top 3
2

bottom 1

pop, peekpush

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior
Set of ordered items
Number of items

supported operations:

- push(item): Add an element to the top of stack

- pop(): Remove the top element and returns it

- peek(): Examine the top element without removing it

- size(): how many items are in the stack?

- isEmpty(): true if there are 1 or more items in stack, false otherwise

Implementing a Stack with an Array

0 1 2 3

9

push(3)
push(4)
pop()
push(5)

3 45

numberOfItems = 012

ArrayStack<E>

push data[size] = value, if
out of room grow data
pop return data[size - 1],
size-1
peek return data[size - 1]
size return size
isEmpty return size == 0

state

behavior

data[]
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(N) linear if you have to resize
O(1) otherwise

O(1) Constant
O(1) Constant

O(1) Constant
O(1) Constant

CSE 373 19 WI - KASEY CHAMPION

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst possible
runtime of the “push()” operation will be?

Implementing a Stack with Nodes

CSE 373 19 WI - KASEY CHAMPION10

push(3)
push(4)
pop() numberOfItems = 012

LinkedStack<E>

push add new node at top
pop return and remove node at
top
peek return node at top
size return size
isEmpty return size == 0

state

behavior

Node top
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(1) Constant

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

4

3front

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst possible
runtime of the “push()” operation will be?

Question Break

11CSE 373 20 SP – CHAMPION & CHUN

Review: What is a Queue?

queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")

- Elements are stored in order of insertion but don't have indexes.

- Client can only add to the end of the queue, and can only
examine/remove the front of the queue.

CSE 143 SP 17 – ZORA FUNG 12

front back
1 2 3

addremove, peekQueue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior
Set of ordered items
Number of items

supported operations:
- add(item): aka “enqueue” add an element to the back.

- remove(): aka “dequeue” Remove the front element and return.

- peek(): Examine the front element without removing it.

- size(): how many items are stored in the queue?

- isEmpty(): if 1 or more items in the queue returns true, false otherwise

Implementing a Queue with an Array

0 1 2 3 4

13

add(5)
add(8)
add(9)
remove()

numberOfItems = 0

5 8 9

123

ArrayQueue<E>

add – data[size] = value, if
out of room grow data
remove – return data[size -
1], size-1
peek – return data[size - 1]
size – return size
isEmpty – return size == 0

state

behavior

data[]
Size
front index
back index

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

front = 0
back = 0

Big O Analysis

remove()

peek()

size()

isEmpty()

add() O(N) linear if you have to resize
O(1) otherwise

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

12
1

CSE 373 19 WI - KASEY CHAMPION

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst possible
runtime of the “add()” operation will be?

Implementing a Queue with an Array

CSE 373 SP 18 - KASEY CHAMPION 14

0 1 2 3 4

numberOfItems = 3

front back

5 9 2 74

add(7)
add(4)
add(1)

45

0 1 2 3 4 5 6 7 8 9

5 9 2 7 4

front back

1

> Wrapping Around

Implementing a Queue with Nodes

15

add(5)
add(8)
remove()

LinkedQueue<E>

add – add node to back
remove – return and remove
node at front
peek – return node at front
size – return size
isEmpty – return size == 0

state

behavior

Node front
Node back
size

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(1) Constant

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 19 WI - KASEY CHAMPION

numberOfItems = 012

85front

back

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst case
runtime of the “add()” operation will be?

Questions?

CSE 373 SP 18 - KASEY CHAMPION 16

Design Decisions
Discuss in your Breakouts: For each scenario select the appropriate ADT and implementation to
best optimize for the given scenario.

Situation: You are writing a program to schedule jobs sent to a laser printer. The laser printer
should process these jobs in the order in which the requests were received. There are busy and
slow times for requests that can have large differences in the volume of jobs sent to the printer.
Which ADT and what implementation would you use to store the jobs sent to the printer?

