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Learning Objectives

1. Implement Merge Sort, and derive its runtimes

2. Trace through Quick Sort, derive its runtimes, and trace through the 
in-place variant

3. Evaluate the best algorithm to use based on properties of input 
data (already sorted, multiple fields, etc.)

After this lecture, you should be able to...
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Lecture Outline
• Review Definitions, Insertion, Selection
• Merge Sort
• Quick Sort
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Review Sorting: Ordering Relations
• An ordering relation < for keys a, b, and c has the 

following properties:
- Law of Trichotomy: Exactly one of a < b, a = b, b < a is true
- Law of Transitivity: If a < b, and b < c, then a < c

• Determined by the data type AND the application!

• Increasing: Could sort using  
int definition of <

• Decreasing: Could sort using 
int definition of >

• Netflix library: Could sort by title (or 
star rating)

• IMDB actor credits: Could sort by year
• Could sort by some combo of both!

• File system: Could sort by image size, last 
modified

• Design: Could sort by average color of pixels
• Google Search Index: Could sort by subject

Ints Movies Image Data

2, 6, 4, 5, 8, 9
Coco
2017

Inside Out
2015

Tangled
2010, ,

, ,
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Review Sorting: Definitions
A sort is stable if the relative order 
of equivalent keys is maintained after 
sorting

Anita
2010

Basia
2018

Caris
2019

Duska
2020

Duska
2015

Anita
2016

Anita
2010

Anita
2016

Basia
2018

Caris
2019

Duska
2020

Duska
2015

Stable sort using name as key

An in-place sort modifies the input array 
directly, as opposed to building up an 
auxiliary data structure

3 5 4 8 2

Anita
2016

Anita
2010

Basia
2018

Caris
2019

Duska
2015

Duska
2020

Unstable sort using name as key

Input

4 8 2

3 5

Not in-place sort building up in auxiliary array

In-Place sort building up result in partition of same array
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Review Sorting Strategy 1: Iterative Improvement
• Invariants/Iterative improvement

- Step-by-step make one more part of the input your desired output.

• We’ll write iterative algorithms to satisfy the following invariant:
• After 𝑘 iterations of the loop, the first 𝑘 elements of the array will be 

sorted.

Iterative Improvement
After k iterations of the loop, the first k 
elements of the array will be sorted

IN
VA

R
IA

N
T
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Review Selection vs. Insertion Sort
void selectionSort(list) {

for each current in list:
target = findNextMin(current)
swap(target, current)

}

void insertionSort(list) {
for each current in list:

target = findSpot(current)
shift(target, current)

}

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

“Look through sorted to insert the current item 
in the spot where it belongs”
• Then shift everything over to make space

“Look through unsorted to select the smallest 
item to replace the current item”
• Then swap the two elements

Worst case runtime? Θ(𝑛2)
Best case runtime? Θ(𝑛2)
In-practice runtime? Θ(𝑛2)
Stable? No
In-place? Yes

Worst case runtime? Θ(𝑛2)
Best case runtime? Θ(𝑛)
In-practice runtime? Θ(𝑛2)
Stable? Yes
In-place? Yes

Minimizes writing to an 
array (doesn’t have to shift 
everything)

Almost always preferred: Stable 
& can take advantage of an 
already-sorted list.
(LinkedList means no shifting J, 
though doesn’t change 
asymptotic runtime)
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In-Place Heap Sort

0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

removeMin()
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Lecture Outline
• Review Definitions, Insertion, Selection
• Merge Sort
• Quick Sort



CSE 373 Autumn 2020LEC 24: Sorting II

Sorting Strategy 3: Divide and Conquer
General recipe:
1. Divide your work into smaller pieces recursively

2. Conquer the recursive subproblems
- In many algorithms, conquering a subproblem requires no 

extra work beyond recursively dividing and combining it!

3. Combine the results of your recursive calls

divideAndConquer(input) {
if (small enough to solve):

conquer, solve, return results
else:

divide input into a smaller pieces
recurse on smaller pieces
combine results and return

}
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Merge Sort
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22
0 1 2 3

55 1 7 6

0 1 2 3

2 8 22 91

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

8

0

2

0

91

0

22

0

55

0

1

0 1 2 3

1 6 7 55

0

7

0

6

…

…

Conquer

Simply divide in 
half each time

No extra 
conquer work 
needed!

The actual 
sorting happens 
here!
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Merge Sort: Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22
0 1 2 3

55 1 7 6

0 1

8 2

0 1

91 22

0 1

55 1
0 1

7 6

0

8

0

2

0

91

0

22

0

55

0

1

0

7

0

6

Recursive Case: split 
the array in half and 
recurse on both 
halves

Base Case: when 
array hits size 1, 
stop dividing. In 
Merge Sort, no 
additional work to 
conquer: everything 
gets sorted in 
combine step!

