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Learning Objectives

1. Implement WeightedQuickUnion and describe why making the 
change protects against the worst case find runtime

2. Implement path compression and argue why it improves runtimes, 
despite not following an invariant

3. Describe what contributes to the runtime of Prim’s and Kruskal’s, 
and compare/contrast the two algorithms

4. Implement WeightedQuickUnion using arrays and describe the 
benefits of doing so

After this lecture, you should be able to...
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1 1

Review MSTs
• Minimum (minimizes sum of edge weights) Spanning (connects all vertices) Tree 

(exactly one path between any two nodes)
- Minimizing sum of edge weights is NOT the same as minimizing shortest paths!

• If a graph is connected, has at least one MST
• If a graph is connected and has all unique edges, has exactly one MST
• If a graph is connected and has duplicate edges, it may have multiple valid MSTs

- Which one we pick is down to arbitrary order we visit duplicates: Prim’s & Kruskal’s could 
potentially differ, but both MSTs would still be valid.
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Review Disjoint Sets ADT (aka “Union-Find”) 

• Kruskal’s MST algorithm goes edge-by-edge, but it 
needs a Disjoint Sets ADT under the hood to check 
whether vertices are already connected!

- Conceptually, a single instance of this ADT contains a 
“family” of sets that are disjoint (no element belongs to 
multiple sets)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either 
a member or a unique ID)

Behavior
makeSet(value) – new set with value 
as only member (and representative)
find(value) – return representative 
of the set containing value
union(x, y) – combine sets containing 
x and y into one set with all 
elements, choose single new 
representative

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)
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Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union 
operation

Avoids the worst case 
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT
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Review QuickFind vs. QuickUnion

Joyce, Sam, 
Ken, Alex

Aileen, 
Santino

Paul

DISJOINT SETS ADT

QuickFind QuickUnion

map from value to representative ID

Aileen

Joyce

Santino

Sam

Ken

1
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2

2

1

Alex

Paul
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Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

trees of values with representative 
ID at each root

(Baseline) QuickFind QuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1)

find(value) Θ(𝑛) Θ(1) Θ(𝑛)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(1)

Could also use one element from 
each set (e.g. the root) as its 
representative: only uniqueness 
matters
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Review QuickUnion: Why Use Both Roots?
Example: result of union(Ken, Santino) on these Disjoint 
Sets given three possible implementations:

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

union(A, B):
rootB = find(B)
set A to point to rootB

union(A, B):
rootA = find(A)
set rootA to point to B

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex

Aileen (1)

Santino

Paul (3)

Joyce (2)

Ken
Sam

Alex

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex

Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

Correct: Everything in Ken’s set 
now connected to everything 
in Santino’s set!

Incorrect: Ken and Joyce were 
connected before; the union 
operation shouldn’t remove 
connections.

Inefficient: Technically correct, but 
increases height of the up-tree so 
makes 
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Review WeightedQuickUnion

• Goal: Always pick the smaller tree 
to go under the larger tree
• Implementation: Store the number 

of nodes (or “weight”) of each tree 
in the root

- Constant-time lookup instead of 
having to traverse the entire tree to 
count

union(A, B):
rootA = find(A)
rootB = find(B)
put lighter root under heavier root

union(A, B)
union(B, C)
union(C, D)
find(A) A

B

C

D

Now what happens?

B

A C D

Perfect! Best runtime we can get.
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Review WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible
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Review WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible
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Review WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible

0

1

2

3

N H

1 0

2 1

4 ?



CSE 373 Autumn 2020LEC 20: Disjoint Sets II

Review WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible
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Review WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible
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Review WeightedQuickUnion: Performance
• Consider the worst case where the tree height grows as fast as 

possible
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Review WeightedQuickUnion: Performance
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• Consider the worst case where the tree height grows as fast as 
possible
• Worst case tree height is Θ(log N)



CSE 373 Autumn 2020LEC 20: Disjoint Sets II

Review Why Weights Instead of Heights?
• We used the number of items in a tree to decide upon the root

• Why not use the height of the tree?
- HeightedQuickUnion’s runtime is asymptotically the same: Θ(log(n))
- It’s easier to track weights than heights, even though WeightedQuickUnion

can lead to some suboptimal structures like this one:
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Review WeightedQuickUnion Runtime

• This is pretty good! But there’s one final optimization we can make: 
path compression

(Baseline) QuickFind QuickUnion WeightedQuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛)
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Lecture Outline

QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union 
operation

Avoids the worst case 
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT
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• Thus far, the modifications we’ve studied are designed to 
preserve invariants

- E.g. Performing rotations to preserve the AVL invariant
- We rely on those invariants always being true so every call is fast

• Path compression is entirely different: we are modifying the tree 
structure to improve future performance

- Not adhering to a specific invariant
- The first call may be slow, but will optimize so future calls can be fast

Modifying Data Structures for Future Gains
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Path Compression: Idea
• This is the worst-case topology if we use WeightedQuickUnion

• Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just 

constant time work to point to root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13 14

15



CSE 373 Autumn 2020LEC 20: Disjoint Sets II

Path Compression: Idea
• This is the worst-case topology if we use WeightedQuickUnion

• Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just 

constant time work to point to root too)
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• Perform Path Compression on every find(), so future calls to find() are 
faster!
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Path Compression: Details and Runtime
• Run path compression on every find()!

