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Learning Objectives

This lecture is optional! It will cover some cool and modern applications 
of the things we have learned so far but is not part of the ”core” 
material for CSE 373. Therefore, we won’t highlight learning objectives 
since this is focused more on showing off a cool topic!

After this lecture, you should be able to...
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Lecture Outline
• 2-SAT and 2-Coloring
• Efficiency, P vs. NP
• More Complex: NP-Complete, NP-Hard
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2-SAT
Given a Boolean formula over Boolean variables
(A || !B) && (!A || B) && (!A || !B) && (A || !C)

Is there a setting of these variables to make this formula true?
- Called a satisfiability problem.

2-SAT is a specific satisfiability problem where each part of the formula 
uses at most 2 terms.

Fact: There is an efficient algorithm to solve 2-SAT.
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2-Coloring
Given a graph, determine if it is possible to color the vertices such that 
no two vertices that share an edge have the same color.
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2-Coloring
Why would we care about coloring a graph?

- Need to divide vertices into two sets, and edges represent conflicts

Could come up with a new algorithm to solve this problem (a modified
BFS, a good exercise to try). Instead, let’s solve this with a reduction.

Reduce 2-Coloring to 2-SAT

Big 
Idea
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Review Reductions
• A reduction is a problem-solving strategy 

that involves using an algorithm for problem 
Q to solve a different problem P

- Rather than modifying the algorithm for Q, we 
modify the inputs/outputs to make them 
compatible with Q!

- “P reduces to Q”

1. Convert input for P into input for Q

2. Solve using algorithm for Q

3. Convert output from Q into output from P

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM QPROBLEM P
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Reduction: 2-Coloring to 2-SAT
Need to describe 2 steps:
1. Turn a graph for a 2-color problem into an input to 2-SAT
2. How to turn the ANSWER for that 2-SAT input into the answer for 

the original 2-coloring problem.

Idea: Encode a variable for each vertex like v1IsRed. Then to make
sure two neighboring vertices have different colors, use a formula

(v1IsRed || v2IsRed) && (!v1IsRed || !v2IsRed) 
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How To Perform Topo Sort?

AisRed = True
BisRed = False
CisRed = True
DisRed = False
EisRed = True

B

D EA

C

B

D EA

C (AisRed||BisRed)&&(!AisRed||!BisRed)
(AisRed||DisRed)&&(!AisRed||!DisRed)
(BisRed||CisRed)&&(!BisRed||!CisRed)
(BisRed||EisRed)&&(!BisRed||!EisRed)
(DisRed||EisRed)&&(!DisRed||!EisRed)

Transform Input

2-SAT Algorithm

Transform Output
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Context
Saw that reductions can be a powerful tool in solving seemingly unrelated 
problems.

We will also use reductions as a powerful theoretical tool in proving 
relationships between problems.

Preview for rest of class:
- If we change 2-SAT to 3-SAT and 2-Coloring to 3-Coloring, the reduction remains 

essentially the same. So far, there are no known efficient algorithms to solve 3-SAT.
- If you came up with an efficient 3-SAT algorithm, you will be able to solve a HUGE set 

of currently intractable problems including, but not limited to:
- Traveling Salesperson Problem
- Folding proteins (inventing new medications)
- Scheduling UW classes in classrooms to optimize for student demand
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Lecture Outline
• 2-SAT and 2-Coloring
• Efficiency, P vs. NP
• More Complex: NP-Complete, NP-Hard
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Efficiency
So far, we have talked about the efficiency of a particular algorithm. 
Two noticeable differences in our discussion today:

- We will talk about a problem being efficiently solvable if an efficient algorithm 
exists to solve it.

- We will use a loose definition of efficient: Any polynomial runtime!

Claim: A polynomial time algorithm runs in time 𝑂(𝑛!) where 𝑘 is 
some constant. We consider polynomial time algorithms to be efficient.

- Are they always efficient? Well…. no. Your 𝑂(𝑛!""") algorithm isn’t really 
efficient.

- These extreme cases are rare, but we could say that polynomial is an absolute 
minimum qualification to be efficient. A good “low bar”
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Running Times
We care about this distinction between polynomial time or not since 
it’s a VERY strong heuristic for if you can reasonably find a solution to a 
problem.

A (somewhat old) table from Rosen. Very long means 1025 years.
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Aside Decision Problems
To be a bit pedantic, everything we are going to talk about today only applies 
to decision problems. These are problems where  the answer is yes/no.

Why?
- Mostly definitional reasons and it’s hard to change lots of research using one 

definition.
- Almost any problem can be rephrased as a similar decision problem.