Sort the pieces through the magic of recursionmagic
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Merge Sort: Combine Step

0 1 2 3

2 8 22 91

0 1 2 3

1 6 7 55

Combine

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combining two sorted arrays:
1. Initialize pointers to start of both arrays
2. Repeat until all elements are added:

1. Add whichever is smaller to the result array
2. Move that pointer forward one spot

Works because we only move the smaller pointer – then ”reconsider” the larger against a new value, and 
because the arrays are sorted we never have to backtrack!
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Merge Sort

mergeSort(list) {
if (list.length == 1):

return list
else:

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

Worst case runtime?

Best case runtime?

In Practice runtime?

Stable?

In-place?

Yes

No

=Θ(𝑛 log 𝑛)

Same

Same

0 1 2 3

55 1 7 6

0 1

55 1
0 1

7 6

0

55

0

1

0

7

0

6

0 1 2 3

1 6 7 55

0 1

1 55
0 1

6 7

n

2 log n

𝑇 𝑛 = *
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

2 Constant size Input
Don’t forget your old friends, 
the 3 recursive patterns!
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Lecture Outline
• Review Definitions, Insertion, Selection
• Merge Sort
• Quick Sort



CSE 373 Autumn 2020LEC 24: Sorting II

Divide and Conquer
• There’s more than one way to divide!
• Mergesort:

- Split into two arrays. 
- Elements that just happened to be on the left and that happened to be on the 

right.

• Quicksort:
- Split into two arrays.
- Roughly, elements that are “small” and elements that are “large”
- How to define “small” and “large”? Choose a “pivot” value in the array that 

will partition the two arrays!
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0

8

Quick Sort (v1)
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6
0 1 2

91 22 55

0 1 2 3

1 2 6 7

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

1

0

2

0

6

0

7

0

8

0

22

0 1 2 3

1 6 7 55

0

55

0

91

…

…

Conquer

Choose a “pivot” 
element, partition 
array relative to it!

Again, no extra 
conquer step 
needed!

Simply concatenate 
the now-sorted 
arrays! 

P I VOT

0

8
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0

8

Quick Sort (v1): Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6
0 1 2

91 22 55

Recursive Case:
• Choose a “pivot” 

element
• Partition: linear scan 

through array, add 
smaller elements to 
one array and larger 
elements to another

• Recursively partition

P I VOT

Base Case:
• When array hits size 

1, stop dividing.

0 1

7 6

0

1

0

2

P I VOT P I VOT

0 1

22 55

0

91

P I VOT P I VOT

0

6

0

7

0

22

0

55
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0

8

Quick Sort (v1): Combine Step
Combine

Simply concatenate the 
arrays that were 
created earlier! 
Partition step already 
left them in order J

0

1

0

2

0

91

0

6

0

7

0

22

0

55

0 1

6 7

0 1

22 55

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

0 1 2 3

1 2 6 7

0 1 2

22 55 91
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Quick Sort (v1)
quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerHalf = quickSort(getSmaller(pivot, list))
largerHalf = quickSort(getBigger(pivot, list))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Can be done!

Just trust me: Θ(𝑛 log 𝑛)
(absurd amount of math to get here)

0 1 2 3

2 1 7 6

0 1

7 6

0

1

0

2

P I VOT

P I VOT

0

6

0

7
𝑇 𝑛 = 7 1 if 𝑛 ≤ 1

𝑇 𝑛 − 1 + 𝑛 otherwise

𝑇 𝑛 = *
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

0 1 2 3

1 2 6 7

0 1

6 7

= Θ(𝑛!)

= Θ(𝑛 log 𝑛)

Worst case: Pivot only chops off one value
Best case: Pivot divides each array in half
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Can we do better?
• How to avoid hitting the worst case?

- It all comes down to the pivot. If the pivot divides each array in half, we get 
better behavior

• Here are four options for finding a pivot. What are the tradeoffs?
- Just take the first element
- Take the median of the full array
- Take the median of the first, last, and middle element
- Pick a random element
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Strategies for Choosing a Pivot
• Just take the first element

- Very fast!
- But has worst case: for example, sorted lists have Ω 𝑛% behavior

• Take the median of the full array
- Can actually find the median in 𝑂(𝑛) time (google QuickSelect). It’s complicated.
- 𝑂(𝑛 𝑙𝑜𝑔 𝑛) even in the worst case… but the constant factors are awful. No one does 

quicksort this way.
• Take the median of the first, last, and middle element

- Makes pivot slightly more content-aware, at least won’t select very smallest/largest
- Worst case is still Ω(𝑛%), but on real-world data tends to perform well!

• Pick a random element
- Get 𝑂(𝑛 log 𝑛) runtime with probability at least 1 − 1/𝑛%
- No simple worst-case input (e.g. sorted, reverse sorted)

Most commonly used
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Quick Sort (v2: In-Place) 
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8

P I VOT ? P I VOT ? P I VOT ?P I VOT !

Select a pivot

Move pivot out 
of the way

Bring low and high 
pointers together, 
swapping elements 
if needed

Meeting point is 
where pivot 
belongs; swap in. 
Now recurse on 
smaller portions of 
same array!

