
CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

CSE 373

Instructor

TAs

L E C 2 2

Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino Iannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu
Elena Spasova
Alex Teng
Blarry Wang
Aileen Zeng

Hunter Schafer
P vs. NP

BEFORE WE START

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Learning Objectives

This lecture is optional! It will cover some cool and modern applications
of the things we have learned so far but is not part of the ”core”
material for CSE 373. Therefore, we won’t highlight learning objectives
since this is focused more on showing off a cool topic!

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Lecture Outline
• 2-SAT and 2-Coloring
• Efficiency, P vs. NP
• More Complex: NP-Complete, NP-Hard

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

2-SAT
Given a Boolean formula over Boolean variables
(A || !B) && (!A || B) && (!A || !B) && (A || !C)

Is there a setting of these variables to make this formula true?
- Called a satisfiability problem.

2-SAT is a specific satisfiability problem where each part of the formula
uses at most 2 terms.

Fact: There is an efficient algorithm to solve 2-SAT.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

2-Coloring
Given a graph, determine if it is possible to color the vertices such that
no two vertices that share an edge have the same color.

B

D
E

A

CB

D
E

A

C

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

2-Coloring
Why would we care about coloring a graph?

- Need to divide vertices into two sets, and edges represent conflicts

Could come up with a new algorithm to solve this problem (a modified
BFS, a good exercise to try). Instead, let’s solve this with a reduction.

Reduce 2-Coloring to 2-SAT

Big
Idea

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Review Reductions
• A reduction is a problem-solving strategy

that involves using an algorithm for problem
Q to solve a different problem P

- Rather than modifying the algorithm for Q, we
modify the inputs/outputs to make them
compatible with Q!

- “P reduces to Q”

1. Convert input for P into input for Q

2. Solve using algorithm for Q

3. Convert output from Q into output from P

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM QPROBLEM P

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Reduction: 2-Coloring to 2-SAT
Need to describe 2 steps:
1. Turn a graph for a 2-color problem into an input to 2-SAT
2. How to turn the ANSWER for that 2-SAT input into the answer for

the original 2-coloring problem.

Idea: Encode a variable for each vertex like v1IsRed. Then to make
sure two neighboring vertices have different colors, use a formula

(v1IsRed || v2IsRed) && (!v1IsRed || !v2IsRed)

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

How To Perform Topo Sort?

AisRed = True
BisRed = False
CisRed = True
DisRed = False
EisRed = True

B

D EA

C

B

D EA

C (AisRed||BisRed)&&(!AisRed||!BisRed)
(AisRed||DisRed)&&(!AisRed||!DisRed)
(BisRed||CisRed)&&(!BisRed||!CisRed)
(BisRed||EisRed)&&(!BisRed||!EisRed)
(DisRed||EisRed)&&(!DisRed||!EisRed)

Transform Input

2-SAT Algorithm

Transform Output

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Context
Saw that reductions can be a powerful tool in solving seemingly unrelated
problems.

We will also use reductions as a powerful theoretical tool in proving
relationships between problems.

Preview for rest of class:
- If we change 2-SAT to 3-SAT and 2-Coloring to 3-Coloring, the reduction remains

essentially the same. So far, there are no known efficient algorithms to solve 3-SAT.
- If you came up with an efficient 3-SAT algorithm, you will be able to solve a HUGE set

of currently intractable problems including, but not limited to:
- Traveling Salesperson Problem
- Folding proteins (inventing new medications)
- Scheduling UW classes in classrooms to optimize for student demand

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Lecture Outline
• 2-SAT and 2-Coloring
• Efficiency, P vs. NP
• More Complex: NP-Complete, NP-Hard

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Efficiency
So far, we have talked about the efficiency of a particular algorithm.
Two noticeable differences in our discussion today:

- We will talk about a problem being efficiently solvable if an efficient algorithm
exists to solve it.

- We will use a loose definition of efficient: Any polynomial runtime!

Claim: A polynomial time algorithm runs in time 𝑂(𝑛!) where 𝑘 is
some constant. We consider polynomial time algorithms to be efficient.

- Are they always efficient? Well…. no. Your 𝑂(𝑛!""") algorithm isn’t really
efficient.

- These extreme cases are rare, but we could say that polynomial is an absolute
minimum qualification to be efficient. A good “low bar”

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Running Times
We care about this distinction between polynomial time or not since
it’s a VERY strong heuristic for if you can reasonably find a solution to a
problem.

A (somewhat old) table from Rosen. Very long means 1025 years.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Aside Decision Problems
To be a bit pedantic, everything we are going to talk about today only applies
to decision problems. These are problems where the answer is yes/no.

