YA/ UNIVERSITY of WASHINGTON

CSE 373

0/Q/0, Case
Analysis

LEC 05: 0/Q/©, Case Analysis

Hunter Schafer

Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino lannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu

Elena Spasova
Alex Teng

Blarry Wang
Aileen Zeng

CSE 373 Autumn 2020

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis CSE373A 2020

Announcements

* Project 1 (Deques) came out Wednesday, due next Wednesday 10/14
11:59pm PDT
- Remember to read the partner set-up instructions!
- PO Extra credit opportunity

 Exercise 1 (written, individual) released Friday, due next Friday 10/16
11:59pm PDT

* Reminder to sign up for a class session group if you’re coming to
class!

CSE 373 Autumn 2020

YA UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis

P1: Deques

* Deque ADT: a double-ended queue
- Add/remove from both ends, get in middle

* This project builds on ADTs vs. Data
Structure Implementations, Queues, and a
little bit of Asymptotic Analysis

- Practice the techniques and analysis covered
in LEC 02 & LEC 03!

* 3 components:
- Debug ArrayDeque implementation
- Implement LinkedDeque
- Run experiments

DEQUEUE ADT

State

Collection of ordered items
Count of items

Behavior

addFirst(item) add to front
addLast(item) add to end
removeFirst() remove from front

removeLast() remove from end
size() count of items

isEmpty() count is ©?

get(index) get ©-indexed element

YA UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis CSE 373 Autumn 2020

Find yourself writing case after case
in your linked node code?

Introducing Client View: [3, 9]

Sentinel Nodes

Implementation:

size sentFront sentBack
* Reduce code complexity & bugs 2)
* Tradeoff: a tiny amount of extra Fl . .

??

storage space for more reliable, N
easier-to-develop code

3 9 ??

Y

CSE 373 Autumn 2020

W UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis

P1: Gradescope & Testing

* From this project onward, we’ll have some Gradescope-only tests
- Run & give feedback when you submit, but only give a general name!

* The practice of reasoning about your code and writing your own tests is crucial

- Use Gradescope tests as a double-check that your tests are thorough
- To debug Gradescope failures, your first step should be writing your own test case

* You can submit as many times as you want on Gradescope (we’ll only grade the
last active submission)
- If you’re submitting a lot (more than ~6 times/hr) it will ask you to wait a bit

- Intention is not to get in your way: to give server a break, and guess/check is not usually an
effective way to learn the concepts in these assignments

2. Think about edge 4. Run Gradescope

1. Write

: cases, Write your 3. Run your own tests tests as a double-
Implementation

own tests check

CSE 373 Autumn 2020

W UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis

P1: Working with a Partner

* P1 Instructions talk about collaborating with your partner
- Adding each other to your GitLab repos

« Recommendations for partner work:
- Pair programming! Talk through and write the code together
- Two heads are better than one, especially when spotting edge cases ©
- Meet in real-time! Consider screen-sharing via Zoom

- Be kind! Collaborating in our online quarter can be especially difficult, so
please be patient and understanding — partner projects are usually an
awesome experience if we're all respectful

* We expect you to understand the full projects, not just half

- Please don’t just split the projects in half and only do part

- Please don’t come to OH and say “my partner wrote this code, | don’t
understand it, can you help me debug it?”

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis CSE373A 2020

Learning Objectives
After this lecture, you should be able to...

1. Differentiate between Big-Oh, Big-Omega, and Big-Theta

2. Come up with Big-Oh, Big-Omega, and Big-Theta bounds for a given
function

3. Perform Case Analysis to identify the Best Case and Worst Case for
a given piece of code

4. Describe the difference between Case Analysis and Asymptotic
Analysis

W UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis CSE 373 Autumn 2020

Lecture Outline

e Case Study: Linear Search

* A New Tool: Case Analysis

YA UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis CSE 373 Autumn 2020

Algorithmic Analysis Roadmap

l Code Modeling m Asymptotic Analysis

for (i i< n; i++) { —

s f(n) = 2n O(n)
b[i]

}

9;
1;
2;

* Algorithmic Analysis: The overall process of characterizing code with a
complexity class, consisting of:
- Code Modeling: Code = Function describing code’s runtime
- Asymptotic Analysis: Function = Complexity class describing asymptotic behavior

.p |tGITIpOOl Pause Video when Prompted

Which of the following functions are O(n?)?

