
Lecture 2: Lists CSE 373: Data Structures and
Algorithms

1

Warm Up

Which of the following is NOT an “ADT”:
- List
- ArrayList
- Set
- Map
- TreeMap
- Stack
- Queue

2CSE 373 20 SP – CHAMPION & CHUN

From our last lecture:
Abstract Data Type (ADT)
- A definition for expected operations and behavior
- A mathematical description of a collection with a set

of supported operations and how they should behave
when called upon

- Describes what a collection does, not how it does it
- Can be expressed as an interface

Data Structure
- A way of organizing and storing related data points
- An object that implements the functionality of a

specified ADT
- Describes exactly how the collection will perform the

required operations

Reminder: Please open
www.pollev.com/cse373studentqs to ask questions :)

Please go to www.pollev.com/cse373activity
to respond

http://www.pollev.com/cse373studentqs
http://www.pollev.com/cse373activity

Administration
Project 0 released later today
- Due next Wednesday April 8th before 11:59pm PST
- Check “Projects” tab on website, live later today
- Learning Goals

- Refresh CSE 143 concepts and set the expectations for homework in CSE 373.
- Set up IntelliJ and other systems we’ll use in this class (Java, GitLab, Git, Checkstyle).
- Learn how to use JUnit and run unit tests in IntelliJ.

Let’s connect!
- Check out the piazza
- Office hours start next week

- Limited offering this week to help with set up

- Section
- Starts tomorrow

3CSE 373 20 SP – CHAMPION & CHUN

Question Break

4CSE 373 20 SP – CHAMPION & CHUN

Review: “Big Oh”
efficiency: measure of computing resources used by code.
- can be relative to speed (time), memory (space), etc.
- most commonly refers to run time

Assume the following:
- Any single Java statement takes same amount of time to run.
- A method call's runtime is measured by the total of the statements inside the method's body.
- A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.

We measure runtime in proportion to the input data size, N.
- growth rate: Change in runtime as N gets bigger. How does this algorithm perform with larger and larger sets of data?

CSE 373 18 AU – SHRI MARE 5

b = c + 10;

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

dataTwo[j][i] = dataOne[i][j];
dataOne[i][j] = 0;

}
}
for (int i = 0; i < N; i++) {

dataThree[i] = b;
}

This algorithm runs 2N2 + N + 1 statements.
- We ignore constants like 2 because they are tiny next to N.
- The highest-order term (N2) “dominates” the overall runtime.
- We say that this algorithm runs "on the order of" N2.
- or O(N2) for short ("Big-Oh of N squared")

Note: You don’t have to understand all of this
right now – we’ll dive into it soon.

Review: Complexity Class

6

complexity class: A category of algorithm efficiency based on the algorithm's relationship
to the input size N.

Complexity
Class

Big-O Runtime if you
double N

Example Algorithm

constant O(1) unchanged Accessing an index of
an array

logarithmic O(log2 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log2 N) slightly more than
doubles

Merge sort algorithm

quadratic O(N2) quadruples Nested loops!

...

exponential O(2N) multiplies drastically Fibonacci with recursion

CSE 373 19 WI - KASEY CHAMPION

Note: You don’t have to understand all of this
right now – we’ll dive into it soon.

Case Study: The List ADT

CSE 373 SP 18 - KASEY CHAMPION

7

list: a collection storing an ordered sequence of elements.
- Each item is accessible by an index.
- A list has a variable size defined as the number of elements in the list
- Elements can be added to or removed from any position in the list

Relation to code and our mental image of a list:

List<String> names = new ArrayList<>(); // []
names.size(); // evaluates to 0
names.add(”Amanda"); // [“Amanda”]
names.add(”Anish"); // [“Amanda, Anish”]
names.insert("Brian”, 0); // [“Brian”, “Amanda”, “Anish”]
names.size(); // evaluates to 3

Case Study: List Implementations

8CSE 373 19 WI - KASEY CHAMPION

List ADT

get(index) return item at index
set(item, index) replace item at index
add(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior
Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
add data[size] = value,
if out of space grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

LinkedList<E>

get loop until index,
return node’s value
set loop until index,
update node’s value
add create new node,
update next of last node
insert create new node,
loop until index, update
next fields
delete loop until index,
skip node
size return size

state

behavior

Node front
size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0
88.6 26.1 94.4

list free space

Case Study: The List ADT: ArrayList

9CSE 373 19 WI - KASEY CHAMPION

How do Java / other programming languages implement ArrayList to achieve all the List behavior?

