
CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

CSE 373
L E C 0 4

Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino Iannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu
Elena Spasova
Alex Teng
Blarry Wang
Aileen Zeng

Hunter SchaferInstructor

TAs

Asymptotic Analysis

BEFORE WE START

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Announcements
• Project 0 (CSE 143 Review) due Wednesday 10/7 11:59pm
• Project 1 (Deques) comes out the same day

- Three options for projects:
- Choose a partner – someone you know or meet in the class
- Join the partner pool – we’ll assign you a partner
- Opt to work alone – not recommended, but available

• Exercise 1 (written, individual) released Friday

• Option to choose your breakout room for class sessions!
- See Ed announcement for details on how to sign up! Can modify at any time.
- Will still use random assignment for those in class who don’t sign up.

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Learning Objectives

1. Describe the difference between Code Modeling and Asymptotic
Analysis (both components of Algorithmic Analysis)

2. Model a (simple) piece of code with a function describing its
runtime

3. Explain why we can throw away constants when we compute Big-
Oh bounds.

- From a practical perspective and from the “definition” perspective.

After this lecture, you should be able to...

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Lecture Outline
• Overview: Algorithmic Analysis

• Code Modeling

• Asymptotic Analysis

• Big-O Definition

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

143 Review Complexity Class
• Complexity Class: a category of algorithm efficiency based on the

algorithm’s relationship to the input size N

Complexity
Class

Big-O Runtime if you
double N

constant O(1) unchanged

logarithmic O(log2 N) increases slightly

linear O(N) doubles

log-linear O(N log2 N) slightly more than
doubles

quadratic O(N2) quadruples

...

exponential O(2N) multiplies drastically

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

ArrayList LinkedList

add (front) O(n) linear O(1) constant

remove (front) O(n) linear O(1) constant

add (back) O(1) constant usually O(n) linear

remove (back) O(1) constant O(n) linear

get O(1) constant O(n) linear

insert (anywhere) O(n) linear O(n) linear

Review Big-Oh Analysis: Why?

• Complexity classes help us differentiate between data structures
- “Just change first node” vs. “Change every element” is clearly different
- To evaluate data structures, need to understand impact of design decisions

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Review Big-Oh Analysis: Why?
• We need a tool to analyze code, and we want it to be:

Simple
We don’t care about tiny differences in
implementation, want the big picture result

Mathematically Rigorous
Use mathematical functions as a precise,
flexible basis

Decisive
Produce a clear comparison indicating
which code takes “longer”

A

B

C

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Review Big-Oh Analysis: ... How?!

• 143 general patterns: “O(1) constant is no loops, O(n) is one loop, O(n2) is
nested loops”

- This is still useful!
- But in 373 we’ll go much more in depth: we can explain more about why, and how to

handle more complex cases when they arise (which they will!)

CODE BIG-OH

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

COMPLEXITY
CLASS

Overview: Algorithmic Analysis

CODE Code Modeling
RUNTIME

FUNCTION Asymptotic Analysis

• Algorithmic Analysis: The overall process of characterizing code with a
complexity class, consisting of:

- Code Modeling: Code à Function describing code’s runtime
- Asymptotic Analysis: Function à Complexity class describing asymptotic behavior

1 2

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)f(n) = 2n

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Lecture Outline
• Overview: Algorithmic Analysis

• Code Modeling

• Asymptotic Analysis

• Big-O Definition

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Talking About Code
• Cost Model: An analysis mindset to express the resource whose

growth rate is being measured
• For simplicity, we’ll discuss everything in terms of runtime today

- But other cost models exist! For example, storage space is common

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Code Modeling

• Code Modeling – the process of mathematically representing how
many operations a piece of code will run in relation to the input size
n.