« f1(n) =30n3 + 10

e f,(n) = 10,000,000

* fz(n) = 2n?% + 5n + 20
* fa(n) = 15log(n)

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis CSE 373 Autumn 2020

Asymptotic Analysis

* Given a function that models some piece of
code, characterize that function’s growth rate

asymptotically (as n approaches infinity) n>
- We usually think of n as the “size of the input”, so .
we typically only care about non-negative T(n) "
integers 0
n3
f(n) =10n2+ 8 10n2 + 8

* Big-Oh is an upper bound on that function’s
growth rate .
- Constants and smaller terms ignored n

- We prefer a tight bound (e.g. n?), but doesn’t
have to be. This function is also in O(n3)

W UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis

CSE 373 Autumn 2020

Big-Oh Definition

* Intuitively, f(n) is O(g(n)) if it’s smaller than a
constant factor of g(n), asymptotically

* To prove that, all we need is:
- (c): What is the constant factor?
- (ny): From what point onward is f(n) smaller?

EDECED <o EES) EGEEL s of EUE)

3

c=5 ny=0 c=2 ny=0
0.5n always < n! Just need to use constant factor
Straightforward O(n). c=2so2n<c-n

- f(n)=n W g(n)=n2 B

3

c=4 n0=6

n £ n?, but only after n=1. Choose
that as n,.

W UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis

CSE 373 Autumn 2020

Uncharted Waters: Prime Checking

* Find a model f(n) for the running
time of this code oninputn —
What'’s the Big-O?

boolean isPrime(int n) { - We know how to count the

int toTest = 2; operations
while(toTest < n) {) - But how many times does this loop
if (n % toTest == 0) { run?
return false;
} else { > ~+5
toTest += 1;
} } /
[
return true; Sometimes it can stop early

} e Sometimes it needs to run n times

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis CSE 373 Autumn 2020

Prime Checking Runtime

ol Ll | ,;,,,.ﬁ,,,_,,,;,,,_,;,,,,;,,,,_,,,;,,,.‘IstheruntimeO(l)or
f(n) EREEE ; EEEEE ; o(n)?
50 | . | | | | | | i | !
| | i More than half the
A N A e 7| ~ time we need 3 or
| | | | o || | fewer iterations. Is it
” e I - 0(1)?
” T | | | | | | ~ But we can always
¢ 7 | | | | come up with another
10,,,,;,,,,,.7;,,,_,,,_,, ,,,_,‘_”,_,ﬂ_,,,j,,,4va|ueofntomakeit
B | | | | | | | . | take n iterations. So
0%0 ¢ 0%0 ¢ 0% ¢ 0%¢ ¢ 0%¢ ¢ 0%¢ ¢ 0%¢6 ¢ 0% ¢ 0%¢ o 0%, O(n)?
0 5 10 15 20 25 30 35 40 45 50 55 60

This is why we have definitions!

CSE 373 Autumn 2020

YA UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis

Big-O
f(n)is 0(g(n)) if there exist positive
constants ¢, n, such that for alln > n,,

fn)<c-gn)

_~ Using our definitions, we
+ — . see it’s O(n) and not O(1)

2%0 ¢ 0%6 o 0% ¢ 0%¢ ¢ 0%¢ o 0% ¢ %0 ¢ 0%¢ ¢ 0% o | e%.
o 5 10 15 20 25 30 35 40 45 50 5 60

Is the runtime O(1)?

Is the runtime O(n)? :
(n) Can you find constants ¢ and ngy?

Can you find constants ¢ and ngy?

No! Choose your value of c. | can find a prime
number k bigger than c.
And f(k) = k > c - 1 so the definition isn’t met!

How about ¢ = 1 and ng = 5,
f(n) =smallest divisorofn < 1-nforn>5

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis CSE 373 Autumn 2020

Big-Oh isn’t everything

e Our prime finding code is O(n) as a tight bound. But so is printing all
the elements of a list (a basic for loop).

0(n)
Your experience running these two pieces of code is going to be very different.

It’s disappointing that the Big-Ohs are the same — that’s not very precise!
Could we have some way of pointing out the list code always takes AT LEAST n operations?

W UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis CSE 373 Autumn 2020

- Big-O
Big-{) [Omega] £ omeee
f(n)is Q(g(n)) if there exist positive
constants ¢, ny such that for alln = n,,

fm) =c-gn)

Big-O

f(n)is 0(g(n)) if there exist positive
constants ¢, n, such that for alln > n,,

- fn) <c-g)

P The formal definition of Big-Omega is the
0 (Tl) / flipped version of Big-Oh!

