
CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

CSE 373
L E C 0 3

Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino Iannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu
Elena Spasova
Alex Teng
Blarry Wang
Aileen Zeng

Hunter SchaferInstructor

TAs

Stacks, Queues, &
Maps

BEFORE WE START

Let us know in the chat:
What custom emotes should

we add to the 373 Discord
server?

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Announcements
• Office Hours started Wednesday!

- View office hours schedule on left panel of course website
- Queue is run on Discord, two ways to join (separate invite links!):

- Use a message to enter the queue:

- Reach out to other students while waiting!

@TA On Duty quick question about the definition of an ADT @dubs

1 2Create Discord Account Join Anonymously

• Enter your email
• Stay logged in for the quarter
• Easier to meet people and build

community

• Temporary display name, no other info
• Account disappears when you close window
• Use Discord as simple, anonymous queue

service; get helped over Zoom

OR

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Announcements
• Other reasons to join Discord:

- #search-for-partners: find project partners, high success rate!
- #career-prep: links & discussion for technical interviews, careers!
- More? Let us know your ideas

• Project 0 (CSE 143 Review) due next Wednesday 10/07 11:59pm
• Project 1 (Deques) comes out that same day

- Three options for projects:
- Choose a partner – someone you know or meet in the class (#search-for-partners or Ed)
- Join the partner pool – we’ll assign you a partner

- Will send info about this early next week!
- Opt to work alone – not recommended, but available

Pause Video when Prompted

Survey: What are you currently thinking of for
partner projects?
This doesn’t mean you have to commit to your answer, but we are
trying to get a sense of where people are. Select which of these options
best describes your thoughts.
• You already have a partner decided.
• You want to find a partner in the class on your own.
• You want to join the partner pool and have us assign you a partner.
• You want to work alone.
• Not sure yet!

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Lecture Outline
• The Stack ADT

• The Queue ADT

• Design Decisions

• The Map ADT

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Learning Objectives

1. (143 Review) Describe the state and behavior for the Stack, Queue,
and Map ADTs

2. Describe how a resizable array or linked nodes could be used to
implement Stack, Queue, or Map

3. Compare the runtime of Stack, Queue, and Map operations on a
resizable array vs. linked nodes, based on how they’re implemented

4. Identify invariants for the data structures we’ve seen so far

After this lecture, you should be able to...

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

143 Review The Stack ADT
• Stack: an ADT representing an

ordered sequence of elements whose
elements can only be added &
removed from one end.

- Last-In, First-Out (LIFO)
- Elements stored in order of insertion

- We don’t think of them as having indices
- Clients can only add/remove/examine

the “top”

STACK ADT

State

push(index) add item to top
pop() return & remove item
at top
peek() return item at top
size() count of items
isEmpty() is count 0?

Collection of ordered items
Count of items

Behavior

top 3
2

bottom 1

pop, peekpush

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Implementing a Stack with Linked Nodes

LinkedStack<E>

State
Node top
size

Behavior

STACK ADT

State

push(index) add item to top
pop() return & remove item
at top
peek() return item at top
size() count of items
isEmpty() is count 0?

Collection of ordered items
Count of items

Behavior
push add new node at top
pop return & remove node at
top
peek return node at top
size return size
isEmpty return size == 0

Big-Oh Analysis
pop()

peek()

size()

isEmpty()

push()

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

push(3)
push(4)
pop() size = 012

4

3top

Pause Video when Prompted

LinkedStack<E>

State

Behavior

STACK ADT

State

push(index) add item to top
pop() return & remove item
at top
peek() return item at top
size() count of items
isEmpty() is count 0?

Collection of ordered items
Count of items

Behavior

Big-Oh Analysis
pop()

peek()

size()

isEmpty()

push()

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

push(3)
push(4)
pop() size = 011

3top
What do you think the
worst possible
runtime of push()
could be?

O(1) Constant

Node top
size

push add new node at top
pop return & remove node at
top
peek return node at top
size return size
isEmpty return size == 0

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Implementing a Stack with an Array

ArrayStack<E>

State
data[]
size

Behavior

STACK ADT

State

push(index) add item to top
pop() return & remove item
at top
peek() return item at top
size() count of items
isEmpty() is count 0?

Collection of ordered items
Count of items

Behavior

0 1 2 3
push(3)
push(4)
pop()
push(5)

3 45

size = 012

push data[size] = value, if
out of room grow data
pop return data[size - 1],
size -= 1
peek return data[size - 1]
size return size
isEmpty return size == 0

Big-Oh Analysis
pop()

peek()

size()

isEmpty()

push()

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

Pause Video when Prompted

What do you think the
worst possible runtime
of push() could be?

