BEFORE WE START

O/Ω/Θ, Case Analysis

Instructor
Hunter Schafer

TAs
Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino Iannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu
Elena Spasova
Alex Teng
Blarry Wang
Aileen Zeng
Announcements

• Project 1 (Deques) came out Wednesday, due next Wednesday 10/14
 11:59pm PDT
 - Remember to read the partner set-up instructions!
 - P0 Extra credit opportunity

• Exercise 1 (written, individual) released Friday, due next Friday 10/16
 11:59pm PDT

• Reminder to sign up for a class session group if you’re coming to class!
P1: Deques

• Deque ADT: a double-ended queue
 - Add/remove from both ends, get in middle

• This project builds on ADTs vs. Data Structure Implementations, Queues, and a little bit of Asymptotic Analysis
 - Practice the techniques and analysis covered in LEC 02 & LEC 03!

• 3 components:
 - Debug ArrayDeque implementation
 - Implement LinkedDeque
 - Run experiments

DEQUEUE ADT

State
- Collection of ordered items
- Count of items

Behavior
- addFirst(item) add to front
- addLast(item) add to end
- removeFirst() remove from front
- removeLast() remove from end
- size() count of items
- isEmpty() count is 0?
- get(index) get 0-indexed element
P1: Sentinel Nodes

- Reduce code complexity & bugs
- Tradeoff: a tiny amount of extra storage space for more reliable, easier-to-develop code

Tired of running into these?

Find yourself writing case after case in your linked node code?

Introducing Sentinel Nodes

Client View: [3, 9]

Implementation:
P1: Gradescope & Testing

- From this project onward, we’ll have some Gradescope-only tests
 - Run & give feedback when you submit, but only give a general name!

- The practice of reasoning about your code and writing your own tests is crucial
 - Use Gradescope tests as a double-check that your tests are thorough
 - To debug Gradescope failures, your first step should be writing your own test case

- You can submit as many times as you want on Gradescope (we’ll only grade the last active submission)
 - If you’re submitting a lot (more than ~6 times/hr) it will ask you to wait a bit
 - Intention is not to get in your way: to give server a break, and guess/check is not usually an effective way to learn the concepts in these assignments
P1: Working with a Partner

• P1 Instructions talk about collaborating with your partner
 - Adding each other to your GitLab repos

• Recommendations for partner work:
 - Pair programming! Talk through and write the code together
 - Two heads are better than one, especially when spotting edge cases 😊
 - Meet in real-time! Consider screen-sharing via Zoom
 - Be kind! Collaborating in our online quarter can be especially difficult, so please be patient and understanding – partner projects are usually an awesome experience if we’re all respectful

• We expect you to understand the full projects, not just half
 - Please don’t just split the projects in half and only do part
 - Please don’t come to OH and say “my partner wrote this code, I don’t understand it, can you help me debug it?”
Learning Objectives

After this lecture, you should be able to...

1. Differentiate between Big-Oh, Big-Omega, and Big-Theta
2. Come up with Big-Oh, Big-Omega, and Big-Theta bounds for a given function
3. Perform Case Analysis to identify the Best Case and Worst Case for a given piece of code
4. Describe the difference between Case Analysis and Asymptotic Analysis
Lecture Outline

• Big-O, Big-Omega, Big-Theta

• Case Study: Linear Search

• A New Tool: Case Analysis
Review Algorithmic Analysis Roadmap

- Algorithmic Analysis: The overall process of characterizing code with a complexity class, consisting of:
 - Code Modeling: Code \rightarrow Function describing code’s runtime
 - Asymptotic Analysis: Function \rightarrow Complexity class describing asymptotic behavior

```java
for (i = 0; i < n; i++) {
    a[i] = 1;
    b[i] = 2;
}
f(n) = 2n
```

$\mathcal{O}(n)$
Which of the following functions are $\Theta(n^2)$?

- $f_1(n) = 30n^3 + 10$
- $f_2(n) = 10,000,000$
- $f_3(n) = 2n^2 + 5n + 20$
- $f_4(n) = 15\log(n)$
Review Asymptotic Analysis

• Given a function that models some piece of code, characterize that function’s growth rate asymptotically (as n approaches infinity)
 - We usually think of n as the “size of the input”, so we typically only care about non-negative integers

\[f(n) = 10n^2 + 8 \]

• Big-Oh is an upper bound on that function’s growth rate
 - Constants and smaller terms ignored
 - We prefer a tight bound (e.g. \(n^2\)), but doesn’t have to be. This function is also in \(O(n^3)\)
Review
Big-Oh Definition

- Intuitively, $f(n)$ is $O(g(n))$ if it’s smaller than a constant factor of $g(n)$, *asymptotically*

- To prove that, all we need is:
 - (c): What is the constant factor?
 - (n_0): From what point onward is $f(n)$ smaller?

