LEC 04

CSE 373

Asymptotic Analysis

BEFORE WE START

Instructor Hunter Schafer

TAS Ken Aragon Khushi Chaudhari Joyce Elauria Santino lannone Leona Kazi Nathan Lipiarski Sam Long Amanda Park Paul Pham Mitchell Szeto Batina Shikhalieva Ryan Siu Elena Spasova Alex Teng Blarry Wang Aileen Zeng

Announcements

- Project 0 (CSE 143 Review) due Wednesday 10/7 11:59pm
- Project 1 (Deques) comes out the same day
 - Three options for projects:
 - **Choose a partner** someone you know or meet in the class
 - Join the partner pool we'll assign you a partner
 - Opt to work alone not recommended, but available
- Exercise 1 (written, individual) released Friday
- Option to choose your breakout room for class sessions!
 - See Ed announcement for details on how to sign up! Can modify at any time.
 - Will still use random assignment for those in class who don't sign up.

Learning Objectives

After this lecture, you should be able to...

- 1. Describe the difference between Code Modeling and Asymptotic Analysis (both components of Algorithmic Analysis)
- 2. Model a (simple) piece of code with a function describing its runtime
- Explain why we can throw away constants when we compute Big-Oh bounds.
 - From a practical perspective and from the "definition" perspective.

Lecture Outline

- Overview: Algorithmic Analysis
- Code Modeling
- Asymptotic Analysis
- Big-O Definition

143 Review Complexity Class

• Complexity Class: a category of algorithm efficiency based on the algorithm's relationship to the input size N

Complexity Class	Big-O	Runtime if you double N	
constant	0(1)	unchanged	
logarithmic	O(log ₂ N)	increases slightly	
linear	O(N)	doubles	
log-linear	O(N log ₂ N)	slightly more than doubles	
quadratic	O(N ²)	quadruples	
exponential	O(2 ^N)	multiplies drastically	

Review Big-Oh Analysis: Why?

	ArrayList	LinkedList	
add (front)	O(n) linear	O(1) constant	
remove (front)	O(n) linear	O(1) constant	
add (back)	O(1) constant usually	O(n) linear	
remove (back)	O(1) constant	O(n) linear	
get	O(1) constant	O(n) linear	
insert (anywhere)	O(n) linear	O(n) linear	

- Complexity classes help us differentiate between data structures
 - "Just change first node" vs. "Change every element" is clearly different
 - To evaluate data structures, need to understand impact of design decisions

Review Big-Oh Analysis: Why?

• We need a tool to analyze code, and we want it to be:

Simple

We don't care about tiny differences in implementation, want the big picture result

Mathematically Rigorous

Use mathematical functions as a precise, flexible basis

Decisive

Produce a clear comparison indicating which code takes "longer"

Review Big-Oh Analysis: ... How?!

- 143 general patterns: "O(1) constant is no loops, O(n) is one loop, O(n²) is nested loops"
 - This is still useful!
 - But in 373 we'll go much more in depth: we can explain more about *why*, and how to handle more complex cases when they arise (which they will!)

Overview: Algorithmic Analysis

• Algorithmic Analysis: The overall process of characterizing code with a complexity class, consisting of:

- Code Modeling: Code \rightarrow Function describing code's runtime
- Asymptotic Analysis: Function → Complexity class describing asymptotic behavior

Lecture Outline

- Overview: Algorithmic Analysis
- Code Modeling
- Asymptotic Analysis
- Big-O Definition

Talking About Code

- Cost Model: An analysis mindset to express the resource whose growth rate is being measured
- For simplicity, we'll discuss everything in terms of runtime today
 - But other cost models exist! For example, storage space is common

Code Modeling

- Code Modeling the process of mathematically representing how many operations a piece of code will run in relation to the input size n.
 - Convert from code to a function representing its runtime

What is an operation?

- We don't know exact runtime of every operation, but for now let's try simplifying assumption: all basic operations take the same time
- Basics:
 - +, -, /, *, %, ==
 - Assignment
 - Returning
 - Variable/array access

- Function Calls
 - Total runtime in body
 - Remember: new calls a function (constructor)
- Conditionals
 - Test + time for the followed branch
 - Learn how to reason about branch later
- Loops
 - Number of iterations * total runtime in condition and body

Code Modeling Example I

f(n) = 6n + 3

Code Modeling Example II

Lecture Outline

- Overview: Algorithmic Analysis
- Code Modeling
- Asymptotic Analysis
- Big-O Definition

- We just turned a piece of code into a function!
 - We'll look at better alternatives for code modeling later
- Now to focus on step 2, asymptotic analysis

- We have an expression for f(n). How do we get the O() that we've been talking about?
- 1. Find the "dominating term" and delete all others.
 - The "dominating" term is the one that is largest as n gets bigger. In this class, often the largest power of n.
- 2. Remove any constant factors.

 $= 9n^{2} + 3n + 3$ $\approx 9n^{2}$ $\approx n^{2}$

f(n) = (9n+3)n + 3

f(n) is O(n²)

Asymptotic Analysis

What is the complexity class for the following function?