ArrayStack<E>

State
data[]
size

Behavior

STACK ADT

State

push(index) add item to top
pop() return & remove item
at top
peek() return item at top
size() count of items
isEmpty() is count 0?

Collection of ordered items
Count of items

Behavior

push(3)
push(4)
pop()
push(5)

3 45

size = 012

push data[size] = value, if
out of room grow data
pop return data[size - 1],
size -= 1
peek return data[size - 1]
size return size
isEmpty return size == 0

Big-Oh Analysis
pop()

peek()

size()

isEmpty()

push()

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

0 1 2 3

O(n) linear if you have to
resize, O(1) otherwise

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Preview Why Not Decide on One?
• Big-Oh analysis of push():

• Two insights to keep in mind:
1. Behavior is completely different in these two cases. Almost better not to try
and analyze them both together.
2. Big-Oh is a tool to describe runtime. Having to decide just one or the other
would make it a less useful tool – not a complete description.

O(n) linear if you have to resize,
O(1) constant otherwise

If you have to resize
Otherwise

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Lecture Outline
• The Stack ADT

• The Queue ADT

• Design Decisions

• The Map ADT

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

143 Review The Queue ADT
• Queue: an ADT representing an

ordered sequence of elements whose
elements can only be added from one
end and removed from the other.

- First-In, First-Out (FIFO)
- Elements stored in order of insertion

- We don’t think of them as having indices
- Clients can only add to the “end”, and

can only examine/remove at the “front”

QUEUE ADT

State
Collection of ordered items
Count of items

Behavior

front back
1 2 3

addremove, peek

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count is 0?

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Implementing a Queue with Linked Nodes

LinkedQueue<E>

State

Behavior

Big-Oh Analysis
remove()

peek()

size()

isEmpty()

add()

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

add(5)
add(8)
remove()

size = 012

85front

back

add – add node to back
remove – return and remove
node at front
peek – return node at front
size – return size
isEmpty – return size == 0

Node front
Node back
size

QUEUE ADT

State
Collection of ordered items
Count of items

Behavior
add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count is 0? O(1) Constant

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Implementing a Queue with an Array (v1)

ArrayQueueV1<E>

State

Behavior

Big-Oh Analysis
peek()

size()

isEmpty()

add()

remove()

O(1) Constant

O(1) Constant

O(1) Constant

add – data[size] = value,
if out of room grow
remove – return/remove at
0, shift everything
peek – return node at 0
size – return size
isEmpty – return size == 0

data[]
size

QUEUE ADT

State
Collection of ordered items
Count of items

Behavior
add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count is 0?

0 1 2 3 4

add(5)
add(8)
add(9)
remove()

size = 0

5 8 9

123

Pause Video when Prompted

ArrayQueueV1<E>

State

Behavior

Big-Oh Analysis
peek()

size()

isEmpty()

add()

remove()

O(1) Constant

O(1) Constant

O(1) Constant

add – data[size] = value,
if out of room grow
remove – return/remove at
0, shift everything
peek – return node at 0
size – return size
isEmpty – return size == 0

data[]
size

QUEUE ADT

State
Collection of ordered items
Count of items

Behavior
add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count is 0?

0 1 2 3 4

add(5)
add(8)
add(9)
remove()

size = 0

8 9

122

O(n) Linear if you have to
resize, O(1) otherwise

O(n) Linear

What do you think the worst
possible runtime of add() &
remove() could be?

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Consider Data Structure Invariants

• Invariant: a property of a data structure that is always true
between operations

- true when finishing any operation, so it can be counted on to be
true when starting an operation.

• ArrayQueueV1 is basically an ArrayList. What invariants
does ArrayList have for its data array?

- The i-th item in the list is stored in data[i]
- Notice: serving this invariant is what slows down the operation. Could we

choose a different invariant?

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Implementing a Queue with an Array
Wrapping Around with “front” and “back” indices

0 1 2 3 4

numberOfItems = 3

front back

5 9 2 74

add(7)
add(4)
add(1)
remove()

45

0 1 2 3 4 5 6 7 8 9

5 9 2 7 4

front back

1

6

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Implementing a Queue with an Array (v2)

ArrayQueueV2<E>

State

Behavior

Big-Oh Analysis
peek()

size()

isEmpty()

add()

remove()

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

add – data[back] = value,
back++, size++, if out of
room grow
remove – return data[front],
size--, front++
peek – return data[front]
size – return size
isEmpty – return size == 0

data[],
size,

QUEUE ADT

State
Collection of ordered items
Count of items

Behavior
add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count is 0?

front,
back

O(n) Linear if you have to
resize, O(1) otherwise

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Lecture Outline
• The Stack ADT

• The Queue ADT

• Design Decisions

• The Map ADT

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

ADTs & Data Structures
• We’ve now seen that just like an ADT can be implemented by multiple

data structures, a data structure can implement multiple ADTs

• But the ADT decides how it can be used
- An ArrayList used as a List should support get(), but when used as a Stack

should not

List

Resizable Array Linked Nodes

Stack Queue

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

143 Review The Map ADT
• Map: an ADT representing a set of distinct

keys and a collection of values, where each
key is associated with one value.