$f(n) = 0.5n$ is $O(g(n) = n)$

Proof: $c=5$, $n_0=0$

$0.5n$ always $\leq n$!
Straightforward $O(n)$.

$f(n) = 2n$ is $O(g(n) = n)$

Proof: $c=2$, $n_0=0$

Just need to use constant factor $c=2$ so $2n \leq c \cdot n$

$f(n) = n$ is $O(g(n) = n^2)$

Proof: $c=4$, $n_0=6$

$n \leq n^2$, but only after $n=1$. Choose that as n_0.
Uncharted Waters: Prime Checking

• Find a model \(f(n) \) for the running time of this code on input \(n \to \) What’s the Big-O?
 - We know how to count the operations
 - But how many times does this loop run?

```java
boolean isPrime(int n) {
    int toTest = 2;
    while (toTest < n) {
        if (n % toTest == 0) {
            return false;
        } else {
            toTest += 1;
        }
    }
    return true;
}
```

• Sometimes it can stop early
• Sometimes it needs to run \(n \) times
Prime Checking Runtime

Is the runtime $O(1)$ or $O(n)$?

More than half the time we need 3 or fewer iterations. Is it $O(1)$?

But we can always come up with another value of n to make it take n iterations. So $O(n)$?

This is why we have definitions!
Big-O

\(f(n) \) is \(O(g(n)) \) if there exist positive constants \(c, n_0 \) such that for all \(n \geq n_0 \),
\[f(n) \leq c \cdot g(n) \]

Using our definitions, we see it's \(O(n) \) and not \(O(1) \)

Is the runtime \(O(n) \)?
Can you find constants \(c \) and \(n_0 \)?

How about \(c = 1 \) and \(n_0 = 5 \),
\(f(n) = \) smallest divisor of \(n \leq 1 \cdot n \) for \(n \geq 5 \)

Is the runtime \(O(1) \)?
Can you find constants \(c \) and \(n_0 \)?

No! Choose your value of \(c \). I can find a prime number \(k \) bigger than \(c \).
And \(f(k) = k > c \cdot 1 \) so the definition isn’t met!
Big-Oh isn’t everything

• Our prime finding code is $O(n)$ as a tight bound. But so is printing all the elements of a list (a basic for loop).

Your experience running these two pieces of code is going to be very different. It’s disappointing that the Big-Ohs are the same – that’s not very precise! Could we have some way of pointing out the list code always takes AT LEAST n operations?
Big-Ω [Omega]

The formal definition of Big-Omega is the flipped version of Big-Oh!

"f(n) is O(g(n))" : f(n) grows at most as fast as g(n)

"f(n) is Ω(g(n))" : f(n) grows at least as fast as g(n)
Big-Omega Also Doesn’t Have to be Tight

• $2n^3$ is $\Omega(1)$
• $2n^3$ is $\Omega(n)$
• $2n^3$ is $\Omega(n^2)$
• $2n^3$ is $\Omega(n^3)$

• $2n^3$ is lowerbounded by all the complexity classes listed above ($1, n, n^2, n^3$)
Tight Big-O and Big-Ω Bounds Together

Prime runtime function

Note: most functions look like the one on the right, with the same tight Big-Oh and Big-Omega bound. But we’ll see important examples of the one on the left.
Oh, and Omega, and Theta, oh my

- **Big-Oh** is an **upper bound**
 - My code takes at most this long to run

- **Big-Omega** is a **lower bound**
 - My code takes at least this long to run

- **Big Theta** is “**equal to**”
 - My code takes “exactly”* this long to run
 - *Except for constant factors and lower order terms
 - Only exists when Big-Oh == Big-Omega!

Big-Oh

\[f(n) \text{ is } O(g(n)) \text{ if there exist positive constants } c, n_0 \text{ such that for all } n \geq n_0, \]
\[f(n) \leq c \cdot g(n) \]

Big-Omega

\[f(n) \text{ is } \Omega(g(n)) \text{ if there exist positive constants } c, n_0 \text{ such that for all } n \geq n_0, \]
\[f(n) \geq c \cdot g(n) \]

Big-Theta

\[f(n) \text{ is } \Theta(g(n)) \text{ if } f(n) \text{ is } O(g(n)) \text{ and } f(n) \text{ is } \Omega(g(n)). \]
\[(\text{in other words: there exist positive constants } c_1, c_2, n_0 \text{ such that for all } n \geq n_0) \]
\[c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \]
Oh, and Omega, and Theta, oh my

Big Theta is "equal to"
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order terms

\[f(n) = n \]

To define a big-Theta, you expect the tight big-Oh and tight big-Omega bounds to be touching on the graph (the same complexity class)
Our Upgraded Tool: Asymptotic Analysis

We’ve upgraded our Asymptotic Analysis tool to convey more useful information! Having 3 different types of bounds means we can still characterize the function in simple terms, but describe it more thoroughly than just Big-Oh.

