
CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

CSE 373
L E C 0 7

Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino Iannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu
Elena Spasova
Alex Teng
Blarry Wang
Aileen Zeng

Hunter SchaferInstructor

TAs

Recurrences II,
Tree Method

BEFORE WE START

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Announcements
• P1 (Deques) due TONIGHT 11:59pm PDT!

- Make sure to add your partner on your Gradescope submission!

- Late Policy:
- 7 penalty-free late days (24hr chunks) for the quarter
- 5% deduction/day afterward
- late assignment cutoff is 3 days after due date

- Don’t forget your writeup for the P1 experiments

• EX1 (Algo Analysis I) due Friday 10/16 11:59pm PDT
• P2 (Maps) and EX2 (Algo Analysis II) released Friday 10/16

- Partner 2 Pool form already out, due Thursday 10/15 at 11:59 pm
• We’ll see some summation identities in today’s lecture

- Summations Reference will be posted as a resource on the calendar

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Learning Objectives

1. Continued Describe the 3 most common recursive patterns and
identify whether code belongs to one of them

2. Model a recurrence with the Tree Method and use it to characterize
the recurrence with a bound

3. Use Summation Identities to find closed forms for summations
(Non-Objective: come up with or explain Summation Identities)

After this lecture, you should be able to...

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Review Writing Recurrences
public int recurse(int n) {

if (n < 3) {
return 80;

}

for (int i = 0; i < n; i++) {
System.out.println(i);

}

int val1 = recurse(n / 3);
int val2 = recurse(n / 3);
int val3 = recurse(n / 3);

return val1 + val2 + val3;
}

+2 Base Case

+n
Recursive Case

+3

Non-recursive Work: + n + 3

Recursive Work: + 3*T(n/3)

𝑇 𝑛 = $
2 if 𝑛 < 3

3𝑇
𝑛
3 + 𝑛 otherwise

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Review Why Include Non-Recursive Work?
public int recurse(int n) {

if (n < 3) {
return 80;

}

for (int i = 0; i < n; i++) {
System.out.println(i);

}

int val1 = recurse(n / 3);
int val2 = recurse(n / 3);
int val3 = recurse(n / 3);

return val1 + val2 + val3;
}

Base Case

+n

+3

𝑇 𝑛 = $
2 if 𝑛 < 3

3𝑇
𝑛
3
+ 𝑛 otherwise

Think of it this way:

Recursive Case

“work that happens if we
enter base case”

“work that happens if we
enter recursive case”

Non-recursive parts of recursive
cases are sometimes where the
bulk of the work takes place!

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Review Master Theorem: Recurrence to Big-Θ
• It’s still really hard to tell what the big-O is just by

looking at it.
• But fancy mathematicians have a formula for us to use!

𝑇 𝑛 = $
2 if 𝑛 < 3

2𝑇
𝑛
3
+ 𝑛 otherwise

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛!

𝑇 𝑛 ∈ Θ 𝑛!log" 𝑎 < 𝑐
log" 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛! log 𝑛
log" 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛#$%! &

If

If
If

then

then
then

MASTER THEOREM

a=2 b=3 and c=1

(log! a = log" 2 ≅ 0.63) < (𝑐 = 1)
We’re in case 1
𝑇 𝑛 ∈ Θ(𝑛)

𝑦 = log! 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏" = 𝑥

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Lecture Outline
• Analyzing Recursive Code: Recursive Patterns

• Summations

• The Tree Method

1 2 3

Halving the Input Constant size Input Doubling the Input

Binary Search
Θ (log n)

Merge Sort

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Review Merge Sort
mergeSort(input) {

if (input.length == 1)
return

else
smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

2 Constant size Input

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Review Merge Sort Recurrence to Big-Θ

a=2 b=2 and c=1

logB 2 = 1
We’re in case 2
𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)

𝑦 = log! 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏" = 𝑥𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛!

𝑇 𝑛 ∈ Θ 𝑛!log" 𝑎 < 𝑐
log" 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛! log 𝑛
log" 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛#$%! &

If
If
If

then
then
then

MASTER THEOREM

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Review Recursive Toolchain
TIGHT

BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA
Asymptotic
Analysis

TIGHT
BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA

BEST CASE
FUNCTION

Asymptotic
Analysis

WORST CASE
FUNCTION

CODE

2

2

Case
Analysis

1

For recursive code, we now have tools that fall under Case
Analysis (Writing Recurrences) and Asymptotic Analysis (The
Master Theorem).

Write a
Recurrence

Master Theorem

Master Theorem

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Lecture Outline
• Analyzing Recursive Code: Recursive Patterns

• Summations

• The Tree Method

1 2 3

Halving the Input Constant size Input Doubling the Input

Binary Search
Θ (log n)

Merge Sort
Θ (n log n)

Fibonacci

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Calculating Fibonacci (ish)

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

• Each call creates 2 more calls
• Each new call has a copy of the

input, almost
• Almost doubling the input at

each call

public int fib(int n) {
if (n <= 1) {

return 1;
}
return fib(n-1) + fib(n-1);

}

3 Doubling the Input

Almost

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Fibonacci Recurrence to Big-Θ
Can we use the Master Theorem?

