
Lecture 1: Welcome! CSE 373: Data Structures and
Algorithms

1

2

Agenda

-Mic check
-Introductions
-Syllabus
-Dust off data structure cobwebs
-Meet the ADT
-List Case Study

CSE 373 20 SP – CHUN & CHAMPION

Waitlist/ Overloads

-There are no overloads
-Sorry we have no control over these things :/
-Email cse373@cs.washington.edu for all registration questions
-Many students move around, likely a spot will open
-Keep coming to lecture!

3CSE 373 20 SP – CHUN & CHAMPION

http://cs.washington.edu

I am Kasey Champion
Software Engineer @ Karat
High School Teacher @ Franklin High
champk@cs.washington.edu

Hello!

@techie4good

http://cs.washington.edu

Zach Chun
Software Engineer @ Amazon
Previously CSE 373 TA
chunz2@uw.edu

Hello!

Two lecturers??
Please email cse373-20sp-lecturers@u.washington.edu for lecturer specific question / concerns
- Questions about course administration
- Concerns about grading
- Extenuating circumstances

We will both have office hours
- Answer questions about lecture content
- Help with homework
- Discuss any of the above lecturer specific questions

Happy to make specific appointments
- Shared Calendly coming soon

6CSE 373 20 SP – CHUN & CHAMPION

http://u.washington.edu

Class Style
Kasey & Zach have to go to their “real jobs” after this
- Your TAs
- Each other

Please come to lecture (yes, there will be recordings)
- Poll-everywhere
- Collaboration (helping other students in the class!)
- Ask questions! Point out mistakes!

Sections
- TAs = heroes
- Exam Practice problems
- Sections start this week

7CSE 373 20 SP – CHUN & CHAMPION

A note about remote life
We are all figuring this out as we go!

Lecture
- Please be prepared to interact throughout the hour
- Poll Everywhere
- Zoom interactions
- Breakouts

Section
- Similar to lecture
- Please be prepared to work with other students
- Video
- Mic

A note about time zones
- We understand many of you are no longer in “PST”
- We will do our best to provide supplemental times

8CSE 373 20 SP – CHUN & CHAMPION

Piazza
- Please feel free to use this to meet and engage with one

another

Office Hours
- Please be prepared to share your screen
- Turn on mic and video

Let us know what works!
- Share what you’ve seen elsewhere
- Use the anonymous feedback form
- Always happy to take suggestions / feedback J

https://pollev.com/uwcse373

https://pollev.com/uwcse373

Course Administration
Course Page
- All course content/announcements posted here
- Pay attention for updates!

Canvas
- Grades will be posted here

Office Hours
- Will be posted on Course Page
- Will start next week

Piazza
- Great place to discuss questions with other students
- Will be monitored by course staff
- No posting of project code!

Gradescope
- HW Turn in

Textbook
- Optional
- Data Structures and Algorithm Analysis in Java by Mark Allen Weiss

9CSE 373 20 SP – CHUN & CHAMPION

Syllabus + Website + Meet the TAs

To the website!

https://courses.cs.washington.edu/courses/
cse373/20sp/syllabus/

10CSE 373 20 SP – CHUN & CHAMPION

https://courses.cs.washington.edu/courses/cse373/20sp/syllabus/

Grade Break Down
Homework (55%)
- Programming Projects (35%)

- Partners GREATLY encouraged, but possible to do solo
- Graded automatically

- Written exercises (20%)
- Turn in your own work, but can collaborate with others (see academic collaboration policy)

- Graded by TAs

Exams (45%)
- Midterm Exam #1 – Friday April 24th at 8:30-9:20(15%)
- Midterm Exam #2 – Friday May 29th at 8:30-9:20 (15%)
- Final Exam – "Take-home over finals week exam, collaboration encouraged" (15%)

11CSE 373 20 SP – CHUN & CHAMPION

Syllabus
Homework Policies
- 7 late days

Exams
- 2 midterms

- 50 minutes, during class time
- Randomized
- NO COLLABORATION

- 1 final
- 48 hours to complete
- Free response style
- Will be collaborative

- Rules
- No make ups! Let us know ASAP if you cannot attend an

exam
- Open book

12

Academic Integrity
- No posting code on discussion board or ANYWHERE online
- We do run MOSS
- No directly sharing code with one another (except for

partners)

Extra Credit
- Post lecture-questions
- Worth up to 0.05 GPA bump

CSE 373 20 SP – CHUN & CHAMPION

Questions?