/ “f(n) is O(g(n))” : f(n) grows at most as fast as
>l g(n)

// 1 “f(n) is Q(g(n))” : f(n) grows at least as fast as
p .'. O.ll [] .“O [0.. O‘.O.. ® .‘.“O ..0 [] .0. [] ll.. O"..C g(n)

CSE 373 A 2020

W UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis

Big-Omega Also Doesn’t Have to be Tight

« 213 is Q(1) 2n3
 2n3 is Q(n) rn) n?
e 213 is Q(n?) n?

« 213 is Q(n?)

« 2n° is lowerbounded by all the complexity classes listed above (1, n,n?%,n?3)

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis CSE 373 Autumn 2020

Tight Big-O and Big-{)2 Bounds Together

Prime runtime function
f(n)=n

30

20

30 35 40 45 50 55 60

025(71)

Q(n)

Note: most functions look like the one on the right,
with the same tight Big-Oh and Big-Omega bound.
But we’ll see important examples of the one on the
left.

CSE 373 Autumn 2020

YA UNIVERSITY of WASHINGTON LEC 05: 0/Q/, Case Analysis

Oh, and Omega, and Theta, oh my

Big-Oh
f(n)is 0(g(n)) if there exist positive
constants ¢, ny such that for alln = n,,

* Big-Oh is an upper bound
- My code takes at most this long to

run fn) <c-gn)
* Big-Omega is a lower bound Big-Omega
- My code takes at |east this long to f(n)is Q(g(n)) if there exist positive constants

run ¢, ng such that for alln = n,,

f(n) =zc-gn)

* Big Theta is “equal to”
- My code takes “exactly”* this long to run Big-Theta

- *Except for constant factors and lower order . ,
terms f(n)isO(g(n)) if
- Only exists when Big-Oh == Big-Omega! f(m)isO(g(n))and f(n)is Q(gn)).
(in other words: there exist positive constants c1, c2, n, such
that for all n = ng)

c;-gn) < f(n)<c,-ghn)

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis

CSE 373 Autumn 2020

Oh, and Omega, and Theta, oh my

Big Theta is “equal to” Big-Theta
- My code takes “exactly”* this longtorun |20 Q1 C0 D
- *Except for constant factors and lower f(n)is0(g(n)) and f(n)is Q(g(n)).

order terms (in other words: there exist positive constants c1, c2, ny such
£(n) = n that for all n = ng)
| %/ ci-g(n) = f(m) <c,-gn
_
T
/(»’ . .
ey To define a big-Theta, you expect the
,44 tight big-Oh and tight big-Omega
B oEE e e aa s naaas suaaE st bounds to be touching on the graph

(the same complexity class)
0(n) Q(n) === Q(n)

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis CSE 373 Autumn 2020

Our Upgraded Tool: Asymptotic Analysis

o

Asymptotic
Analysis

©(n?)

f(n) =10n%+ 13n + 2
Q(n?)

We’ve upgraded our Asymptotic Analysis tool to convey more useful information! Having 3 different types of bounds
means we can still characterize the function in simple terms, but describe it more thoroughly than just Big-Oh.

YA UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis CSE 373 Autumn 2020

Our Upgraded Tool: Asymptotic Analysis

o

Asymptotic Does not exist
Analysis for this function
1 fm
Q(1)

.......................................

o Big-Theta doesn’t always exist for every function! But the information that Big-
isPrime() Theta doesn’t exist can itself be a useful characterization of the function.

YA UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis CSE 373 Autumn 2020

Algorithmic Analysis Roadmap

O(n)
Asymptotlc
©(n)
for (1 = 0; 1 < n; i++) {
a[i] = 1; f(n)
b[i] = 2;
}
Q(n)
Now, let’s look at this tool in more We just finished building this tool to
depth. How exactly are we coming characterize a function in terms of some

up with that function? useful bounds!

