
CSE 373 Autumn 2020LEC 23: Sorting I

CSE 373

Instructor

TAs

L E C 2 3

Hunter Schafer

Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino Iannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu
Elena Spasova
Alex Teng
Blarry Wang
Aileen Zeng

Sorting I

BEFORE WE START

CSE 373 Autumn 2020LEC 23: Sorting I

Announcements
• EX4 due this Friday, 12/4 at 11:59 pm
• Last exercise, EX5 (on sorting), will be released that Friday and is due

week after
• P4 due next Wednesday 12/09

- Starting now: J! Starting this weekend: L!

• Exam 2, during finals week!

CSE 373 Autumn 2020LEC 23: Sorting I

Exam II Logistics
• Same logistics as Exam I:

- 48 hours to complete an exam written for 1-2 hours
- Open notes & internet, groups up to 6
- Submit via Gradescope, OH in lecture

• Released Wed 12/16 8:30 AM PST
• Due Fri 12/18 8:30 AM PST

- No late submissions!
• Focuses on second half of the course, up through

this Wednesday’s lecture (Sorting)
- But technically “cumulative” in that you will need to

use skills from the first half (e.g. algorithmic analysis,
use List/Stack/Queue/Map, etc.)

• Like Exam I, will emphasize conceptual and
“why?” questions. Unlike Exam I, will require you
to write short snippets of code!

LEC 11 - 24

SEC 05 - 09 P 3 - 4

EX 3 - 5

EXAM II

• Topics list released tonight so you
can start looking things over,
practice materials published next
Monday

• Remember to use the Learning
Objectives!

STUDYING

CSE 373 Autumn 2020LEC 23: Sorting I

Learning Objectives

1. Define an ordering relation and stable sort and determine whether
a given sorting algorithm is stable

2. Implement Selection Sort and Insertion Sort, compare runtimes and
best/worst cases of the two algorithms, and decide when they are
appropriate

3. Implement Heap Sort, describe its runtime, and implement the in-
place variant

After this lecture, you should be able to...

CSE 373 Autumn 2020LEC 23: Sorting I

Lecture Outline
• Sorting Definitions
• Insertion & Selection Sort
• Heap Sort

CSE 373 Autumn 2020LEC 23: Sorting I

Sorting
• Generally: given items, put them in

order

• Why study sorting?
- Sorting is incredibly common in

programming
- Often a component of other algorithms!
- Very common in interviews

- Interesting case study for approaching
computational problems

- We’ll use some data structures we’ve
already studied

Sorting Week

CSE 373 Autumn 2020LEC 23: Sorting I

Types of Sorts

1. Comparison Sorts

Compare two elements at a time.
Works whenever we could implement a
compareTo method between elements.

2. Niche Sorts

Leverage specific properties of
data or problem to sort without

directly comparing elements.
E.g. if you already know you’ll only be
sorting numbers < 5, make 5 buckets

and add directly

We’ll focus on comparison sorts: much
more common, and very generalizable!

Bonus topic beyond the
scope of the class

CSE 373 Autumn 2020LEC 23: Sorting I

Sorting: Definitions (Knuth’s TAOCP)

• An ordering relation < for keys a, b, and c has the
following properties:

- Law of Trichotomy: Exactly one of a < b, a = b, b < a is true
- Law of Transitivity: If a < b, and b < c, then a < c

• A sort is a permutation (re-arrangement) of a
sequence of elements that puts the keys into non-
decreasing order, relative to the ordering relation

- x1 ≤ x2 ≤ x3≤ ...≤ xN

int temperature

class Movie {
String name;
int year;

}

• Built-in, simple ordering
relation

• More complex: Whenever we
sort, we also must decide
what ordering relation to use
for that application
• Sort by name?
• Sort by year?
• Some combination of

both?

https://www.amazon.com/Art-Computer-Programming-Sorting-Searching/dp/0201896850

CSE 373 Autumn 2020LEC 23: Sorting I

Sorting: Stability
• A sort is stable if the relative order of equivalent keys is maintained after sorting

Anita
2010

Basia
2018

Caris
2019

Duska
2020

Duska
2015

Anita
2016

Anita
2010

Anita
2016

Basia
2018

Caris
2019

Duska
2020

Duska
2015

Anita Basia Anita Duska Esteban Duska Caris

Anita Anita Basia Caris Duska Duska Esteban

• Stability and Equivalency only matter for complex types
• i.e. when there is more data than just the key

INPUT

Anita
2016

Anita
2010

Basia
2018

Caris
2019

Duska
2015

Duska
2020

Stable sort using name as key Unstable sort using name as key

CSE 373 Autumn 2020LEC 23: Sorting I

Sorting: Performance Definitions
• Runtime performance is sometimes called the time complexity

- Example: Dijkstra’s has time complexity O(E log V).

• Extra memory usage is sometimes called the space complexity
- Dijkstra’s has space complexity Θ(V)

- Priority Queue, distTo and edgeTo maps
- The input graph takes up space Θ(V+E), but we don’t count this as part of the

space complexity since the graph itself already exists and is an input to
Dijkstra’s

CSE 373 Autumn 2020LEC 23: Sorting I

Lecture Outline
• Sorting Definitions
• Insertion & Selection Sort
• Heap Sort

CSE 373 Autumn 2020LEC 23: Sorting I

Sorting Strategy 1: Iterative Improvement
• Invariants/Iterative improvement

- Step-by-step make one more part of the input your desired output.