13

Clarification on syllabus, General complaining/moaning

https://pollev.com/uwcse373

https://pollev.com/uwcse373

14CSE 373 19 WI - KASEY CHAMPION

What is this class about?

CSE 143 – OBJECT ORIENTED PROGRAMMING

15

- Classes and Interfaces
- Methods, variables and conditionals
- Loops and recursion
- Linked lists and binary trees
- Sorting and Searching
- O(n) analysis
- Generics

CSE 373 – DATA STRUCTURES AND ALGORITHMS

- Design decisions
- Design analysis
- Implementations of data structures
- Debugging and testing
- Abstract Data Types
- Code Modeling
- Complexity Analysis
- Software Engineering Practices

CSE 373 19 WI - KASEY CHAMPION

Data Structures and Algorithms

16

What are they anyway?

Basic Definitions

Data Structure
- A way of organizing and storing data
- Examples from CSE 14X: arrays, linked lists, stacks, queues, trees

Algorithm
- A series of precise instructions to produce to a specific outcome
- Examples from CSE 14X: binary search, merge sort, recursive backtracking

17CSE 373 20 SP – CHUN & CHAMPION

Review: Clients vs Objects

CLIENT CLASSES

CSE 143 WI 18 – WHITAKER BRAND 18

A class that is executable, in Java this means it
contains a Main method
public static void main(String[] args)

OBJECT CLASSES

A coded structure that contains data and
behavior

Start with the data you want to hold, organize
the things you want to enable users to do
with that data

Abstract Data Types (ADT)
Abstract Data Types
- An abstract definition for expected operations and behavior
- Defines the input and outputs, not the implementations

19

- each element is accessible by a 0-based index
- a list has a size (number of elements that have been added)
- elements can be added to the front, back, or elsewhere
- in Java, a list can be represented as an ArrayList object

Review: List - a collection storing an ordered sequence of elements

CSE 373 20 SP – CHUN & CHAMPION

Review: Interfaces
interface: A construct in Java that defines a set of
methods that a class promises to implement
- Interfaces give you an is-a relationship without code sharing.

- A Rectangle object can be treated as a Shape but inherits no code.

- Analogous to non-programming idea of roles or certifications:
- "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."
- "I'm 'certified' as a Shape, because I implement the Shape interface.

This assures you I know how to compute my area and perimeter."

public interface name {
public type name(type name, ..., type name);
public type name(type name, ..., type name);
...
public type name(type name, ..., type name);

}

20

Example

// Describes features common to all
// shapes.
public interface Shape {

public double area();
public double perimeter();

}

CSE 373 20 SP – CHUN & CHAMPION

Review: Java Collections
Java provides some implementations of ADTs for you!

Lists List<Integer> a = new ArrayList<Integer>();

Stacks Stack<Character> c = new Stack<Character>();

Queues Queue<String> b = new LinkedList<String>();

Maps Map<String, String> d = new TreeMap<String, String>();

But some data structures you made from scratch… why?

Linked Lists - LinkedIntList was a collection of ListNode

Binary Search Trees – SearchTree was a collection of SearchTreeNodes

21CSE 373 20 SP – CHUN & CHAMPION

ADTs Data Structures

Full Definitions
Abstract Data Type (ADT)
- A definition for expected operations and behavior
- A mathematical description of a collection with a set of supported operations and how they

should behave when called upon
- Describes what a collection does, not how it does it
- Can be expressed as an interface
- Examples: List, Map, Set

Data Structure
- A way of organizing and storing related data points
- An object that implements the functionality of a specified ADT
- Describes exactly how the collection will perform the required operations
- Examples: LinkedIntList, ArrayIntList

22CSE 373 19 WI - KASEY CHAMPION

ADTs we’ll discuss this quarter

-List
-Set
-Map
-Stack
-Queue
-Priority Queue
-Graph
-Disjoint Set

23CSE 373 19 SP - KASEY CHAMPION

Questions?