- Instead of ”How do we 2-color this graph?” ask “Can we 2-color this graph?”
- Instead of “Find the shortest path from s to t” ask “Is there are shortest path from s to t of 

length at most k?”

We will be a bit hand-wavy in this lecture and not focus too much on the 
decision aspects of these problems, but we thought it was important to
mention. 
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P

The decision version of most problems we’ve seen in this class are in P.
- If we saw a poly time algorithm to solve it, its decision counterpart will be in P.

P is an example of a complexity class. A class problems that share some
characteristic in terms of how difficult it is to solve them.

P is generally referred to as “problems that can be solved efficiently”.

P (stands for “Polynomial”)

The set of all decision problems that have an algorithm that runs in time 𝑂(𝑛!) for some constant 𝑘
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I’ll Know it When I See It
Another class of problems that we can efficiently verify a solution to. “I’ll 
Know it When I See it” Problems.

These are decision problems such that
- If the answer is YES, you can verify a potential solution to the problem does result in 

a YES result.
- This verification takes polynomial time.

Examples:
- If you are a claimed 2-coloring of a graph, you can verify in polynomial that the 

claimed coloring is a valid 2-colorin
- If someone claims they have a path in a graph of length at most k, you can verify that 

claim by checking the path itself in poly time.
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NP

It is a very common misconception that NP stands for “not polynomial”. 
- Please don’t say that. Please!
- Every time this is said, a theoretical computer scientist somewhere sheds a tear.

NP is another complexity class.
- Intuition: P is the set of decision problems we can solve in poly time. NP is the set of 

decision problems we can verify in poly time if an answer makes the decision YES.

NP (stands for “Nondeterministic Polynomial”)
The set of all decision problems such that if the answer is YES, there is a proof of that which can be 
verified in polynomial time.
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Aside Nondeterministic Polynomail
Where the heck does that name come from and why did no one have 
the foresight to know people would think NP stands for “not 
polynomial”?

The concept of a nondeterministic computer is an important concept in 
CS theory. It’s the concept of having a computer that “knows” the right 
step to take at each time (or equivalently, exploring all paths at once).

It’s not something we can use in practice, but in theory shows up 
frequently in statements about computability and efficiency. 
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P vs. NP
The fundamental question for computer scientists is answering how P and 
NP relate to each other.

It’s pretty easy to show that 𝑃 ⊆ 𝑁𝑃. If you efficiently solve a problem, then 
you can use that solver if you want to verify an answer. In other words, 
efficiently solving implies there is an efficient verification.

The big question is: Is P = NP?
- Most computer scientists think no.
- Verifying a solutions to problems seems

fundamentally easier than solving the 
problem itself. 

- No one has proven this though!
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Why should you care about P vs NP?
Even though most of us are convinced 𝑃 ≠ 𝑁𝑃, why do people care?

It’s your chance to:
- $1,000,000. The Clay Mathematics Institute will give a million dollars to 

whoever solves P vs. NP (or any of their other 5 problems).
- To get a Turing Award the Turing Award renamed after you.
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Why should you Care if P = NP?
Suppose P = NP. Specifically, that you found an efficient algorithm for 
one of these “NP-complete” problems (next video). What would you 
do?

- Get $1,000,000 from the Clay Math Institute. But what’s next?
- Put mathematicians out of work
- Decrypt (essentially) all current internet communication. 

- No more secure online shopping, banking or messaging, or really online anything.
- Maybe find the cure for cancer?
- A world where P = NP is a very very different place from the world we live

now.
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Why Should you Care if 𝑷 ≠ 𝑵𝑷?
We already expect this is the case, why prove it?

- Tells us something fundamental about the universe and computation. 
- For some questions, there is not a clever way to find the right answer.

- Even though you’ll know the answer once you see it.

To prove 𝑃 ≠ 𝑁𝑃, we need to better understand differences between 
problems.

- Why do some problems allow easy solutions and other don’t?
- What is the structure of these problems?

We don’t care about P vs. NP just because it has a huge effect on what the 
world looks like (even though that’s one reason). We will learn a LOT about 
computation along the way. 
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Lecture Outline
• 2-SAT and 2-Coloring
• Efficiency, P vs. NP
• More Complex: NP-Complete, NP-Hard
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P vs. NP
Most computer scientists thing 𝑃 ≠ 𝑁𝑃. No one has proven this yet, 
but there is an important subset of NP that will be useful when it 
comes to understand the hardness of problems.

To prove 𝑃 ≠ 𝑁𝑃, “all you have to do” is show there is a problem in NP 
that requires exponential time to solve.