17CSE 373 19 SP - KASEY CHAMPION

Take 5 Minutes

ADT options:
- List
- Stack
- Queue

Implementation options:
- array
- linked nodes

Breakout Instructions
1. Instructor will trigger breakout rooms

2. Accept the invite that pops up

3. Work with your partners to answer the question on slide 16

4. TAs will be coming in and out. Fill out this form to request a TA’s assistance:
https://forms.gle/b9NiC1s11FKBcpm89

5. Instructor will end the breakouts in 5 minutes

For detailed instructions on how breakouts work:
https://docs.google.com/presentation/d/15HiAPu6yYz2WWbkonRejBtUcq_FFhmoWFyT2l25G06
o/edit#slide=id.g8289eae46a_0_694

18CSE 373 20 SP – CHAMPION & CHUN

https://forms.gle/b9NiC1s11FKBcpm89
https://docs.google.com/presentation/d/15HiAPu6yYz2WWbkonRejBtUcq_FFhmoWFyT2l25G06o/edit

Design Decisions
Discuss in your Breakouts: For each scenario select the appropriate ADT and implementation to
best optimize for the given scenario.

Situation: You are writing a program to schedule jobs sent to a laser printer. The laser printer
should process these jobs in the order in which the requests were received. There are busy and
slow times for requests that can have large differences in the volume of jobs sent to the printer.
Which ADT and what implementation would you use to store the jobs sent to the printer?

19CSE 373 19 SP - KASEY CHAMPION

Take 5 Minutes

ADT options:
- List
- Stack
- Queue

Implementation options:
- array
- linked nodes

Dictionaries

CSE 373 19 SU - ROBBIE WEBER

Dictionaries (aka Maps)
Every Programmer’s Best Friend

You’ll probably use one in almost every programming project.
- Because it’s hard to make a big project without needing one sooner or later.

CSE 373 19 SU - ROBBIE WEBER

// two types of Map implementations supposedly covered in CSE 143
Map<String, Integer> map1 = new HashMap<>();
Map<String, String> map2 = new TreeMap<>();

Review: Maps
map: Holds a set of distinct keys and a collection of
values, where each key is associated with one value.
- a.k.a. "dictionary"

CSE 373 19 SU - ROBBIE WEBER

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior
Set of items & keys
Count of items

supported operations:
- put(key, value): Adds a given item into

collection with associated key,
- if the map previously had a mapping for

the given key, old value is replaced.
- get(key): Retrieves the value mapped to the

key
- containsKey(key): returns true if key is

already associated with value in map, false
otherwise

- remove(key): Removes the given key and its
mapped value

Implementing a Dictionary with an Array
ArrayDictionary<K, V>

put find key, overwrite value if there.
Otherwise create new pair, add to next
available spot, grow array if necessary
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, replace pair to
be removed with last pair in collection
size return count of items in
dictionary

state

behavior

Pair<K, V>[] data

Big O Analysis – (if key is the last one looked
at / not in the dictionary)

put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

0 1 2 3
containsKey(‘c’)
get(‘d’)
put(‘b’, 97)
put(‘e’, 20)

(‘a’, 1) (‘b’, 2)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

(‘c’, 3)97) (‘d’, 4)
CSE 373 19 SU - ROBBIE WEBER

2 Minutes

Big O Analysis – (if the key is the first one
looked at)

put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant

O(1) constant

O(1) constant

O(1) constant
4

(‘e’, 20)

Implementing a Dictionary with Nodes
LinkedDictionary<K, V>

put if key is unused, create new with
pair, add to front of list, else
replace with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in
dictionary

state

behavior

front
size

containsKey(‘c’)
get(‘d’)
put(‘b’, 20)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

front

‘c’ 9‘b’ 7 ‘d’ 4‘a’ 1 20

CSE 373 19 SU - ROBBIE WEBER

2 Minutes

Big O Analysis – (if key is the last one looked
at / not in the dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

Big O Analysis – (if the key is the first one
looked at)
put()

get()

containsKey()

remove()

size()
O(1) constant

O(1) constant

O(1) constant

O(1) constant

O(1) constant