24

Clarification on anything we’ve talked about?

https://pollev.com/uwcse373

https://pollev.com/uwcse373

This is where we ended for lecture 1

Case Study: The List ADT

CSE 373 SP 18 - KASEY CHAMPION 26

list: a collection storing an ordered sequence of elements.
- Each item is accessible by an index.
- A list has a variable size defined as the number of elements in the list
- Elements can be added to or removed from any position in the list

Relation to code and our mental image of a list:
List<String> names = new ArrayList<>(); // []
names.size(); // evaluates to 0
names.add(”Amanda"); // [“Amanda”]
names.add(”Anish"); // [“Amanda, Anish”]
names.insert("Brian”, 0); // [“Brian”, “Amanda”, “Anish”]
names.size(); // evaluates to 3

Case Study: List Implementations

27CSE 373 19 WI - KASEY CHAMPION

List ADT

get(index) return item at index
set(item, index) replace item at index
add(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
add data[size] = value,
if out of space grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

LinkedList<E>

get loop until index,
return node’s value
set loop until index,
update node’s value
add create new node,
update next of last node
insert create new node,
loop until index, update
next fields
delete loop until index,
skip node
size return size

state

behavior

Node front
size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0
88.6 26.1 94.4

list free space

Case Study: The List ADT: ArrayList

28CSE 373 19 WI - KASEY CHAMPION

How do Java / other programming languages implement ArrayList to achieve all the List behavior?

On the inside:

- stores the elements inside an array (which has a fixed capacity) that typically has more space than
currently used (For example when there is only 1 element in the actual list, the array might have
10 spaces for data),

- stores all of these elements at the front of the array and keeps track of how many there are (the
size) so that the implementation doesn’t get confused enough to look at the empty space. This
means that sometimes we will have to do a lot of work to shift the elements around.

List view ArrayList view

[”Brian”, “Amanda”, “Anish”] [“Brian”, “Amanda”, “Anish”, null, null, null, null]
(this is the internal array with extra space)

Implementing ArrayList

CSE 373 19 SU - ROBBIE WEBER 29

ArrayList<E>

get return data[index]
set data[index] = value
add data[size] = value,
if out of space make data
into a bigger array and
copy everything over
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return numberOfItems

state

behavior

data[]
size

0 1 2 3

insert(“d”, 0) a b c

size = 3

insert(element, index) with shifting

0 1 2 3

a b c

size = 43

delete(index) with shifting

cbad

4

delete(0) d a b c

Take 1 Minute
Yes/No should we overwrite index 3 (the old c) with null? Everyone please vote with
the yes/ no buttons and message in the chat your explanations why.

0 1 2 3 4 5 6 7

Implementing ArrayList

CSE 373 SP 18 - KASEY CHAMPION 30

ArrayList<E>

get return data[index]
set data[index] = value
add data[size] = value,
if out of space grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

0 1 2 3

append(2) 3 5

numberOfItems =

append(element) with growth

410

4

2

5

Case Study: List Implementations

31CSE 373 19 WI - KASEY CHAMPION

List ADT

get(index) return item at index
set(item, index) replace item at index
add(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
add data[size] = value,
if out of space grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

LinkedList<E>

get loop until index,
return node’s value
set loop until index,
update node’s value
add create new node,
update next of last node
insert create new node,
loop until index, update
next fields
delete loop until index,
skip node
size return size

state

behavior

Node front
size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0
88.6 26.1 94.4

list free space

What method/situations will be
much faster for LinkedList than
for ArrayList?

Take 1 Minute spam the chat

Design Decisions
For every ADT there are lots of different ways to implement them

Based on your situation you should consider:
- Memory vs Speed
- Generic/Reusability vs Specific/Specialized
- One Function vs Another
- Robustness vs Performance

This class is all about implementing ADTs based on making the right design tradeoffs!
> A common topic in interview questions

CSE 373 19 WI - KASEY CHAMPION 32

Design Decisions
Dub Street Burgers is implementing a new system for ticket (i.e. food order) management.

When a new ticket comes in, it is placed at the end of the set of tickets.

Food is prepared in approximately the same order it was requested, but sometimes tickets are
fulfilled out of order.

Let’s represent tickets as a list. Which of our ADT implementations should we use?

Why?

CSE 373 SU 19 - ROBBIE WEBER 33

Take 1 Minute spam the chat

Design Decisions
Let’s represent tickets as a list. Which of our ADT implementations should we use?

Why?

ArrayList

Creating a new ticket is very fast (as long as we don’t resize), and I want the cooks to be able to
see all the orders right away.

LinkedList

We’ll mostly be removing from the front of the list, which is much faster for the linkedlist (no
shifting), and I want finished orders to be removed fast so they aren’t distracting.

CSE 373 SU 19 - ROBBIE WEBER 34

Design Decisions
Both ArrayList and LinkedList implementations have pros and cons.

Neither is strictly better than the other.

Some major objectives of this course:

Evaluating pros and cons

Deciding on a design

Defending that design decision

Especially when there’s more than one possible answer.

CSE 373 SU 19 - ROBBIE WEBER 35