 $f(n) = 1,0000 + 400n + 0.00001n^3 + 20n^2$

Is it okay to throw away all that info?

- Big-Oh is like the "significant digits" of computer science
- Asymptotic Analysis: Analysis of function behavior as its input approaches infinity
 - We only care about what happens when n approaches infinity
 - For small inputs, doesn't really matter: all code is "fast enough"
 - Since we're dealing with infinity, constants and lower-order terms don't meaningfully add to the final result. The highest-order term is what drives growth!

Remember our goals:

Simple

We don't care about tiny differences in implementation, want the big picture result

Decisive

Produce a clear comparison indicating which code takes "longer"

No seriously, this is really okay?

- There are tiny variations in these functions (2n vs. 3n vs. 3n+1)
 - But at infinity, will be clearly grouped together
 - We care about which *group* a function belongs in

- Let's convince ourselves this is the right thing to do:
 - <u>https://www.desmos.com/calculator/t9</u> <u>qvn56yyb</u>

What is an operation, again?

```
public void method1(int n) {
    int sum = 0;
    int i = 0;
    while (i < n) {
        sum = sum + (i * 3);
        i = i + 1;
    }
    return sum;
}</pre>
```

Operation	Count
Assignment	2 + 2n
<	n
+	2n
*	n
Return	1

• We could try being more precise, and count up individual operations

- Then, sum the time each operation takes
- But how long *do* they take? Some architectures are really fast at +, others faster at assignment
- And when we compile it, our code gets expressed as lower-level operations anyway! It's almost impossible to stare at code and know the "true" constants.

pul	olic static	void me	<pre>thod1(int[]</pre>); Co	de:
0:	iconst_0	10:	iload_2	18:	istore_2
1:	istore_1	11:	iconst_3	19:	goto 4
2:	iconst_0	12:	imul	22:	iload_1
3:	istore_2	13:	iadd	23:	ireturn
4:	iload_2	14:	istore_1		
5:	iload_0	15:	iload_2		
6:	if_icmpge 2	2 16:	iconst_1		
9:	iload_1	17:	iadd		

Code Modeling Anticipating Asymptotic Analysis

- We can't accurately model the constant factors just by staring at the code.
 - And the lower-order terms matter even less than the constant factors.
- Since they're going to be thrown away anyway, you can anticipate which constants are unnecessary to count precisely during Code Modeling
 - e.g. a loop body containing a constant 2 vs. 10 operations is unimportant here
- This does not mean you shouldn't care about constant factors ever they are important in real code!
 - Asymptotic analysis is just one tool, but other perspectives that do consider constants are also valid and useful!

Big-Oh Analysis: Why?

• We need a tool to analyze code, and we want it to be:

Simple

We don't care about tiny differences in implementation, want the big picture result

Mathematically Rigorous

Use mathematical functions as a precise, flexible basis

Decisive

Produce a clear comparison indicating which code takes "longer"

Lecture Outline

- Overview: Algorithmic Analysis
- Code Modeling
- Asymptotic Analysis
- Big-O Definition

Using Formal Definitions

- If analyzing simple or familiar functions, don't bother with the formal definition. You *can* be comfortable using your intuition!
- We're going to be making more subtle big-O statements in this class.
 - We need a mathematical definition to be sure we know exactly where we are.
- We're going to teach you how to use the formal definition, so if you come across a weird edge case, you know how to get your bearings.

Mathematically Rigorous

Use mathematical functions as a precise, flexible basis

Big-Oh Definition

- We wanted to find an upper bound on our algorithm's running time, but
 - We only care about what happens as *n* gets large.
 - We don't want to care about constant factors.

Big-Oh

f(n) is O(g(n)) if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

Intuition: g(n) "eventually dominates" f(n)

Big-Oh Proofs

Show that f(n) = 10n + 15 is O(n).

Apply definition term by term

Big-Oh

f(n) is O(g(n)) if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

 $10n \le c \cdot n$ when c = 10 for all values of n. So $10n \le 10n$, for all n

 $15 \le c \cdot n$ when c = 15 for $n \ge 1$. So $15 \le 15n$, when $n \ge 1$

Add up all your truths

 $10n + 15 \le 10n + 15n = 25n$ for $n \ge 1$ $10n + 15 \le 25n$ for $n \ge 1$.

which is in the form of the definition

f(n) <= c * g(n)

where c = 25 and $n_0 = 1$.

Big-Oh Doesn't Have to be Tight

- True or False: $10n^2$ is $O(n^3)$
- It's true it fits the definition $10n^2 \le c \cdot n^3$ when c = 10 for $n \ge 1$
- Big-O is just an upper bound that may be loose and not describe the function fully. For example, all of the following are true:

```
10n^2 is O(n^3)

10n^2 is O(n^4)

10n^2 is O(n^5)

10n^2 is O(n^n)

10n^2 is O(n!) ... and so on
```