• We’ll write iterative algorithms to satisfy the following invariant:
• After 𝑘 iterations of the loop, the first 𝑘 elements of the array will be

sorted.

Iterative Improvement
After k iterations of the loop, the first k
elements of the array will be sorted

IN
VA

R
IA

N
T

CSE 373 Autumn 2020LEC 23: Sorting I

Selection Sort
0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted ItemsCurrent Item

https://www.youtube.com/watch?v=Ns4TPTC8whw

Every iteration, select the smallest unsorted item to fill the next spot.

https://www.youtube.com/watch?v=Ns4TPTC8whw

CSE 373 Autumn 2020LEC 23: Sorting I

Selection Sort

void selectionSort(list) {
for each current in list:

target = findNextMin(current)
swap(target, current)

}
int findNextMin(current) {

min = current
for each item in unsorted items:

if (item < min):
min = current

return min
}
int swap(target, current) {

temp = current
current = target
target = temp

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛2)

Θ(𝑛2)

No

Yes

Θ(𝑛2)

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

CSE 373 Autumn 2020LEC 23: Sorting I

Selection Sort Stability

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

…

Swapping non-adjacent items can
result in instability of sorting
algorithms

CSE 373 Autumn 2020LEC 23: Sorting I

Insertion Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 5 1 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

https://www.youtube.com/watch?v=ROalU379l3U

Every iteration, insert the next unsorted item into the sorted items

https://www.youtube.com/watch?v=ROalU379l3U

CSE 373 Autumn 2020LEC 23: Sorting I

Insertion Sort
0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item
void insertionSort(list) {

for each current in list:
target = findSpot(current)
shift(target, current)

}
int findSpot(current) {

for each spot in sorted items going backwards:
if (current goes in spot):

return spot
}
void shift(target, current) {

for (i = current; i > target; i--):
item[i+1] = item[i]

item[target] = current
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛2)

Θ(𝑛)

Yes

Yes

Θ(𝑛2)

CSE 373 Autumn 2020LEC 23: Sorting I

Insertion Sort Stability
0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

3 5a 4 5b 2 6 8

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

Insertion sort is stable!

- All swaps happen between
adjacent items to get current
item into correct relative position
within sorted portion of array

- Duplicates will always be
compared against one another in
their original orientation, so can
maintain stability with proper if
logic

CSE 373 Autumn 2020LEC 23: Sorting I

Selection vs. Insertion Sort
void selectionSort(list) {

for each current in list:
target = findNextMin(current)
swap(target, current)

}

void insertionSort(list) {
for each current in list:

target = findSpot(current)
shift(target, current)

}

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

“Look through sorted to insert the current item
in the spot where it belongs”
• Then shift everything over to make space

“Look through unsorted to select the smallest
item to replace the current item”
• Then swap the two elements

Worst case runtime? Θ(𝑛2)
Best case runtime? Θ(𝑛2)
In-practice runtime? Θ(𝑛2)
Stable? No
In-place? Yes

Worst case runtime? Θ(𝑛2)
Best case runtime? Θ(𝑛)
In-practice runtime? Θ(𝑛2)
Stable? Yes
In-place? Yes

Minimizes writing to an
array (doesn’t have to shift
everything)

Almost always preferred: Stable
& can take advantage of an
already-sorted list.
(LinkedList means no shifting J,
though doesn’t change
asymptotic runtime)

CSE 373 Autumn 2020LEC 23: Sorting I

Lecture Outline
• Sorting Definitions
• Insertion & Selection Sort
• Heap Sort

CSE 373 Autumn 2020LEC 23: Sorting I

void selectionSort(list) {
for each current in list:

target = findNextMin(current)
swap(target, current)

}
int findNextMin(current) {

min = current
for each item in unsorted items:

if (item < min):
min = current

return min
}

Sorting Strategy 2: Impose Structure
• Consider what contributes to

Selection sort runtime of Θ 𝑛!
- Unavoidable n iterations to

consider each element
- Finding next minimum element

to swap requires a Θ 𝑛 linear
scan! Could we do better?

• If only we knew a way to structure our data to make it fast to find the
smallest item remaining in our dataset...

Θ 𝑛 iterations
Θ 𝑛

MIN PRIORITY QUEUE ADT

CSE 373 Autumn 2020LEC 23: Sorting I

Heap Sort
1. run Floyd’s buildHeap on your data
2. call removeMin n times to pull out every element!

void heapSort(list) {
E[] heap = buildHeap(list)
E[] output = new E[n]
for (i = 0; i < n; i++):

output[i] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Θ(𝑛 log 𝑛)

https://www.youtube.com/watch?v=Xw2D9aJRBY4

If we get clever…

https://www.youtube.com/watch?v=Xw2D9aJRBY4

CSE 373 Autumn 2020LEC 23: Sorting I

In-Place Heap Sort

0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

CSE 373 Autumn 2020LEC 23: Sorting I

In Place Heap Sort

void inPlaceHeapSort(list) {
buildHeap(list) // alters original array
for (n : list)

list[n – i - 1] = removeMin(heap part of list)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Yes

Θ(𝑛 log 𝑛)

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed! Lots of fixes:
- Run reverse afterwards (𝑂(𝑛))
- Use a max heap
- Reverse compare function to emulate max heap