Why?
- Mostly definitional reasons and it’s hard to change lots of research using one

definition.
- Almost any problem can be rephrased as a similar decision problem.

- Instead of ”How do we 2-color this graph?” ask “Can we 2-color this graph?”
- Instead of “Find the shortest path from s to t” ask “Is there are shortest path from s to t of

length at most k?”

We will be a bit hand-wavy in this lecture and not focus too much on the
decision aspects of these problems, but we thought it was important to
mention.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

P

The decision version of most problems we’ve seen in this class are in P.
- If we saw a poly time algorithm to solve it, its decision counterpart will be in P.

P is an example of a complexity class. A class problems that share some
characteristic in terms of how difficult it is to solve them.

P is generally referred to as “problems that can be solved efficiently”.

P (stands for “Polynomial”)

The set of all decision problems that have an algorithm that runs in time 𝑂(𝑛!) for some constant 𝑘

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

I’ll Know it When I See It
Another class of problems that we can efficiently verify a solution to. “I’ll
Know it When I See it” Problems.

These are decision problems such that
- If the answer is YES, you can verify a potential solution to the problem does result in

a YES result.
- This verification takes polynomial time.

Examples:
- If you are a claimed 2-coloring of a graph, you can verify in polynomial that the

claimed coloring is a valid 2-colorin
- If someone claims they have a path in a graph of length at most k, you can verify that

claim by checking the path itself in poly time.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

NP

It is a very common misconception that NP stands for “not polynomial”.
- Please don’t say that. Please!
- Every time this is said, a theoretical computer scientist somewhere sheds a tear.

NP is another complexity class.
- Intuition: P is the set of decision problems we can solve in poly time. NP is the set of

decision problems we can verify in poly time if an answer makes the decision YES.

NP (stands for “Nondeterministic Polynomial”)
The set of all decision problems such that if the answer is YES, there is a proof of that which can be
verified in polynomial time.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Aside Nondeterministic Polynomail
Where the heck does that name come from and why did no one have
the foresight to know people would think NP stands for “not
polynomial”?

The concept of a nondeterministic computer is an important concept in
CS theory. It’s the concept of having a computer that “knows” the right
step to take at each time (or equivalently, exploring all paths at once).

It’s not something we can use in practice, but in theory shows up
frequently in statements about computability and efficiency.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

P vs. NP
The fundamental question for computer scientists is answering how P and
NP relate to each other.

It’s pretty easy to show that 𝑃 ⊆ 𝑁𝑃. If you efficiently solve a problem, then
you can use that solver if you want to verify an answer. In other words,
efficiently solving implies there is an efficient verification.

The big question is: Is P = NP?
- Most computer scientists think no.
- Verifying a solutions to problems seems

fundamentally easier than solving the
problem itself.

- No one has proven this though!

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Why should you care about P vs NP?
Even though most of us are convinced 𝑃 ≠ 𝑁𝑃, why do people care?

It’s your chance to:
- $1,000,000. The Clay Mathematics Institute will give a million dollars to

whoever solves P vs. NP (or any of their other 5 problems).
- To get a Turing Award the Turing Award renamed after you.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Why should you Care if P = NP?
Suppose P = NP. Specifically, that you found an efficient algorithm for
one of these “NP-complete” problems (next video). What would you
do?

- Get $1,000,000 from the Clay Math Institute. But what’s next?
- Put mathematicians out of work
- Decrypt (essentially) all current internet communication.

- No more secure online shopping, banking or messaging, or really online anything.
- Maybe find the cure for cancer?
- A world where P = NP is a very very different place from the world we live

now.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Why Should you Care if 𝑷 ≠ 𝑵𝑷?
We already expect this is the case, why prove it?

- Tells us something fundamental about the universe and computation.
- For some questions, there is not a clever way to find the right answer.

- Even though you’ll know the answer once you see it.

To prove 𝑃 ≠ 𝑁𝑃, we need to better understand differences between
problems.

- Why do some problems allow easy solutions and other don’t?
- What is the structure of these problems?

We don’t care about P vs. NP just because it has a huge effect on what the
world looks like (even though that’s one reason). We will learn a LOT about
computation along the way.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Lecture Outline
• 2-SAT and 2-Coloring
• Efficiency, P vs. NP
• More Complex: NP-Complete, NP-Hard

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

P vs. NP
Most computer scientists thing 𝑃 ≠ 𝑁𝑃. No one has proven this yet,
but there is an important subset of NP that will be useful when it
comes to understand the hardness of problems.

To prove 𝑃 ≠ 𝑁𝑃, “all you have to do” is show there is a problem in NP
that requires exponential time to solve.