On the inside:

- stores the elements inside an array (which has a fixed capacity) that typically has more space than
currently used (For example when there is only 1 element in the actual list, the array might have
10 spaces for data),

- stores all of these elements at the front of the array and keeps track of how many there are (the
size) so that the implementation doesn’t get confused enough to look at the empty space. This
means that sometimes we will have to do a lot of work to shift the elements around.

List view ArrayList view

[”Brian”, “Amanda”, “Anish”] [“Brian”, “Amanda”, “Anish”, null, null, null, null]
(this is the internal array with extra space)

Implementing ArrayList

CSE 373 19 SU - ROBBIE WEBER 10

ArrayList<E>

get return data[index]
set data[index] = value
add data[size] = value,
if out of space make data
into a bigger array and
copy everything over
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return numberOfItems

state

behavior

data[]
size

0 1 2 3

insert(“d”, 0) a b c

size = 3

insert(element, index) with shifting

0 1 2 3

a b c

size = 43

delete(index) with shifting

cbad

4

delete(0) d a b c
Take 1 Minute
Yes or No: should we overwrite index 3 (the old c) with null? Please go to
www.pollev.com/cse373activity to submit a ‘Yes’ or ‘No’ answer with a brief
explanation why you think so.

http://www.pollev.com/cse373activity%20to%20submit%20a%20%E2%80%98Yes%E2%80%99

0 1 2 3 4 5 6 7

Implementing ArrayList

CSE 373 SP 18 - KASEY CHAMPION 11

ArrayList<E>

get return data[index]
set data[index] = value
add data[size] = value,
if out of space grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

0 1 2 3

append(2) 3 5

numberOfItems =

append(element) with growth

410

4

2

5

Case Study: List Implementations

12CSE 373 19 WI - KASEY CHAMPION

List ADT

get(index) return item at index
set(item, index) replace item at index
add(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
add data[size] = value,
if out of space grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

LinkedList<E>

get loop until index,
return node’s value
set loop until index,
update node’s value
add create new node,
update next of last node
insert create new node,
loop until index, update
next fields
delete loop until index,
skip node
size return size

state

behavior

Node front
size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0
88.6 26.1 94.4

list free space

What method/situations will be much
faster for LinkedList than for ArrayList?

Please go to
www.pollev.com/cse373activity to
submit a method/situation with a
brief explanation why you think so.

Take 1 Minute

http://www.pollev.com/cse373activity%20to%20submit%20a%20%E2%80%98Yes%E2%80%99

Design Decisions

For every ADT there are lots of different ways to implement them

Based on your situation you should consider:
- Memory vs Speed
- Generic/Reusability vs Specific/Specialized
- One Function vs Another
- Robustness vs Performance

This class is all about implementing ADTs based on making the right design tradeoffs!
> A common topic in interview questions

CSE 373 19 WI - KASEY CHAMPION 13

Design Decisions
Dub Street Burgers is implementing a new system for ticket (i.e. food order) management.

When a new ticket comes in, it is placed at the end of the set of tickets.

Food is prepared in approximately the same order it was requested, but sometimes tickets are
fulfilled out of order.

Let’s represent tickets as a list. Which of our ADT implementations should we use?

Why?

CSE 373 SU 19 - ROBBIE WEBER 14

Take 3 Minutes

We’re going to try some more online activities
here: please have some mercy
We’re going to group you all into groups of ~5 students with the Zoom breakouts feature, click
here for some instructions with screenshots about how to use it if you’re stuck / not sure. You
should be able to just click join, but if you’re trouble check out the slides.

With your group, discuss and submit an answer (or multiple if you have different opinions!) and
vote at

www.pollev.com/cse373activity

CSE 373 19 WI - KASEY CHAMPION 15

https://docs.google.com/presentation/d/15HiAPu6yYz2WWbkonRejBtUcq_FFhmoWFyT2l25G06o/edit
http://www.pollev.com/cse373activity

Design Decisions
Let’s represent tickets as a list. Which of our ADT implementations should we use?

Why?

ArrayList

Creating a new ticket is very fast (as long as we don’t resize), and I want the cooks to be able to
see all the orders right away.