- Convert from code to a function representing its runtime

CODE Code Modeling
RUNTIME

FUNCTION

1

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

What is an operation?
• We don’t know exact runtime of every operation, but for now let’s try

simplifying assumption: all basic operations take the same time

• Basics:
- +, -, /, *, %, ==
- Assignment
- Returning
- Variable/array access

• Function Calls
- Total runtime in body
- Remember: new calls a function

(constructor)
• Conditionals

- Test + time for the followed branch
- Learn how to reason about branch later

• Loops
- Number of iterations * total runtime in

condition and body

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Code Modeling Example I

public void method1(int n) {
int sum = 0;
int i = 0;
while (i < n) {

sum = sum + (i * 3);
i = i + 1;

}
return sum;

}

+1
+1

+1
+3

+2

+1

+6 *n

Loop runs n times

f(n) = 6n + 3

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Code Modeling Example II
public void method2(int n) {

int sum = 0;
int i = 0;
while (i < n) {

int j = 0;
while (j < n) {

if (j % 2 == 0) {
// do nothing

}
sum = sum + (i * 3) + j;
j = j + 1;

}
i = i + 1;

} return sum;
}

+1
+1

+1

+2

+1

+9 *n

This inner loop
runs n times

f(n) = (9n+4)n + 3

+1
+1

+2

+2

+4

9n + 4 *n

This outer loop
runs n times

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Lecture Outline
• Overview: Algorithmic Analysis

• Code Modeling

• Asymptotic Analysis

• Big-O Definition

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Where are we?

• We just turned a piece of code into a function!
- We’ll look at better alternatives for code modeling later

• Now to focus on step 2, asymptotic analysis

COMPLEXITY
CLASSCODE Code Modeling

RUNTIME
FUNCTION Asymptotic Analysis

1 2

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)f(n) = 2n

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Finding a Big-Oh

• We have an expression for 𝑓(𝑛). How do
we get the 𝑂() that we’ve been talking
about?

1. Find the “dominating term” and delete all
others.

- The “dominating” term is the one that is largest
as 𝑛 gets bigger. In this class, often the largest
power of 𝑛.

2. Remove any constant factors.

= 9n2 + 3n + 3
≈ 9n2

≈ n2

f(n) is O(n2)

f(n) = (9n+3)n + 3

COMPLEXITY
CLASS

RUNTIME
FUNCTION Asymptotic Analysis

2

Pause Video when Prompted

Asymptotic Analysis
What is the complexity class for the following function?

f(n) = 1,0000 + 400n + 0.00001n3 + 20n2

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Is it okay to throw away all that info?
• Big-Oh is like the “significant digits” of computer science
• Asymptotic Analysis: Analysis of function behavior as its input

approaches infinity
- We only care about what happens when n approaches infinity
- For small inputs, doesn’t really matter: all code is “fast enough”
- Since we’re dealing with infinity, constants and lower-order terms don’t

meaningfully add to the final result. The highest-order term is what drives
growth!

Simple
We don’t care about tiny differences in
implementation, want the big picture result

Decisive
Produce a clear comparison indicating
which code takes “longer”

A C

Remember our goals:

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

No seriously, this is really okay?

• There are tiny variations in these functions
(2n vs. 3n vs. 3n+1)
• But at infinity, will be clearly grouped

together
• We care about which group a function

belongs in

• Let’s convince ourselves this is the right
thing to do:
• https://www.desmos.com/calculator/t9

qvn56yyb

https://www.desmos.com/calculator/t9qvn56yyb

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

What is an operation, again?
• We could try being more precise, and count up

individual operations
- Then, sum the time each operation takes
- But how long do they take? Some architectures are really

fast at +, others faster at assignment
- And when we compile it, our code gets expressed as

lower-level operations anyway! It’s almost impossible to
stare at code and know the “true” constants.

public static void method1(int[]); Code:
0: iconst_0
1: istore_1
2: iconst_0
3: istore_2
4: iload_2
5: iload_0
6: if_icmpge 22
9: iload_1

10: iload_2
11: iconst_3
12: imul
13: iadd
14: istore_1
15: iload_2
16: iconst_1
17: iadd

18: istore_2
19: goto 4
22: iload_1
23: ireturn

public void method1(int n) {
int sum = 0;
int i = 0;
while (i < n) {

sum = sum + (i * 3);
i = i + 1;

}
return sum;

}

Operation Count

Assignment 2 + 2n

< n

+ 2n

* n

Return 1

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Code Modeling Anticipating Asymptotic Analysis
• We can’t accurately model the constant factors just by staring at the

code.
- And the lower-order terms matter even less than the constant factors.

