LEC 07

CSE 373

Recurrences II, Tree Method

Instructor Hunter Schafer TAs Ken Aragon P Khushi Chaudhari M Joyce Elauria B Santino Iannone R Leona Kazi E Nathan Lipiarski A Sam Long B Amanda Park A

Paul Pham Mitchell Szeto Batina Shikhalieva Ryan Siu Elena Spasova Alex Teng Blarry Wang Aileen Zeng

BEFORE WE START

Announcements

- P1 (Deques) due TONIGHT 11:59pm PDT!
 - Make sure to add your partner on your Gradescope submission!
 - Late Policy:
 - 7 penalty-free late days (24hr chunks) for the quarter
 - 5% deduction/day afterward
 - late assignment cutoff is 3 days after due date
 - Don't forget your writeup for the P1 experiments
- EX1 (Algo Analysis I) due Friday 10/16 11:59pm PDT
- P2 (Maps) and EX2 (Algo Analysis II) released Friday 10/16
 - Partner 2 Pool form already out, due Thursday 10/15 at 11:59 pm
- We'll see some summation identities in today's lecture
 - Summations Reference will be posted as a resource on the calendar

Learning Objectives

After this lecture, you should be able to...

- **1. Continued** Describe the 3 most common recursive patterns and identify whether code belongs to one of them
- 2. Model a recurrence with the Tree Method and use it to characterize the recurrence with a bound
- 3. Use Summation Identities to find closed forms for summations (*Non-Objective:* come up with or explain Summation Identities)

Review Writing Recurrences

Review Why Include Non-Recursive Work?

CSE 373 Autumn 2020

Review Master Theorem: Recurrence to Big- Θ

$$T(n) = \begin{cases} 2 & \text{if } n < 3\\ 2T\left(\frac{n}{3}\right) + n & \text{otherwise} \end{cases}$$

- It's still really hard to tell what the big-O is just by looking at it.
- But fancy mathematicians have a formula for us to use!

MASTER THEOREM

 $T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise} \end{cases}$ Where f(n) is $\Theta(n^c)$ If $\log_b a < c$ then $T(n) \in \Theta(n^c)$ If $\log_b a = c$ then $T(n) \in \Theta(n^c \log n)$ If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

$$a=2 b=3 and c=1$$

$$y = \log_b x \text{ is equal to } b^y = x$$

$$(\log_b(a) = \log_3 2 \cong 0.63) < (c = 1)$$

We're in case 1

$$T(n) \in \Theta(n)$$

Lecture Outline

• Analyzing Recursive Code: Recursive Patterns

- Summations
- The Tree Method

Review Merge Sort

```
mergeSort(input) {
    if (input.length == 1)
        return
    else
        smallerHalf = mergeSort(new [0, ..., mid])
        largerHalf = mergeSort(new [mid + 1, ...])
        return merge(smallerHalf, largerHalf)
}
```

$$T(n) = \begin{cases} 1 & \text{if } n \le 1\\ 2T\left(\frac{n}{2}\right) + n & \text{otherwise} \end{cases}$$

Review Merge Sort Recurrence to Big-O

$$T(n) = \begin{cases} 1 & \text{if } n \le 1\\ 2T\left(\frac{n}{2}\right) + n & \text{otherwise} \end{cases}$$

MASTER THEOREM

 $T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise} \end{cases}$ Where f(n) is $\Theta(n^c)$ If $\log_b a < c$ then $T(n) \in \Theta(n^c)$ If $\log_b a = c$ then $T(n) \in \Theta(n^c \log n)$ If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$ a=2 b=2 and c=1 $y = \log_b x \text{ is equal to } b^y = x$ $\log_2 2 = 1$ We're in case 2 $T(n) \in \Theta(n \log n)$

Analysis (Writing Recurrences) and Asymptotic Analysis (The Master Theorem).

Lecture Outline

• Analyzing Recursive Code: Recursive Patterns

- Summations
- The Tree Method

3

Calculating Fibonacci (ish)

```
public int fib(int n) {
    if (n <= 1) {
        return 1;
    }
    return fib(n-1) + fib(n-1);
}</pre>
```

- Each call creates 2 more calls
- Each new call has a copy of the input, almost
- Almost doubling the input at each call
 Almosi

Doubling the Input

Fibonacci Recurrence to Big-O

$$T(n) = \begin{cases} d & \text{if } n \le 1\\ 2T(n-1) + c & \text{otherwise} \end{cases}$$

Uh oh, our model doesn't match that format... Can we intuit a pattern? T(1) = d T(2) = 2T(2-1) + c = 2(d) + c T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d + 15cLooks like something's happening, but it's hard to identify. Maybe geometry can help!

Fibonacci Recurrence to Big-O

LAYERFUNCTION
CALLS0 $1 (= 2^0)$ 1 $2 (= 2^1)$ 2 $4 (= 2^2)$ 3 $8 (= 2^3)$

How many function calls per layer?