- Also known as a dictionary
- If a key is already associated with something,

calling put(key, value) replaces the old value

• A programmer’s best friend J
- It’s hard to work on a big project without

needing one sooner or later
- CSE 143 introduced:

- Map<String, Integer> map1 = new HashMap<>();
- Map<String, String> map2 = new TreeMap<>();

MAP ADT

State
Set of keys, Collection of values
Count of keys

Behavior
put(key, value) add value to
collection, associated with key
get(key) return value associated
with key
containsKey(key) return if key
is associated
remove(key) remove key and
associated value
size() return count

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Abstract Representations of Maps
• Plenty of different ways you might think about the Map ADT:

{
“AA”: 930,
“AF”: 1530,
“AI”: 1530

}

key value

“AA” 930

key value

“AF” 1530

key value

“AI” 1530

“AA”

“AB”

“AC”

930

1530

• Be careful: remember these are still abstract! No
assumption of how duplicates are actually stored

- Doesn’t matter: implementation must match behavior
of Map ADT, regardless of how it stores

keys values

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Implementing a Map with an Array
Big-Oh Analysis – (if key is the last
one looked at / not in the
dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(n) linear
O(n) linear

O(n) linear

O(n) linear

0 1 2 3
put(‘b’, 97)
put(‘e’, 20) (‘a’, 1) (‘b’, 2) (‘c’, 3)(‘b’,97) (‘d’, 4)

Big-Oh Analysis – (if the key is the
first one looked at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant
4

(‘e’,20)

MAP ADT

State
Set of keys, Collection of values
Count of keys

Behavior
put(key, value) add value to
collection, associated with
key
get(key) return value
associated with key
containsKey(key) return if key
is associated
remove(key) remove key and
associated value
size() return count

ArrayMap<K, V>

State

Behavior
put find key, overwrite value if there.
Otherwise create new pair, add to next
available spot, grow array if necessary
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, replace pair to
be removed with last pair in collection
size return count of items in dictionary

Pair<K, V>[] data
size

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Implementing a Map with Linked Nodes
MAP ADT

State
Set of keys, Collection of values
Count of keys

Behavior
put(key, value) add value to
collection, associated with
key
get(key) return value
associated with key
containsKey(key) return if key
is associated
remove(key) remove key and
associated value
size() return count

LinkedMap<K, V>

State

Behavior
put if key is unused, create new with
pair, add to front of list, else replace
with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in dictionary

front
size

containsKey(‘c’)
get(‘d’)
put(‘b’, 20)

front

‘c’ 9‘b’ 7 ‘d’ 4‘a’ 1 20

Big O Analysis – (if key is the last
one looked at / not in the
dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(n) linear
O(n) linear

O(n) linear

O(n) linear

Big O Analysis – (if the key is the first
one looked at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Consider: what if we delete size?
MAP ADT

State
Set of keys, Collection of values
Count of keys

Behavior
put(key, value) add value to
collection, associated with
key
get(key) return value
associated with key
containsKey(key) return if key
is associated
remove(key) remove key and
associated value
size() return count

LinkedMap<K, V>

State

Behavior
put if key is unused, create new with
pair, add to front of list, else replace
with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in dictionary

front
size

Big O Analysis – (if key is the last
one looked at / not in the
dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(n) linear
O(n) linear

O(n) linear

O(n) linear

Big O Analysis – (if the key is the first
one looked at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant

1. Is this okay? What about “Count of keys” in the ADT?

2. Would you ever do this? It only increases runtime.

O(n) linear

O(n) linear

Yes! The abstract state is still stored – just as # of nodes, not an int field

Possibly, if you care much more about storage space than runtime

CSE 373 Autumn 2020LEC 03: Stacks, Queues, & Maps

Takeaways
• We’ve seen how different implementations can make a huge runtime difference

on the same ADT
- E.g. implementing Queue with a resizable array

• These ADTs & data structures may be review for you
- Either way, the skills of determining & comparing these runtimes are the real goals! J

• Starting to see that analyzing runtimes isn’t as simple as 143 made it seem
- E.g. one operation can have multiple Big-Oh complexity classes

• Hard to go further without a more thorough understanding of this Big-Oh tool
- Next up: Algorithmic Analysis (Wednesday)!