- Including the find()s that are invoked as part of a union()

• Understanding the performance of M>1 operations requires 
amortized analysis

- Effectively averaging out rare events over many common ones
- Typically used for “In-Practice” case

- E.g. when we assume an array doesn’t resize “in practice”, we can do that because 
the rare resizing calls are amortized over many faster calls

- In 373 we don’t go in-depth on amortized analysis
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Path Compression: Runtime
• M find()s on WeightedQuickUnion requires takes Θ(M log N)

• … but M find()s on WeightedQuickUnionWithPathCompression 
takes O(M log*N)!

- log*n is the “iterated log”: the number of times you need to apply log to 
n before it’s <= 1

- Note: log* is a loose bound

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Path Compression: Runtime
• Path compression results in find()s and union()s that are very very 

close to (amortized) constant time
- log* is less than 5 for any realistic input
- If M find()s/union()s on N nodes is O(M log*N)

and log*N ≈ 5, then find()/union()s amortizes
to O(1)!  🤯

N log* N

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the 
known universe is 2256ish
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WQU + Path Compression Runtime

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path Compression

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)

In-Practice Runtimes:

• And if log* n <= 5 for any reasonable input…
- We’ve just witnessed an incredible feat of data 

structure engineering: every operation is constant!?*
- *Caveat: amortized constant, in the “in-practice” case; 

still logarithmic in the worst case!
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Disjoint Sets Implementation

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path Compression

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)

In-Practice Runtimes:
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Kruskal’s Runtime

• find and union are log|V| in worst case, but amortized constant “in practice”
• Either way, dominated by time to sort the edges L

- For an MST to exist, E can’t be smaller than V, so assume it dominates
- Note: some people write |E|log|V|, which is the same (within a constant factor)

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

total Θ 𝑉 iterations

Θ |𝑉|

Θ V log |𝑉|

Θ 𝐸 iterations

Θ 𝐸 log |𝐸|

Θ log |𝑉|

Θ log |𝑉|

Θ E log |𝑉|Θ E log |𝐸|
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Dijkstra’s Prim’s Kruskal’s

TRAVERSAL
(COMMONLY SHORTEST PATHS) MINIMUM SPANNING TREES

𝜣( 𝑽 𝐥𝐨𝐠 𝑽 + 𝑬 𝐥𝐨𝐠 |𝑽|) 𝜣( 𝑬 𝐥𝐨𝐠 |𝑽|) 𝜣( 𝑬 𝐥𝐨𝐠 |𝑽|)

• Goes edge-by-edge
• Choose when:

• Want MST
• Graph is sparse (fewer edges)
• Edges already sorted

• Goes vertex-by-vertex
• Choose when:

• Want MST
• Graph is dense (more edges)

• Goes in order of shortest-path-
so-far

• Choose when:
• Want shortest path on 

weighted graph
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QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2
1

Optimizes for the Union 
operation

Avoids the worst case 
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT
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QuickFind

QuickUnion

Weighted
QuickUnion

Weighted
QuickUnion +

Path Compression

4
3

2

Optimizes for the Union 
operation

Avoids the worst case 
runtime for Find

Makes future Find 
operations faster

DISJOINT SETS ADT

ArrayWeighted
QuickUnion + Path 

Compression

5

Better constant factors 
when stored in an array
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Using Arrays for Up-Trees
• Since every node can have at most one 

parent, what if we use an array to 
store the parent relationships?
• Proposal: each node corresponds to an 

index, where we store the index of the 
parent (or –1 for roots). Use the root 
index as the representative ID!
• Just like with heaps, tree picture still 

conceptually correct, but exists in our 
minds!

Aileen (2)

Santino

Paul (4)

Joyce (0)

KenSam

Alex

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken
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Using Arrays: Find
• Initial jump to element still done with 

extra Map
• But traversing up the tree can be done 

purely within the array!

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Aileen (2)

Santino

Paul (4)

Joyce (0)

KenSam

Alex

Alex

Aileen

Sam
…

find(A):
index = jump to A node’s index
while array[index] > 0:
index = array[index]

path compression
return index

1

2

find(Alex)

1

2

= 0

• Can still do path compression by setting all indices 
along the way to the root index!

0

3

3
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Using Arrays: Union
• For WeightedQuickUnion, we need 

to store the number of nodes in 
each tree (the weight)
• Instead of just storing -1 to indicate 

a root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Aileen (2)

Santino

Joyce (0)

KenSam

Alex

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 * 

array[rootB] to determine weights
put lighter root under heavier root

weight 4
weight 2

union(Ken, Santino)

Paul (4)

weight 1
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Using Arrays: Union
• For WeightedQuickUnion, we need 

to store the number of nodes in 
each tree (the weight)
• Instead of just storing -1 to indicate 

a root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 * 

array[rootB] to determine weights
put lighter root under heavier root

-6 0

Aileen (2)

Santino

Joyce (0)

KenSam

Alex

weight 6

Paul (4)

weight 1

Aileen

union(Ken, Santino)
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Using Arrays for WQU+PC
• Same asymptotic runtime as using tree nodes, but check out all these 

other benefits:
- More compact in memory
- Better spatial locality, leading to better constant factors from cache usage
- Simplify the implementation!

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path Compression ArrayWQU+PC

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)