Uh oh, our model doesn’t match that format…
Can we intuit a pattern?
T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +15c
Looks like something’s happening, but it’s hard to
identify. Maybe geometry can help!

public int fib(int n) {
if (n <= 1) {

return 1;
}
return fib(n-1) + fib(n-1);

}

𝑇 𝑛 = C 𝑑 if 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 otherwise

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏
+ 𝑓 𝑛 otherwise

MASTER THEOREMd

2T(n-1) + c

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Fibonacci Recurrence to Big-Θ

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

How many layers in the function call tree?

How many steps to go from start value of n
(4) to base case (1), subtracting 1 each time?

Height of function call tree: n

LAYER FUNCTION
CALLS

0 1 (= 20)

1 2 (= 21)

2 4 (= 22)

3 8 (= 23)

How many function calls on layer i?

2i

How many function calls TOTAL
for a tree of k layers?

1 + 2 + 4 + … + 2k-1

How many function calls per layer?

𝑇 𝑛 = C 𝑑 if 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 otherwise

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Fibonacci Recurrence to Big-Θ

How many layers in the function call
tree?

E
'()

*+,

2'
Summation Identity
Finite Geometric Series

E
'()

-+,

𝑥' =
𝑥- − 1
𝑥 − 1

n

2i

(1 + 2 + 4 + 8 + … + 2n-1) x (constant work)

1 + 2 + 4 + 8 + … + 2n-1 =

𝑻 𝒏 = 𝟐𝒏 − 𝟏 ∈ 𝚯(𝟐𝒏)

Total runtime =
(total function calls) *
(runtime of each function call)

How many function calls TOTAL for
a tree of n layers?

How many function calls on layer i?

1 + 2 + 4 + 8 + …+ 2*+,

=
2* − 1
2 − 1 = 2* − 1

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

3 Patterns for Recursive Code

1 2 3

Halving the Input Constant size Input Doubling the Input

Binary Search
Θ (log n)

Merge Sort
Θ (n log n)

Fibonacci
Θ (2n)

0

5

10

15

20

25

30

35

1 2 3 4 5

logn nlogn 2^n

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

logn nlogn 2^n

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Lecture Outline
• Analyzing Recursive Code: Recursive Patterns

• Summations

• The Tree Method

1 2 3

Halving the Input Constant size Input Doubling the Input

Binary Search
Θ (log n)

Merge Sort
Θ (n log n)

Fibonacci
Θ (2n)

Pause Video when Prompted

Which of these functions is a mathematical
model for the runtime of this code?

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

𝑓 𝑛 = 2𝑛

𝑓 𝑛 = 𝑛 + 𝑛

𝑓 𝑛 = 𝑛/

𝑓 𝑛 = E
'()

*+,

E
0()

'+,

1

Keep an eye on the loop bounds!

a)

b)

c)

d)

+1 *n *n

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Modeling Complex Loops

Summations!
1 + 2 + 3 + 4 +… + n = E

'(,

*

𝑖

= f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

E
'(&

"

𝑓(𝑖)

f(n) = E
'()

*+,

E
0()

'+,

1

f(n) = (0 + 1 + 2 + … + i-1)

How do we model
this part?

What is the Big-Theta?

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

+1 *n*(0 + 1 + 2 + ... + i-1)

Modeling the inner loop:

Modeling the entire code snippet:

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Simplifying Summations

𝑓 𝑛 = E
'()

*+,

E
0()

'+,

1

= E
'()

*+,

1・𝑖 = 1E
'()

*+,

𝑖 =
𝑛 𝑛 − 1

2

Summation of a constant

E
'()

-+,

𝑐 = 𝑐𝑘

Factoring out a constant

E
'(&

"

𝑐𝑓 𝑖 = 𝑐E
'(&

"

𝑓(𝑖)

Gauss’s Identity

E
'()

*+,

𝑖 =
𝑛 𝑛 − 1

2

=
1
2
𝑛/ −

1
2
𝑛

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

closed form simplified
big-Theta

𝑓 𝑛 = E
'()

*+,

E
0()

'+,

1 = 𝜽(𝒏𝟐)

The code is Θ(n2), but it is not correct to say f(n) = n2 models its runtime!

You don’t have to
come up with these

or explain why! We’ll
publish a list of

identities.