LinkedList

We’ll mostly be removing from the front of the list, which is much faster for the linkedlist (no
shifting), and I want finished orders to be removed fast so they aren’t distracting.

CSE 373 SU 19 - ROBBIE WEBER 16

Design Decisions
Both ArrayList and LinkedList implementations have pros and cons.

Neither is strictly better than the other.

Some major objectives of this course:

Evaluating pros and cons

Deciding on a design

Defending that design decision

Especially when there’s more than one possible answer.

CSE 373 SU 19 - ROBBIE WEBER 17

Question Break

18CSE 373 20 SP – CHAMPION & CHUN

CSE 373 SP 18 - KASEY CHAMPION 19

This is where we stopped in lecture

Review: What is a Stack?

stack: A collection based on the principle of adding elements and

retrieving them in the opposite order.

- Last-In, First-Out ("LIFO")

- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine the last element added (the "top").

CSE 143 SP 17 – ZORA FUNG 21

top 3
2

bottom 1

pop, peekpush

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior
Set of ordered items
Number of items

supported operations:

- push(item): Add an element to the top of stack

- pop(): Remove the top element and returns it

- peek(): Examine the top element without removing it

- size(): how many items are in the stack?

- isEmpty(): true if there are 1 or more items in stack, false otherwise

Implementing a Stack with an Array

0 1 2 3

22

push(3)
push(4)
pop()
push(5)

3 45

numberOfItems = 012

ArrayStack<E>

push data[size] = value, if
out of room grow data
pop return data[size - 1],
size-1
peek return data[size - 1]
size return size
isEmpty return size == 0

state

behavior

data[]
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(1) Constant or
worst case O(N) linear

O(1) Constant
O(1) Constant

O(1) Constant
O(1) Constant

CSE 373 19 WI - KASEY CHAMPION

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst case runtime
of the “push()” operation will be?

Implementing a Stack with Nodes

CSE 373 19 WI - KASEY CHAMPION 23

push(3)
push(4)
pop() numberOfItems = 012

LinkedStack<E>

push add new node at top
pop return and remove node at
top
peek return node at top
size return size
isEmpty return size == 0

state

behavior

Node top
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(1) Constant

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

4

3front

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst case
runtime of the “push()” operation will be?

Question Break

24CSE 373 20 SP – CHAMPION & CHUN

Review: What is a Queue?

queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")

- Elements are stored in order of insertion but don't have indexes.

- Client can only add to the end of the queue, and can only
examine/remove the front of the queue.

CSE 143 SP 17 – ZORA FUNG 25

front back
1 2 3

addremove, peekQueue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior
Set of ordered items
Number of items

supported operations:
- add(item): aka “enqueue” add an element to the back.

- remove(): aka “dequeue” Remove the front element and return.

- peek(): Examine the front element without removing it.

- size(): how many items are stored in the queue?

- isEmpty(): if 1 or more items in the queue returns true, false otherwise

Implementing a Queue with an Array

0 1 2 3 4

26

add(5)
add(8)
add(9)
remove()

numberOfItems = 0

5 8 9

123

ArrayQueue<E>

add – data[size] = value, if
out of room grow data
remove – return data[size -
1], size-1
peek – return data[size - 1]
size – return size
isEmpty – return size == 0

state

behavior

data[]
Size
front index
back index

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

front = 0
back = 0

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(1) Constant or
worst case O(N) linear

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

12
1

CSE 373 19 WI - KASEY CHAMPION

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst case runtime of
the “add()” operation will be?

Implementing a Queue with an Array

CSE 373 SP 18 - KASEY CHAMPION 27

0 1 2 3 4

numberOfItems = 3

front back

5 9 2 74

add(7)
add(4)
add(1)

45

0 1 2 3 4 5 6 7 8 9

5 9 2 7 4

front back

1

> Wrapping Around

Implementing a Queue with Nodes

28

add(5)
add(8)
remove()

LinkedQueue<E>

add – add node to back
remove – return and remove
node at front
peek – return node at front
size – return size
isEmpty – return size == 0

state

behavior

Node front
Node back
size

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(1) Constant

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 19 WI - KASEY CHAMPION

numberOfItems = 012

85front

back

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst case
runtime of the “add()” operation will be?

