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Announcements
• P1 (Deques) due TONIGHT 11:59pm PDT!

- Make sure to add your partner on your Gradescope submission!

- Late Policy:
- 7 penalty-free late days (24hr chunks) for the quarter
- 5% deduction/day afterward
- late assignment cutoff is 3 days after due date

- Don’t forget your writeup for the P1 experiments

• EX1 (Algo Analysis I) due Friday 10/16 11:59pm PDT
• P2 (Maps) and EX2 (Algo Analysis II) released Friday 10/16

- Partner 2 Pool form already out, due Thursday 10/15 at 11:59 pm
• We’ll see some summation identities in today’s lecture

- Summations Reference will be posted as a resource on the calendar
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Learning Objectives

1. Continued Describe the 3 most common recursive patterns and 
identify whether code belongs to one of them

2. Model a recurrence with the Tree Method and use it to characterize 
the recurrence with a bound

3. Use Summation Identities to find closed forms for summations 
(Non-Objective: come up with or explain Summation Identities)

After this lecture, you should be able to...
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Review Writing Recurrences
public int recurse(int n) {

if (n < 3) {
return 80;

}

for (int i = 0; i < n; i++) {
System.out.println(i);

}

int val1 = recurse(n / 3);
int val2 = recurse(n / 3);
int val3 = recurse(n / 3);

return val1 + val2 + val3;
}

+2 Base Case

+n
Recursive Case

+3

Non-recursive Work: + n + 3

Recursive Work: + 3*T(n/3)

𝑇 𝑛 = $
2 if 𝑛 < 3

3𝑇
𝑛
3 + 𝑛 otherwise
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Review Why Include Non-Recursive Work?
public int recurse(int n) {

if (n < 3) {
return 80;

}

for (int i = 0; i < n; i++) {
System.out.println(i);

}

int val1 = recurse(n / 3);
int val2 = recurse(n / 3);
int val3 = recurse(n / 3);

return val1 + val2 + val3;
}

Base Case

+n

+3

𝑇 𝑛 = $
2 if 𝑛 < 3

3𝑇
𝑛
3
+ 𝑛 otherwise

Think of it this way:

Recursive Case

“work that happens if we 
enter base case” 

“work that happens if we 
enter recursive case” 

Non-recursive parts of recursive 
cases are sometimes where the 
bulk of the work takes place!
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Review Master Theorem: Recurrence to Big-Θ
• It’s still really hard to tell what the big-O is just by 

looking at it.
• But fancy mathematicians have a formula for us to use!

𝑇 𝑛 = $
2 if 𝑛 < 3

2𝑇
𝑛
3
+ 𝑛 otherwise

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛!

𝑇 𝑛 ∈ Θ 𝑛!log" 𝑎 < 𝑐
log" 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛! log 𝑛
log" 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛#$%! &

If

If
If

then

then
then

MASTER THEOREM

a=2 b=3 and c=1 

(log! a = log" 2 ≅ 0.63) < (𝑐 = 1)
We’re in case 1
𝑇 𝑛 ∈ Θ(𝑛)

𝑦 = log! 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏" = 𝑥
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Lecture Outline
• Analyzing Recursive Code: Recursive Patterns

• Summations

• The Tree Method

1 2 3

Halving the Input Constant size Input Doubling the Input

Binary Search
Θ (log n)

Merge Sort
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Review Merge Sort
mergeSort(input) {

if (input.length == 1)
return

else
smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

2 Constant size Input
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Review Merge Sort Recurrence to Big-Θ

a=2 b=2 and c=1 

logB 2 = 1
We’re in case 2
𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)

𝑦 = log! 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏" = 𝑥𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛!

𝑇 𝑛 ∈ Θ 𝑛!log" 𝑎 < 𝑐
log" 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛! log 𝑛
log" 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛#$%! &

If
If
If

then
then
then

MASTER THEOREM

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise
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Review Recursive Toolchain
TIGHT

BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA
Asymptotic
Analysis

TIGHT
BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA

BEST CASE
FUNCTION

Asymptotic
Analysis

WORST CASE
FUNCTION

CODE

2

2

Case
Analysis

1

For recursive code, we now have tools that fall under Case 
Analysis (Writing Recurrences) and Asymptotic Analysis (The 
Master Theorem).

Write a 
Recurrence

Master Theorem

Master Theorem
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Lecture Outline
• Analyzing Recursive Code: Recursive Patterns

• Summations

• The Tree Method

1 2 3

Halving the Input Constant size Input Doubling the Input

Binary Search
Θ (log n)

Merge Sort
Θ (n log n)

Fibonacci
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Calculating Fibonacci (ish)

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

• Each call creates 2 more calls
• Each new call has a copy of the 

input, almost
• Almost doubling the input at 

each call

public int fib(int n) {
if (n <= 1) {

return 1;
}
return fib(n-1) + fib(n-1);

}

3 Doubling the Input

Almost
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Fibonacci Recurrence to Big-Θ
Can we use the Master Theorem?