How many function calls on layer i? **2**ⁱ

How many function calls TOTAL for a tree of k layers?

1 + 2 + 4 + ... + 2^{k-1}

$$T(n) = \begin{cases} d & \text{if } n \le 1\\ 2T(n-1) + c & \text{otherwise} \end{cases}$$

How many layers in the function call tree?

How many steps to go from start value of n (4) to base case (1), subtracting 1 each time? Height of function call tree: n

Fibonacci Recurrence to Big-O

How many layers in the function call tree?	n	
How many function calls on layer i?	2 ⁱ	
How many function calls TOTAL for a tree of n layers?	$1 + 2 + 4 + 8 + \dots + 2^{n-1}$	
Total runtime = (total function calls) * (runtime of each function call)	$(1+2+4+8++2^{n-1}) \times \text{(constant work)}$ $1+2+4+8++2^{n-1} = \sum_{i=0}^{n-1} 2^i = \frac{2^n-1}{2-1} = 2^n - 1$ $T(n) = 2^n - 1 \in \Theta(2^n)$	Summation Identity Finite Geometric Series $\sum_{i=0}^{k-1} x^i = \frac{x^k - 1}{x - 1}$

3 Patterns for Recursive Code

Lecture Outline

• Analyzing Recursive Code: Recursive Patterns

- Summations
- The Tree Method

Pause Video when Prompted

Which of these functions is a mathematical model for the runtime of this code?

a)
$$f(n) = 2n$$

b) $f(n) = n + n$
c) $f(n) = n^2$
d) $f(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1}$

Keep an eye on the loop bounds!

i

Modeling Complex Loops

Modeling the inner loop:

f(n) =
$$(0 + 1 + 2 + ... + i-1)$$

How do we model
this part?
Summations!
 $1 + 2 + 3 + 4 + ... + n = \sum_{i=1}^{n}$

Definition: Summation

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + f(a+2) + \dots + f(b-2) + f(b-1) + f(b)$$

Modeling the entire code snippet:

f(n) =
$$\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$
 What is the Big-Theta?

Simplifying Summations

The code **is** $\Theta(n^2)$, but it **is not** correct to say $f(n) = n^2$ models its runtime!

Lecture Outline

• Analyzing Recursive Code: Recursive Patterns

• Summations

Recurrence to Big-Theta: Our Toolbox

PROS: Convenient to plug 'n' chug **CONS**: Only works for certain format of recurrences **PROS**: Least complicated setup **CONS**: Requires intuitive pattern matching, no formal technique **PROS**: Convenient to plug 'n' chug **CONS**: Complicated to set up for a given recurrence

Tree Method (Generalizing from Fibonacci Example)

Draw out the function call tree. What's the input to each call? How much work is done in each call?

Tree Method

e.g. Merge Sort:

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + n & \text{otherwise} \end{cases}$$

How many layers in the function call tree?

How many steps to go from start value of n to base case (1), dividing by 2 each time?

Think binary search – it takes log₂n "halvings" to take n down to 1

Height of function call tree: log₂n

How much work done per layer?

Amount of work varies by function call, but remains constant across entire layer

n work at each layer

LEC 07: Recurrences II, Tree Method

Tree Method Checklist

$$T(n) = \begin{cases} 1 & \text{if } n \le 1\\ 2T\left(\frac{n}{2}\right) + n & \text{otherwise} \end{cases}$$

1	What's the size of the input per call on level i?	$\frac{n}{2^i}$
2	How much work done by each node on level i (recursive case)?	$(\frac{n}{2^i})$ 1
3	How many nodes at level i?	2^i
4	What's the total work done on level i (recursive case)?	numNodes * workPerNode = $2^{i} \left(\frac{n}{2^{i}}\right) = n$
5	On what value of i does the last level occur (base case)?	$\frac{n}{2^{i}} = 1$ $(n = 2^{i} \Longrightarrow i = \log_2 n)$
6	How much work done by each node on last level (base case)?	1
7	What's the total work on the last level (base case)?	5 3 6 numNodes $*$ workPerNode = $2^{\log_2 n}(1) = n$

Level (i)	Number of Nodes	Work per Node	Work per Level
0	1	n	n
1	2	$\frac{n}{2}$	n
2	4	$\frac{n}{4}$	n
3	8	$\frac{n}{8}$	n
log ₂ n	n	1	n

Tree Method Checklist

$$T(n) = \begin{cases} 1 & \text{if } n \le 1\\ 2T\left(\frac{n}{2}\right) + n & \text{otherwise} \end{cases}$$

Putting it Together:

Next Stop: The Data Structures Part™

- We're now armed with a toolbox stuffed full of analysis tools
 - It's time to apply this theory to more practical topics!
- On Friday, we'll take our first deep dive using those tools on a data structure: Hash Maps!

