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Learning Objectives

1. Identify a Minimum Spanning Tree

2. Describe the Cycle and Cut properties of MSTs and explain how 
Prim’s Algorithm utilizes the Cut property for its correctness.

3. Implement Prim’s Algorithm and explain how it differs from 
Dijkstra’s’

After this lecture, you should be able to...



CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Lecture Outline
• Review Dijkstra’s Algorithm, Topo Sort, Reductions

- Correction to Topological Sort algorithm

• Minimum Spanning Trees

• Prim’s Algorithm
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Implementing Dijkstra’s: Pseudocode
• Use a MinPriorityQueue to 

keep track of the 
perimeter

- Don’t need to track entire 
graph

- Don’t need separate 
“known” set – implicit in 
PQ (we’ll never try to 
update a “known” vertex)

• This pseudocode is much 
closer to what you’ll 
implement in P4

- However, still some details 
for you to figure out!

- e.g. how to initialize distTo
with all nodes mapped to ∞

- Spec will describe some 
optimizations for you to 
make J

dijkstraShortestPath(G graph, V start)
Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v)      // previous best path to v
newDist = distTo.get(u) + w  // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)
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(Review) Topological Sort
• A topological sort of a directed graph G is

an ordering of the nodes, where for every edge 
in the graph, the origin appears before the 
destination in the ordering

• Intuition: a “dependency graph”
- An edge (u, v) means u must happen before v
- A topological sort of a dependency graph gives an 

ordering that respects dependencies

• Applications:
- Graduating
- Compiling multiple Java files
- Multi-job Workflows

A

B

C

A before C

B before C

A before B

A B C

Topological Sort:

With original edges for reference:

A B C

Input:
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(Review) Reductions
• A reduction is a problem-solving strategy 

that involves using an algorithm for problem 
Q to solve a different problem P

- Rather than modifying the algorithm for Q, we 
modify the inputs/outputs to make them 
compatible with Q!

- “P reduces to Q”

1. Convert input for P into input for Q

2. Solve using algorithm for Q

3. Convert output from Q into output from P

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM QPROBLEM P
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(Review) How To Perform Topo Sort?
• If we add a phantom “start” vertex 

pointing to other starts, we could use BFS!

👻

BFS

Sweet sweet victory 😎

IDEA 3

Reduce topo sort to BFS by 
modifying graph, running BFS, 
then modifying output back

Performing Topo Sort

Also Wrong 😭
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Why BFS doesn’t work here
• BFS always explores nodes level by level. Can visit a node that’s close, 

even if there is a longer dependency chain to it (A → B → C → D)

• How: Algorithm designers make mistakes too!
- Showed up as a thought experiment in a previous

offering’s slides and then previous instructors (and I)
picked it up assuming it would work!

• This is why computer scientists formally prove
their algorithms work before publishing them!

- Take CSE 417: Algorithms
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How to Topo Sort

Khan’s Algorithm
• Track in-degree of nodes
• Always explore nodes with in-degree 0
• When you mark a node as known, 

decrease the in-degree of all of it’s out-
neighbors.

Intuition
• Every (non-empty) DAG must have a node 

with in-degree 0.
• “Peel off” in-degree 0 nodes from the 

graph repeatedly to order by 
dependencies.

Modified DFS
Run a simple DFS and add nodes to a 
visited list with two key details:
• Add the node to the beginning of 

the list
• Only add a node in a post-order 

fashion (after you have explore all 
of it’s children)

Run this multiple times until the 
whole graph has been visited, and 
you will magically have a topological 
sort!

We don’t care for you to know these algorithms or why they work. We wanted to 
provide them since our last lecture taught you an incorrect algorithm!
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Lecture Outline
• Review Dijkstra’s Algorithm, Topo Sort, Reductions

- Correction to Topological Sort algorithm

• Minimum Spanning Trees

• Prim’s Algorithm
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Watt Would You Do? (sorry, I know it hertz to read these puns)

• Your friend at the electric company needs to connect all these cities to the 
power plant
• She knows the cost to lay wires between any pair of cities and wants the 

cheapest way to ensure electricity gets to every city

• Assume:
- All edge weights are positive
- The graph is undirected
- Electricity can “travel through” cities

A

B

D

E
C
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4
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Finding a Solution
• We need a set of edges such that:

- Every vertex touches at least one edge (“the edges span the graph”)
- The graph using just those edges is connected
- The total weight of these edges is minimized

• Claim: The set of edges we pick never forms a cycle. Why?
- V-1 edges is the exact minimum number of edges

to connect all vertices
- Taking away 1 edge breaks

connectiveness 
- Adding 1 edge makes a cycle A

B

D

E
C

3 6

1

4

2
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Review Definition of a Tree
• So far, we’ve thought of trees as nodes 

with “parent” & “child” relationships
- LEC 09: “A binary tree is a collection of nodes 

where each node has at most 1 parent and 
anywhere from 0 to 2 children”

• We can express the definition of a tree 
another way:

- A tree is a collection of nodes connected by 
edges where there is exactly one path 
between any pair of nodes

- So all trees are connected, acyclic graphs!