We have the function $f(n) = 10n^2 + 13n + 2$.

- $O(n^2)$
- $\Theta(n^2)$
- $\Omega(n^2)$
Our Upgraded Tool: Asymptotic Analysis

Asymptotic Analysis

Big-OH: \(O(n) \)

Tight Big-OH: \(\Theta(n) \)

Big-Omega: \(\Omega(1) \)

Big-Theta: \(\Theta(n) \)

Does not exist for this function.

IsPrime():

Big-Theta doesn’t always exist for every function! But the information that Big-Theta doesn’t exist can itself be a useful characterization of the function.
Now, let’s look at this tool in more depth. How exactly are we coming up with that function? We just finished building this tool to characterize a function in terms of some useful bounds!
Lecture Outline

• Big-O, Big-Omega, Big-Theta

• Case Study: Linear Search

• A New Tool: Case Analysis
Case Study: Linear Search

• Let’s analyze this realistic piece of code!

```java
int linearSearch(int[] arr, int toFind) {
    for (int i = 0; i < arr.length; i++) {
        if (arr[i] == toFind) {
            return i;
        }
    }
    return -1;
}
```

• What’s the first step?
 - We have code, so we need to convert to a function describing its runtime
 - Then we know we can use asymptotic analysis to get bounds
Let’s Model This Code!

```java
int linearSearch(int[] arr, int toFind) {
    for (int i = 0; i < arr.length; i++) {
        if (arr[i] == toFind) {
            return i;
        }
    }
    return -1;
}
```

- Suppose the loop runs n times?
 - \(f(n) = 3n + 1 \)
- Suppose the loop only runs once?
 - \(f(n) = 2 \)

Remember, these constants don’t really matter (we’ll start phasing them out soon)

Same problem as before: How many times does loop run?

When would that happen?
- toFind not present
- toFind at beginning

These are key!
Best Case
On Lucky Earth

toFind 2
arr 2 3 9 4 5

f(n) = 2

After asymptotic analysis:
O(1) Θ(1) Ω(1)

Worst Case
On Unlucky Earth (where it’s 2020 every year)

toFind 8
arr 2 3 9 4 5

f(n) = 3n + 1

After asymptotic analysis:
O(n) Θ(n) Ω(n)
Lecture Outline

• Big-O, Big-Omega, Big-Theta

• Case Study: Linear Search

• A New Tool: Case Analysis
Case Analysis

• **Case**: a description of inputs/state for an algorithm that is specific enough to build a code model (runtime function) whose only parameter is the input size
 - Case Analysis is our tool for reasoning about **all variation other than n**!
 - Occurs during the code → function step instead of function → \(O/\Omega/\Theta \) step!

- (Best Case: fastest/Worst Case: slowest) that our code could finish on input of size \(n \).
- Importantly, *any* position of toFind in \(\text{arr} \) could be its own case!
 - For this simple example, probably don’t care (they all still have bound \(O(n) \))
 - But intermediate cases will be important later
Should we consider the prime/not-prime input separate cases in our isPrime analysis?

- Yes
- No
When to do Case Analysis?

• Why are the different functions in `isPrime` not Case Analysis, but the different functions in `linearSearch` are?
 - In `isPrime`, they’re different bounds on a single function over n.
 - In `linearSearch`, they’re entirely different functions over n, each with its own set of bounds!

• The difference? `linearSearch` uses another input as well, the contents of the array – that variation creates different functions over n!

```java
boolean isPrime(int n) {
    int linearSearch(int[] arr, int toFind) {
```
When to do Case Analysis?

Case Analysis, then Asymptotic Analysis

- **linearSearch**:
 - multiple different functions over \(n \), because runtime can be affected by something other than \(n \)!
 - for each function, we’ll do asymptotic analysis

Straight to Asymptotic Analysis

- **isPrime**:
 - only has one function to consider, because only input is \(n \)!

Best Case of linearSearch

\[f(n) = 2 \]

Worst Case

\[f(n) = 3n + 1 \]

Do Case Analysis when varying other input properties besides \(n \) can change runtime!
Algorithmic Analysis Roadmap

Case Analysis

Best Case Function

```c
for (i = 0; i < n; i++) {
    if (arr[i] == toFind) {
        return i;
    }
}
return -1;
```

\(f(n) = 2 \)

Worst Case Function

\(f(n) = 3n + 1 \)

Asymptotic Analysis

- **Best Case** \(O(1) \)
- **Worst Case** \(\Omega(1) \)
- **Other Case** \(\Theta(1) \)

Algorithmic Analysis Roadmap

1. **CODE**
 - Case Analysis
 - Best Case Function: \(f(n) = 2 \)
2. **2**
 - Asymptotic Analysis
 - Tight Big-Oh: \(O(1) \)
 - Big-Theta: \(\Theta(1) \)
 - Tight Big-Omega: \(\Omega(1) \)