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis CSE373A 2020

Lecture Outline

* Big-O, Big-Omega, Big-Theta

* A New Tool: Case Analysis

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis CSE 373 Autumn 2020

Case Study: Linear Search

* Let’s analyze this realistic piece of code! toFind 2
int linearSearch(int[] arr, int toFind) { arr ‘ 2 ‘ 3 ‘ 9 ‘ 4 ‘ 5 ‘
for (int i = @; i < arr.length; i++) {
if (arr[i] == toFind) { ﬁ
return i;
}
}
return -1; toFind 8
} -
arr‘2‘3‘9‘4‘5‘
* What’s the first step? -
- We have code, so we need to convert to a ﬁ

function describing its runtime

- Then we know we can use asymptotic analysis
to get bounds

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis CSE 373 Autumn 2020

° *R ber, th tant
Let’s Model This Code! don't really matter (we'l start
phasing them out soon)

int linearSearch(int[] arr, int toFind) { Same problem as before:

for (int i = @; 1 < arr.length; i++) {) How many times does loop run?
if (arr[i] == toFind) {
return ij; >
}
} J
return -1;
}
When would that happen?
* Suppose the loop runs n times? toFind not present «__
- f(n)=3n+1 These are key!

* Suppose the loop only runs once? toFind at beginning «~
- f(n) =2

YA/ UNIVERSITY of WASHINGTON

Best Case

On Lucky Earth

toFind 2

e [2fs]o]afs]

f

f(n) =2

LEC 05: 0/Q/©, Case Analysis CSE 373 Autumn 2020

Worst Case

On Unlucky Earth (where it’s 2020 every year)

y M
) i ™
- e 3 B
g X Jr
. e F o Iy ""j"--" -
’ "N '. l_'... t .
/ g A N orin
T g /
z > /
4 i« ’ N
P . PR L \
) > .- 3 \
Y
I' 4 4 - a
s -
4
b

8
i 2[5]o]4 {5

1

f(n)=3n+1

°|

After asymptotic analysis:

o(1) o1 Q)

5 0 15 20 5 EJ 35 3 a5 50 55 6

After asymptotic analysis:

O(n) Q(n)

O(n)

W UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis CSE373 A 2020

Lecture Outline
* Big-O, Big-Omega, Big-Theta

e Case Study: Linear Search

YA/ UNIVERSITY of WASHINGTON

Case Analysis

* Case: a description of in

specific enough to buila
only parameter is the in

LEC 05: 0/Q/©, Case Analysis CSE 373 Autumn 2020

outs/state for an algorithm that is

a code model (runtime function) whose
out size

- Case Analysis is our tool
- Occurs during the code 2

for reasoning about all variation other than n!
function step instead of function 2 0/Q/0O step!

* (Best Case: fastest/Worst Case: slowest) that our - Worst

code could finish on input of size n.
* Importantly, any position of toFind in arr could be

its own case!
* For this simple example, p

(they all still have bound O(n))

Other Cases
robably don’t care

* Butintermediate cases will be important later = = = = pdst

.p |tGITIpOOl Pause Video when Prompted

Should we consider the prime/not-prime input
separate cases in our isPrime analysis?

- Yes
- No

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/@, Case Analysis CSE 373 Autumn 2020

When to do Case Analysis?

* Why are the different functions in 1sPrime not Case Analysis,
but the different functions in 11nearSearch are?
- In isPrime, they’re different bounds on a single function over n.

- in 1inearSearch, they’re entirely different functions over n, each with
its own set of bounds!

* The difference? 1inearSearch uses another input as well, the
contents of the array — that variation creates different functions
over n!

boolean isPrime(int n) {

int linearSearch(int[] arr, int toFind) {

YA/ UNIVERSITY of WASHINGTON LEC 05: 0/Q/0, Case Analysis CSE 373 Autumn 2020

When to do Case Analysis?

Case Analysis, then Asymptotic Analysis Straight to Asymptotic Analysis
linearSearch: isPrime:
- multiple different functions over n, because runtime can be - only has one function to consider, because only
affected by something other than n! input is n!
- for each function, we’ll do asymptotic analysis
0(n)
0(n) | f(n) (isPrime) !
O(n)
1 Best Case of linearSearch -Q'(n) ERSEs
. f(n)=2 'Q(l)
———————————. T eSS e
0 (1) Worst Case
f(n)=3n+1
0(1) Y
(1) Do Case Analysis when varying other input

properties besides n can change runtime!

YA UNIVERSITY of WASHINGTON

LEC 05: 0/Q/©, Case Analysis

Algorithmic Analysis Roadmap

Case
Analysis

for (i = 0; 1 < n; i++) {
if (arr[i] == toFind) {
return i;

}
}

return -1;

f(n) = 2

WORST CASE
FUNCTION

OTHER CASE
FUNCTION

Asymptotic
Analysis

CSE 373 Autumn 2020

O(1)

O(1)

(1)