- We know lots of problems that we only currently have exponential algorithms 
for, but that doesn’t mean there is some unknown efficient algorithm we 
haven’t found yet!

Before we introduce these other sets of problems, we have to make 
one clarification to the idea of reductions.
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Reductions (again)
To talk about hardness of problems in NP, we need to bring back the idea of reductions to
solve problems. One addition to the idea of a reduction is the idea of an efficient 
reduction.

All this means is the reduction itself is totally polynomial. 
- If the runtime of the algorithm for B is also polynomial time, then this whole procedure is 

polynomial.
If A reduces to B, then A should be “easier” than B. 

- If we can solve B, we can definitely solve A.
- Usually denoted 𝐴 ≤! 𝐵

Polynomial Time Reducible
We say A reduces to B in polynomial time, if there is an algorithm for A that:
• Calls a black box for B at most a polynomial number of times
• Runs at most a polynomial number of other operations
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NP-complete
If we want to prove there is a problem in NP that isn’t in P, we should 
probably pick the hardest one we can think of! 

What is the hardest problem in NP?

Any problem you can prove is NP-complete is one of the hardest problems in 
NP (since all problems in NP reduce to it)

Problem B is NP-complete if:
• B is in NP and
• For all problems A in NP, A reduces to B in polynomial time

NP-complete
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Why NP-complete?
Seems like the right place to start to prove 𝑃 ≠ 𝑁𝑃. If it’s the hardest 
problem in NP, it’s probably the one that requires that highest runtime.

Turns out, it’s also the right place to start for proving 𝑃 = 𝑁𝑃!
- If you can find a polynomial time algorithm for one NP-complete problem, it  

gives you a polynomial time algorithm for every problem in NP.
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Examples
There are literally thousands of NP-complete problems. Some look 
weirdly similar to problems we care about or ones that we have 
efficient algorithms for.

In P NP-complete

Given a directed graph, report if there is a 
path from s to t of length at most k. 

Short Path

Given a directed graph, report if there is a 
path from s to t of length at least k.

Long Path



CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Examples
There are literally thousands of NP-complete problems. Some look 
weirdly similar to problems we care about or ones that we have 
efficient algorithms for.

In P NP-complete

Given a weighted graph, report of there is 
a spanning tree of weight at most k.

Light Spanning Tree

Given a weighted graph, find a tour (cycle 
that visits every vertex once before 
returning to start) of weight at most k.

Traveling Salesperson
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Examples
There are literally thousands of NP-complete problems. Some look 
weirdly similar to problems we care about or ones that we have 
efficient algorithms for.

In P NP-complete

Given a Boolean formula of the form “at 
least one of two must be true”, determine 
if a setting of variables can make the 
whole formula true.

2-SAT

Given a Boolean formula of the form “at 
least one of three must be true”, 
determine if a setting of variables can 
make the whole formula true.

3-SAT
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NP-complete
If you find an efficient algorithm for an NP-complete problem, you have 
an efficient algorithm for every problem in NP.
Started  with Cook-Levin Theorem (1971) that proved that SAT (general 
version of 3-SAT) is NP-complete. A year later…
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NP-complete 
But wait! There’s more!

By 1979, at least 300 problems had been proven NP-complete.

Garey and Johnson wrote a textbook with 100 pages listing known NP-
complete problems. 

No one has made a super comprehensive list since, but there are
literally thousands and there are new ones found each year.
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NP-Hard

NP-hard are the problems that are “at least as hard as the hardest problems in NP”.
- NP-complete = NP and NP-hard.

Many problems that are in NP-hard that aren’t in NP (i.e. no efficient verification). 
The edges of NP-hard is the “there be dragons” of our problem space.

- Determining if you can win a game of n x n chess (really hard).
- Determining if your P2 code is stuck in an infinite loop or just taking a long time to run 

(undecidable).

Problem B is NP-complete if:
• For all problems A in NP, A reduces to B in polynomial time

NP-hard
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WorldView
If 𝑃 ≠ 𝑁𝑃 (what we think)                           If 𝑃 = 𝑁𝑃
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NP-complete in Practice
Since it’s unlikely that P = NP, if you know your problem is NP-complete
you likely can’t solve it efficiently. Three common options:
1. Maybe it’s a special case we understand better. 

- While SAT is NP-complete, 2-SAT is not!

2. Even if a problem is NP-complete, ”nice” instances might exist that 
can be solved quickly.
- Common: Reduce your problem to a SAT instance and us a SAT-solver to help 

you solve it quickly (worst case, still might be exponential)

3. Approximation Algorithms: Just like with TSP, make an efficient
algorithm that can approximately compute an answer if only an
approximate guess is good enough.