- We know lots of problems that we only currently have exponential algorithms
for, but that doesn’t mean there is some unknown efficient algorithm we
haven’t found yet!

Before we introduce these other sets of problems, we have to make
one clarification to the idea of reductions.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Reductions (again)
To talk about hardness of problems in NP, we need to bring back the idea of reductions to
solve problems. One addition to the idea of a reduction is the idea of an efficient
reduction.

All this means is the reduction itself is totally polynomial.
- If the runtime of the algorithm for B is also polynomial time, then this whole procedure is

polynomial.
If A reduces to B, then A should be “easier” than B.

- If we can solve B, we can definitely solve A.
- Usually denoted 𝐴 ≤! 𝐵

Polynomial Time Reducible
We say A reduces to B in polynomial time, if there is an algorithm for A that:
• Calls a black box for B at most a polynomial number of times
• Runs at most a polynomial number of other operations

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

NP-complete
If we want to prove there is a problem in NP that isn’t in P, we should
probably pick the hardest one we can think of!

What is the hardest problem in NP?

Any problem you can prove is NP-complete is one of the hardest problems in
NP (since all problems in NP reduce to it)

Problem B is NP-complete if:
• B is in NP and
• For all problems A in NP, A reduces to B in polynomial time

NP-complete

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Why NP-complete?
Seems like the right place to start to prove 𝑃 ≠ 𝑁𝑃. If it’s the hardest
problem in NP, it’s probably the one that requires that highest runtime.

Turns out, it’s also the right place to start for proving 𝑃 = 𝑁𝑃!
- If you can find a polynomial time algorithm for one NP-complete problem, it

gives you a polynomial time algorithm for every problem in NP.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Examples
There are literally thousands of NP-complete problems. Some look
weirdly similar to problems we care about or ones that we have
efficient algorithms for.

In P NP-complete

Given a directed graph, report if there is a
path from s to t of length at most k.

Short Path

Given a directed graph, report if there is a
path from s to t of length at least k.

Long Path

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Examples
There are literally thousands of NP-complete problems. Some look
weirdly similar to problems we care about or ones that we have
efficient algorithms for.

In P NP-complete

Given a weighted graph, report of there is
a spanning tree of weight at most k.

Light Spanning Tree

Given a weighted graph, find a tour (cycle
that visits every vertex once before
returning to start) of weight at most k.

Traveling Salesperson

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Examples
There are literally thousands of NP-complete problems. Some look
weirdly similar to problems we care about or ones that we have
efficient algorithms for.

In P NP-complete

Given a Boolean formula of the form “at
least one of two must be true”, determine
if a setting of variables can make the
whole formula true.

2-SAT

Given a Boolean formula of the form “at
least one of three must be true”,
determine if a setting of variables can
make the whole formula true.

3-SAT

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

NP-complete
If you find an efficient algorithm for an NP-complete problem, you have
an efficient algorithm for every problem in NP.
Started with Cook-Levin Theorem (1971) that proved that SAT (general
version of 3-SAT) is NP-complete. A year later…

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

NP-complete
But wait! There’s more!

By 1979, at least 300 problems had been proven NP-complete.

Garey and Johnson wrote a textbook with 100 pages listing known NP-
complete problems.

No one has made a super comprehensive list since, but there are
literally thousands and there are new ones found each year.

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

NP-Hard

NP-hard are the problems that are “at least as hard as the hardest problems in NP”.
- NP-complete = NP and NP-hard.

Many problems that are in NP-hard that aren’t in NP (i.e. no efficient verification).
The edges of NP-hard is the “there be dragons” of our problem space.

- Determining if you can win a game of n x n chess (really hard).
- Determining if your P2 code is stuck in an infinite loop or just taking a long time to run

(undecidable).

Problem B is NP-complete if:
• For all problems A in NP, A reduces to B in polynomial time

NP-hard

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

WorldView
If 𝑃 ≠ 𝑁𝑃 (what we think) If 𝑃 = 𝑁𝑃

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

NP-complete in Practice
Since it’s unlikely that P = NP, if you know your problem is NP-complete
you likely can’t solve it efficiently. Three common options:
1. Maybe it’s a special case we understand better.

- While SAT is NP-complete, 2-SAT is not!

2. Even if a problem is NP-complete, ”nice” instances might exist that
can be solved quickly.
- Common: Reduce your problem to a SAT instance and us a SAT-solver to help

you solve it quickly (worst case, still might be exponential)

3. Approximation Algorithms: Just like with TSP, make an efficient
algorithm that can approximately compute an answer if only an
approximate guess is good enough.