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Lecture Outline
• Analyzing Recursive Code: Recursive Patterns

• Summations

• The Tree Method

1 2 3

Halving the Input Constant size Input Doubling the Input

Binary Search
Θ (log n)

Merge Sort
Θ (n log n)

Fibonacci
Θ (2n)

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Recurrence to Big-Theta: Our Toolbox

2

Master
Theorem

TIGHT
BIG-OH

BIG-THETA

TIGHT
BIG-OMEGA

2

Unrolling the
Recurrence

2

Tree MethodRECURRENCE

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏
+ 𝑓 𝑛 otherwise

MASTER THEOREM T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c

PROS: Convenient to plug ‘n’ chug
CONS: Only works for certain format
of recurrences

PROS: Least complicated setup
CONS: Requires intuitive pattern
matching, no formal technique

PROS: Convenient to plug ‘n’ chug
CONS: Complicated to set up for a
given recurrence

f(n=64)
work: 64

f(n=32)
work: 32

f(n=32)
work: 32

(followed by
Asymptotic Analysis)

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Tree Method (Generalizing from Fibonacci Example)
Draw out the function call tree. What’s the input to each call? How much work is done in each call?

f(n=64)
work: 64

e.g. Merge Sort:

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise f(n=32)

work: 32
f(n=32)
work: 32

f(n=16)
work: 16

f(n=16)
work: 16

f(n=16)
work: 16

f(n=16)
work: 16

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

...

mergeSort(input) {
if (input.length == 1)

return
else

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

Where’s that work coming from?
A Θ(n) operation inside of Merge Sort that processes the entire input!

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Tree Method

f(n=64)
work: 64

f(n=32)
work: 32

f(n=32)
work: 32

f(n=16)
work: 16

f(n=16)
work: 16

f(n=16)
work: 16

f(n=16)
work: 16

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

...

How many layers in the function call tree?

How many steps to go from start value of n
to base case (1), dividing by 2 each time?

Think binary search – it takes log2n “halvings”
to take n down to 1

Height of function call tree: log2n

How much work done per layer?
Amount of work varies by function call, but
remains constant across entire layer

n work at each layer

e.g. Merge Sort:

𝑇 𝑛 = $
1 if 𝑛 = 1

2𝑇
𝑛
2 + 𝑛 otherwise

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Tree Method

f(n)
work: n

f(n/2)
work: n/2

f(n/2)
work: n/2

f(n/4)
work: n/4

f(n/4)
work: n/4

f(n/4)
work: n/4

f(n/4)
work: n/4

f(n/8)
work: n/8

...

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2
+ 𝑛 otherwise

f(n/8)
work: n/8

f(n/8)
work: n/8

f(n/8)
work: n/8

f(n/8)
work: n/8

f(n/8)
work: n/8

f(n/8)
work: n/8

f(n/8)
work: n/8

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

How many
nodes at each

level?

How much
work across
each level?

1 n

2

4

8

n

n

n

n

n

How much
work done by
each node?

n

𝒏
𝟐

𝒏
𝟒

𝒏
𝟖

𝟏

Recursive level

0

1

2

3

logn

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Tree Method Checklist
What’s the size of the input
per call on level i?

1
𝑛
2'

(
𝑛
2'
)

2'

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒
= 2'

𝑛
2'

= 𝑛

𝑛
2'
= 1

(𝑛 = 2' ⟹ 𝑖 = log/ 𝑛)

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒
= 2456!* 1 = 𝑛

1

How much work done by each
node on level i (recursive case)?

2

How many nodes at level i?3

What’s the total work done on
level i (recursive case)?

4

On what value of i does the
last level occur (base case)?

5

How much work done by each
node on last level (base case)?

6

What’s the total work on the
last level (base case)?

7

3 2

35 6

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2
+ 𝑛 otherwise

Level (i) Number of
Nodes

Work per
Node

Work per
Level

0 1 𝑛 𝑛

1 2
𝑛
2

𝑛

2 4
𝑛
4

𝑛

3 8
𝑛
8

𝑛

log2n 𝑛 1 𝑛

1

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Tree Method Checklist
What’s the size of the input
per call on level i?

1
𝑛
2'

(
𝑛
2'
)

2'

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒
= 2'

𝑛
2'

= 𝑛

𝑛
2'
= 1

(𝑛 = 2' ⟹ 𝑖 = log/ 𝑛)

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒
= 2456!* 1 = 𝑛

1

How much work done by each
node on level i (recursive case)?

2

How many nodes at level i?3

What’s the total work done on
level i (recursive case)?

4

On what value of i does the
last level occur (base case)?

5

How much work done by each
node on last level (base case)?

6

What’s the total work on the
last level (base case)?

7

3 2

35 6

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2
+ 𝑛 otherwise

Putting it Together:

𝑇 𝑛 = E
'()

#$%" * +,

𝑛 + 𝑛

= 𝑛 𝑙𝑜𝑔2𝑛 + 𝑛

= Θ(n log n)

4

5
71

Summation of a
Constant

E
'()

-+,

𝑐 = 𝑐𝑘

= E
'()

#$%" *

𝑛

CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Next Stop: The Data Structures Part™
• We’re now armed with

a toolbox stuffed full of
analysis tools

- It’s time to apply this
theory to more
practical topics!

• On Friday, we’ll take
our first deep dive
using those tools on a
data structure: Hash
Maps!

Algorithmic
Analysis

Hash Maps

Binary Search Trees

AVL Trees

Heaps
B-Trees

Graphs

BFS

DFS

Dijkstra’s

Disjoint Sets

Sorting