Uh oh, our model doesn’t match that format…
Can we intuit a pattern?
T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +15c
Looks like something’s happening, but it’s hard to 
identify. Maybe geometry can help!

public int fib(int n) {
if (n <= 1) {

return 1;
}
return fib(n-1) + fib(n-1);

}

𝑇 𝑛 = C 𝑑 if 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 otherwise

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏
+ 𝑓 𝑛 otherwise

MASTER THEOREMd

2T(n-1) + c
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Fibonacci Recurrence to Big-Θ

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

How many layers in the function call tree?

How many steps to go from start value of n 
(4) to base case (1), subtracting 1 each time?

Height of function call tree: n

LAYER FUNCTION 
CALLS

0 1 (= 20)

1 2 (= 21)

2 4 (= 22)

3 8 (= 23)

How many function calls on layer i?

2i

How many function calls TOTAL 
for a tree of k layers?

1 + 2 + 4 + … + 2k-1

How many function calls per layer?

𝑇 𝑛 = C 𝑑 if 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 otherwise



CSE 373 Autumn 2020LEC 07: Recurrences II, Tree Method

Fibonacci Recurrence to Big-Θ

How many layers in the function call 
tree?

E
'()

*+,

2'
Summation Identity
Finite Geometric Series

E
'()

-+,

𝑥' =
𝑥- − 1
𝑥 − 1

n

2i

(1 + 2 + 4 + 8 + … + 2n-1) x (constant work) 

1 + 2 + 4 + 8 + … + 2n-1 = 

𝑻 𝒏 = 𝟐𝒏 − 𝟏 ∈ 𝚯(𝟐𝒏)

Total runtime =
(total function calls) * 
(runtime of each function call)

How many function calls TOTAL for 
a tree of n layers?

How many function calls on layer i?

1 + 2 + 4 + 8 + …+ 2*+,

=
2* − 1
2 − 1 = 2* − 1
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3 Patterns for Recursive Code

1 2 3

Halving the Input Constant size Input Doubling the Input

Binary Search
Θ (log n)

Merge Sort
Θ (n log n)

Fibonacci
Θ (2n)

0
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Lecture Outline
• Analyzing Recursive Code: Recursive Patterns

• Summations

• The Tree Method

1 2 3

Halving the Input Constant size Input Doubling the Input

Binary Search
Θ (log n)

Merge Sort
Θ (n log n)

Fibonacci
Θ (2n)



Pause Video when Prompted

Which of these functions is a mathematical 
model for the runtime of this code?

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

𝑓 𝑛 = 2𝑛

𝑓 𝑛 = 𝑛 + 𝑛

𝑓 𝑛 = 𝑛/

𝑓 𝑛 = E
'()

*+,

E
0()

'+,

1

Keep an eye on the loop bounds!

a)

b)

c)

d)

+1 *n *n
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Modeling Complex Loops

Summations!
1 + 2 + 3 + 4 +… + n = E

'(,

*

𝑖

= f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

E
'(&

"

𝑓(𝑖)

f(n) = E
'()

*+,

E
0()

'+,

1

f(n) =  (0 + 1 + 2 + … + i-1)

How do we model 
this part?

What is the Big-Theta?

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

+1 *n*(0 + 1 + 2 + ... + i-1) 

Modeling the inner loop:

Modeling the entire code snippet:
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Simplifying Summations

𝑓 𝑛 = E
'()

*+,

E
0()

'+,

1

= E
'()

*+,

1・𝑖 = 1E
'()

*+,

𝑖 =
𝑛 𝑛 − 1

2

Summation of a constant 

E
'()

-+,

𝑐 = 𝑐𝑘

Factoring out a constant

E
'(&

"

𝑐𝑓 𝑖 = 𝑐E
'(&

"

𝑓(𝑖)

Gauss’s Identity

E
'()

*+,

𝑖 =
𝑛 𝑛 − 1

2

=
1
2
𝑛/ −

1
2
𝑛

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

closed form simplified
big-Theta

𝑓 𝑛 = E
'()

*+,

E
0()

'+,

1 = 𝜽(𝒏𝟐)

The code is Θ(n2), but it is not correct to say f(n) = n2 models its runtime!

You don’t have to 
come up with these 

or explain why! We’ll 
publish a list of 

identities.
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Lecture Outline
• Analyzing Recursive Code: Recursive Patterns

• Summations

• The Tree Method

1 2 3

Halving the Input Constant size Input Doubling the Input

Binary Search
Θ (log n)

Merge Sort
Θ (n log n)

Fibonacci
Θ (2n)
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Recurrence to Big-Theta: Our Toolbox

2

Master 
Theorem

TIGHT
BIG-OH

BIG-THETA

TIGHT
BIG-OMEGA

2

Unrolling the 
Recurrence

2

Tree MethodRECURRENCE

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏
+ 𝑓 𝑛 otherwise

MASTER THEOREM T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c

PROS: Convenient to plug ‘n’ chug
CONS: Only works for certain format 
of recurrences

PROS: Least complicated setup
CONS: Requires intuitive pattern 
matching, no formal technique