Not Trees:
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Our Solution: The MST Problem
• We need a set of edges such that Minimum Spanning Tree:

- Every vertex touches at least one edges (“the edges span the graph”)
- The graph using just those edges is connected
- The total weight of these edges is minimized

A

B

D

E
C

3 6

1

4

2
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B
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E
C
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A Spanning Tree (cost 33): A Minimum Spanning Tree (cost 16):



Pause Video when Prompted

You Try It!

B C

A

2

4

3
1D

What is the MST for the graph below? Enter its cost into ItemPool.
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B C

A

2

4

3
1D

Cycle Property
• Given any cycle, the heaviest edge along it must NOT be in the MST

- Why not? A tree has no cycles, so we must discard at least one edge
- Discarding exactly one edge will always leave all vertices connected
- If we discard the heaviest edge, we minimize the edges still in use!

B C

A 4

3
1D

B C

A

2

4
1D

B C

A

2 3
1D

Cost: 6Cost: 7Cost: 8
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B
C

A

2

4

3
1

D

Cut Property
• Given any cut, the minimum-weight crossing edge must be IN the MST

- A cut is a partitioning of the vertices into two sets
- (other crossing edges can also be in the MST)
- Why? Some edge must connect the two, always best to use the smallest

🤔 If only we knew of an algorithm that maintained a set of 
“known” and “unknown” vertices and repeatedly chose the 

minimum edge between the two sets …

B
C

A D

2

4

3
1
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Lecture Outline
• Dijkstra’s Algorithm

- Review Definition & Examples
- Implementing Dijkstra’s

• Minimum Spanning Trees

• Prim’s Algorithm
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Adapting Dijkstra’s: Prim’s Algorithm
• MSTs don’t have a “source vertex”

- Replace “vertices for which we know the shortest path from s” with “vertices 
in the MST-under-construction”

- Visit vertices in order of distance from MST-under-construction
- Relax an edge based on its distance from source

• Note:
- Prim’s algorithm was developed in 1930 by Votěch Jarník, then independently 

rediscovered by Robert Prim in 1957 and Dijkstra in 1959.  It’s sometimes 
called Jarník’s, Prim-Jarník, or DJP
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Adapting Dijkstra’s: Prim’s Algorithm
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0
PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)      // previous smallest edge to v
newDist = distTo.get(u) + w  // is this a smaller edge to v?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

distTo.get(u) + 

prims• Normally, Dijkstra’s checks for a 
shorter path from the start.

• But MSTs don’t care about 
individual paths, only the overall 
weight!

• New condition: “would this be a 
smaller edge to connect the 
current known set to the rest of 
the graph?”

X

KNOWN

3??

3

1

A

1

C
1??

B

4
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Let’s Try It!

Node known? distTo edgeTo
A

B

C

D

E

F

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)      
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)
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Let’s Try It!

Node known? distTo edgeTo
A ∞

B ∞

C ∞

D ∞

E ∞

F 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose F as the 
start

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)      
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)
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Let’s Try It!

Node known? distTo edgeTo
A ∞

B 6?? F

C 10?? F

D 8?? F

E 9?? F

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Pull F into the known 
set, updating its 
neighbors

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)      
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)
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Let’s Try It!

Node known? distTo edgeTo
A 3?? B

B Y 6 F

C 10?? F

D 8?? F

E 2?? B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose B and 
update its 
neighbors. Note 
that E is updated 
to 2, NOT 8 –
only the cost to 
add it to the 
growing tree!

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)      
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)
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Let’s Try It!

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)      
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A 3?? B

B Y 6 F

C 10?? F

D 7?? E

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose E and 
update its 
neighbors. We 
found a smaller 
way to get to D!
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Let’s Try It!

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)      
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A Y 3 B

B Y 6 F

C 1?? A

D 4?? A

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose A and 
update its 
neighbors. We 
found much 
smaller options 
to add C and D!
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Let’s Try It!

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)      
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A Y 3 B

B Y 6 F

C Y 1 A

D 4?? A

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose C and 
update its 
neighbors. 
Nothing 
changes.
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Let’s Try It!

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)      
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A Y 3 B

B Y 6 F

C Y 1 A

D Y 4 A

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose D and 
finish the 
algorithm! We 
have our MST: 
an undirected 
graph with all 
edgeTo edges!
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Prim’s Runtime
primMST(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v) 
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|
Θ 𝑉 log 𝑉 + |𝐸|log |𝑉|

Final result:

Unsurprisingly, runtime is just like 
Dijkstra’s algorithm.
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Prim’s Demos and Visualizations
Dijkstra’s Algorithm
Dijkstra’s proceeds radially from its source, because 
it chooses edges by path length from source

Prim’s Algorithm
Prim’s jumps around the graph (the perimeter), 
because it chooses edges by edge weight (there’s 
no source)