• Since they’re going to be thrown away anyway, you can anticipate
which constants are unnecessary to count precisely during Code
Modeling

- e.g. a loop body containing a constant 2 vs. 10 operations is unimportant here

• This does not mean you shouldn’t care about constant factors ever –
they are important in real code!

- Asymptotic analysis is just one tool, but other perspectives that do consider
constants are also valid and useful!

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Big-Oh Analysis: Why?
• We need a tool to analyze code, and we want it to be:

Simple
We don’t care about tiny differences in
implementation, want the big picture result

Mathematically Rigorous
Use mathematical functions as a precise,
flexible basis

Decisive
Produce a clear comparison indicating
which code takes “longer”

A

B

C

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Lecture Outline
• Overview: Algorithmic Analysis

• Code Modeling

• Asymptotic Analysis

• Big-O Definition

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Using Formal Definitions
• If analyzing simple or familiar functions, don’t bother with the formal

definition. You can be comfortable using your intuition!

• We’re going to be making more subtle big-O statements in this class.
- We need a mathematical definition to be sure we know exactly

where we are.

• We’re going to teach you how to use the formal definition, so if you
come across a weird edge case, you know how to get your bearings.

B
Mathematically Rigorous
Use mathematical functions as a precise,
flexible basis

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Big-Oh Definition
• We wanted to find an upper bound on our algorithm’s

running time, but
- We only care about what happens as 𝑛 gets large.
- We don’t want to care about constant factors.

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-Oh

Intuition: 𝑔 𝑛 “eventually dominates” 𝑓(𝑛)

Why 𝑛!?

Why 𝑐?

f1(n)=0.01n2

f2(n)=n

𝑇 𝑛

𝑛

f(n)=5n

g(n)=n

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Big-Oh Proofs
𝑓 𝑛 = 10𝑛 + 15 𝑂 𝑛 .Show that is

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-Oh

Apply definition term by term

10𝑛 ≤ 𝑐・𝑛 when 𝑐 = 10 for all values of 𝑛. 𝑆𝑜 10𝑛 ≤ 10𝑛, for all 𝑛

15 ≤ 𝑐・𝑛 when 𝑐 = 15 𝑓𝑜𝑟 𝑛 ≥ 1. 𝑆𝑜 15 ≤ 15𝑛, when 𝑛 ≥ 1

Add up all your truths

10𝑛 + 15 ≤ 10𝑛 + 15𝑛 = 25𝑛 for 𝑛 ≥ 1
10n	+	15	<=	25n	for	n	>=	1.

which is in the form of the definition

f(n) <= c * g(n)

where c = 25 and n0 = 1.

CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

Big-Oh Doesn’t Have to be Tight
• True or False: 10𝑛" is 𝑂(𝑛#)
• It’s true – it fits the definition

10𝑛2 ≤ 𝑐・𝑛3𝑤ℎ𝑒𝑛 𝑐 = 10 𝑓𝑜𝑟 𝑛 ≥ 1

• Big-O is just an upper bound that may be
loose and not describe the function fully. For
example, all of the following are true:

10𝑛J is 𝑂(𝑛K)
10𝑛J is 𝑂 𝑛L
10𝑛J is 𝑂 𝑛M
10𝑛J is 𝑂(𝑛N)
10𝑛J is 𝑂(𝑛!) … and so on

𝑇 𝑛

𝑛

n3

10n2

n5

n4