PROS: Convenient to plug ‘n’ chug
CONS: Complicated to set up for a 
given recurrence

f(n=64)
work: 64

f(n=32)
work: 32

f(n=32)
work: 32

(followed by 
Asymptotic Analysis)
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Tree Method (Generalizing from Fibonacci Example)
Draw out the function call tree. What’s the input to each call? How much work is done in each call?

f(n=64)
work: 64

e.g. Merge Sort:

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise f(n=32)

work: 32
f(n=32)
work: 32

f(n=16)
work: 16

f(n=16)
work: 16

f(n=16)
work: 16

f(n=16)
work: 16

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

...

mergeSort(input) {
if (input.length == 1)

return
else

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

Where’s that work coming from?
A Θ(n) operation inside of Merge Sort that processes the entire input!
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Tree Method

f(n=64)
work: 64

f(n=32)
work: 32

f(n=32)
work: 32

f(n=16)
work: 16

f(n=16)
work: 16

f(n=16)
work: 16

f(n=16)
work: 16

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

f(n=8)
work: 8

...

How many layers in the function call tree?

How many steps to go from start value of n 
to base case (1), dividing by 2 each time?

Think binary search – it takes log2n “halvings” 
to take n down to 1

Height of function call tree: log2n

How much work done per layer?
Amount of work varies by function call, but 
remains constant across entire layer  

n work at each layer

e.g. Merge Sort:

𝑇 𝑛 = $
1 if 𝑛 = 1

2𝑇
𝑛
2 + 𝑛 otherwise
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Tree Method

f(n)
work: n

f(n/2)
work: n/2

f(n/2)
work: n/2

f(n/4)
work: n/4

f(n/4)
work: n/4

f(n/4)
work: n/4

f(n/4)
work: n/4

f(n/8)
work: n/8

...

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2
+ 𝑛 otherwise

f(n/8)
work: n/8

f(n/8)
work: n/8

f(n/8)
work: n/8

f(n/8)
work: n/8

f(n/8)
work: n/8

f(n/8)
work: n/8

f(n/8)
work: n/8

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

f(1)
work: 1

How many 
nodes at each 

level?

How much 
work across 
each level?

1 n

2

4

8

n

n

n

n

n

How much 
work done by 
each node?

n

𝒏
𝟐

𝒏
𝟒

𝒏
𝟖

𝟏

Recursive level

0

1

2

3

logn
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Tree Method Checklist
What’s the size of the input 
per call on level i?

1
𝑛
2'

(
𝑛
2'
)

2'

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒
= 2'

𝑛
2'

= 𝑛

𝑛
2'
= 1

(𝑛 = 2' ⟹ 𝑖 = log/ 𝑛)

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒
= 2456!* 1 = 𝑛

1

How much work done by each 
node on level i (recursive case)?

2

How many nodes at level i?3

What’s the total work done on 
level i (recursive case)?

4

On what value of i does the 
last level occur (base case)?

5

How much work done by each 
node on last level (base case)?

6

What’s the total work on the 
last level (base case)?

7

3 2

35 6

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2
+ 𝑛 otherwise

Level (i) Number of 
Nodes

Work per 
Node

Work per 
Level

0 1 𝑛 𝑛

1 2
𝑛
2

𝑛

2 4
𝑛
4

𝑛

3 8
𝑛
8

𝑛

log2n 𝑛 1 𝑛

1
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Tree Method Checklist
What’s the size of the input 
per call on level i?

1
𝑛
2'

(
𝑛
2'
)

2'

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒
= 2'

𝑛
2'

= 𝑛

𝑛
2'
= 1

(𝑛 = 2' ⟹ 𝑖 = log/ 𝑛)

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒
= 2456!* 1 = 𝑛

1

How much work done by each 
node on level i (recursive case)?

2

How many nodes at level i?3

What’s the total work done on 
level i (recursive case)?

4

On what value of i does the 
last level occur (base case)?

5

How much work done by each 
node on last level (base case)?

6

What’s the total work on the 
last level (base case)?

7

3 2

35 6

𝑇 𝑛 = $
1 if 𝑛 ≤ 1

2𝑇
𝑛
2
+ 𝑛 otherwise

Putting it Together:

𝑇 𝑛 = E
'()

#$%" * +,

𝑛 + 𝑛

= 𝑛 𝑙𝑜𝑔2𝑛 + 𝑛

= Θ(n log n)

4

5
71

Summation of a 
Constant

E
'()

-+,

𝑐 = 𝑐𝑘

= E
'()

#$%" *

𝑛
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Next Stop: The Data Structures Part™
• We’re now armed with 

a toolbox stuffed full of 
analysis tools

- It’s time to apply this 
theory to more 
practical topics!

• On Friday, we’ll take 
our first deep dive 
using those tools on a 
data structure: Hash 
Maps!

Algorithmic 
Analysis

Hash Maps

Binary Search Trees

AVL Trees

Heaps
B-Trees

Graphs

BFS

DFS

Dijkstra’s

Disjoint Sets

Sorting