Divide
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Quick Sort (v2: In-Place)
quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerPart, largerPart = partition(pivot, list)
smallerPart = quickSort(smallerPart)
largerPart = quickSort(largerPart)
return smallerPart + pivot + largerPart

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Yes

Just trust me: Θ(𝑛 log 𝑛)
(absurd amount of math to get here)

𝑇 𝑛 = 7 1 if 𝑛 ≤ 1
𝑇 𝑛 − 1 + 𝑛 otherwise

𝑇 𝑛 = *
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

= Θ(𝑛!)

= Θ(𝑛 log 𝑛)

0 1 2 3 4 5

0 3 6 9 7 8

choosePivot:
- Use one of the pivot 
selection strategies

partition:
- For in-place Quick Sort, 
series of swaps to build both 

partitions at once
- Tricky part: moving pivot out 
of the way and moving it back!

- Similar to Merge Sort divide 
step: two pointers, only move 

smaller one
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Sorting: Summary
Best-Case Worst-Case Space Stable

Selection Sort Θ(n2) Θ(n2) Θ(1) No

Insertion Sort Θ(n) Θ(n2) Θ(1) Yes

Heap Sort Θ(n) Θ(nlogn) Θ(n) No

In-Place Heap Sort Θ(n) Θ(nlogn) Θ(1) No

Merge Sort Θ(nlogn) Θ(nlogn) Θ(nlogn)
Θ(n)* optimized

Yes

Quick Sort Θ(nlogn) Θ(n2) Θ(n) No

In-place Quick Sort Θ(nlogn) Θ(n2) Θ(1) No

What does Java do?
• Actually uses a combination of 3 

different sorts:
• If objects: use Merge Sort* 

(stable!)
• If primitives: use Dual Pivot 

Quick Sort
• If “reasonably short” array of 

primitives: use Insertion Sort
• Researchers say 48 elements

Key Takeaway: No single sorting 
algorithm is “the best”!
• Different sorts have different 

properties in different situations
• The “best sort” is one that is well-

suited to your data

* They actually use Tim Sort, which is very similar to Merge Sort in theory, but has some minor details different
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Insertion Sort

STRATEGY 1:
ITERATIVE IMPROVEMENT

STRATEGY 2:
IMPOSE STRUCTURE

STRATEGY 3:
DIVIDE AND CONQUER

Selection Sort

Heap Sort

Merge Sort

Quick Sort

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏) STABLE

IN-PLACE

IN-PLACE

IN-PLACE

IN-PLACE STABLE

𝜽(𝒏)

WORST

BEST

WORST

BEST

WORST

BEST

𝜽(𝒏𝟐)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏𝟐)

Minimizes array writes, otherwise never preferred.

Simple, stable, low-overhead, great if already sorted.

Always good runtimes

Stable, very reliable! In-place variant is slower.

Fastest in practice (constant factors), bad worst case.

𝜽(𝒏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE
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Selection Sort

Heap Sort

Merge Sort

Quick Sort

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏) STABLE

IN-PLACE

IN-PLACE

IN-PLACE

IN-PLACE STABLE

𝜽(𝒏)

WORST

BEST

WORST

BEST

WORST

BEST

𝜽(𝒏𝟐)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏𝟐)

Minimizes array writes, otherwise never preferred.

Simple, stable, low-overhead, great if already sorted.

Always good runtimes

Stable, very reliable! In-place variant is slower.

Fastest in practice (constant factors), bad worst case.

𝜽(𝒏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

Can we do better than n log n?
• For comparison sorts, NO. A proven lower bound!

• Intuition: n elements to sort, no faster way to 
find “right place” than log n

• However, niche sorts can do better in specific 
situations!

Many cool niche sorts beyond the scope of 373!
Radix Sort (Wikipedia, VisuAlgo) - Go digit-by-digit in 

integer data. Only 10 digits, so no need to compare!
Counting Sort (Wikipedia)
Bucket Sort (Wikipedia)
External Sorting Algorithms (Wikipedia) - For big data™

https://en.wikipedia.org/wiki/Radix_sort
https://visualgo.net/en/sorting?slide=15
https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/Bucket_sort
https://en.wikipedia.org/wiki/External_sorting
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DANCE EDITION

But Don’t Take it From Me…

• Insertion Sort: 
https://www.youtube.com/watch?v=ROalU379l3U

• Selection Sort: 
https://www.youtube.com/watch?v=Ns4TPTC8whw

• Heap Sort: 
https://www.youtube.com/watch?v=Xw2D9aJRBY4

• Merge Sort: 
https://www.youtube.com/watch?v=XaqR3G_NVoo

• Quick Sort: 
https://www.youtube.com/watch?v=ywWBy6J5gz8

Here are some excellent visualizations for the sorting algorithms we’ve talked about!

Comparing Sorting Algorithms

• Different Types of Input Data: 
https://www.toptal.com/developers/sorting-algorithms

• More Thorough Walkthrough: 
https://visualgo.net/en/sorting?slide=1

Comparing Sorting Algorithms

https://www.youtube.com/watch?v=ROalU379l3U
https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=Xw2D9aJRBY4
https://www.youtube.com/watch?v=XaqR3G_NVoo
https://www.youtube.com/watch?v=ywWBy6J5gz8
https://www.toptal.com/developers/sorting-algorithms
https://visualgo.net/en/sorting?slide=1

