
CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

CSE 373
L E C 1 8

Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino Iannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu
Elena Spasova
Alex Teng
Blarry Wang
Aileen Zeng

Hunter SchaferInstructor

TAs

Minimum Spanning
Trees

BEFORE WE START

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Learning Objectives

1. Identify a Minimum Spanning Tree

2. Describe the Cycle and Cut properties of MSTs and explain how
Prim’s Algorithm utilizes the Cut property for its correctness.

3. Implement Prim’s Algorithm and explain how it differs from
Dijkstra’s’

After this lecture, you should be able to...

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Lecture Outline
• Review Dijkstra’s Algorithm, Topo Sort, Reductions

- Correction to Topological Sort algorithm

• Minimum Spanning Trees

• Prim’s Algorithm

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Implementing Dijkstra’s: Pseudocode
• Use a MinPriorityQueue to

keep track of the
perimeter

- Don’t need to track entire
graph

- Don’t need separate
“known” set – implicit in
PQ (we’ll never try to
update a “known” vertex)

• This pseudocode is much
closer to what you’ll
implement in P4

- However, still some details
for you to figure out!

- e.g. how to initialize distTo
with all nodes mapped to ∞

- Spec will describe some
optimizations for you to
make J

dijkstraShortestPath(G graph, V start)
Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

(Review) Topological Sort
• A topological sort of a directed graph G is

an ordering of the nodes, where for every edge
in the graph, the origin appears before the
destination in the ordering

• Intuition: a “dependency graph”
- An edge (u, v) means u must happen before v
- A topological sort of a dependency graph gives an

ordering that respects dependencies

• Applications:
- Graduating
- Compiling multiple Java files
- Multi-job Workflows

A

B

C

A before C

B before C

A before B

A B C

Topological Sort:

With original edges for reference:

A B C

Input:

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

(Review) Reductions
• A reduction is a problem-solving strategy

that involves using an algorithm for problem
Q to solve a different problem P

- Rather than modifying the algorithm for Q, we
modify the inputs/outputs to make them
compatible with Q!

- “P reduces to Q”

1. Convert input for P into input for Q

2. Solve using algorithm for Q

3. Convert output from Q into output from P

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM QPROBLEM P

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

0 1 3 4 72 5 6👻 0 1 3 4 72 5 6👻

1

2

3

4

5

6

7

0

(Review) How To Perform Topo Sort?
• If we add a phantom “start” vertex

pointing to other starts, we could use BFS!

👻

BFS

Sweet sweet victory 😎

IDEA 3

Reduce topo sort to BFS by
modifying graph, running BFS,
then modifying output back

Performing Topo Sort

Also Wrong 😭

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Why BFS doesn’t work here
• BFS always explores nodes level by level. Can visit a node that’s close,

even if there is a longer dependency chain to it (A → B → C → D)

• How: Algorithm designers make mistakes too!
- Showed up as a thought experiment in a previous

offering’s slides and then previous instructors (and I)
picked it up assuming it would work!

• This is why computer scientists formally prove
their algorithms work before publishing them!

- Take CSE 417: Algorithms

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

How to Topo Sort

Khan’s Algorithm
• Track in-degree of nodes
• Always explore nodes with in-degree 0
• When you mark a node as known,

decrease the in-degree of all of it’s out-
neighbors.

Intuition
• Every (non-empty) DAG must have a node

with in-degree 0.
• “Peel off” in-degree 0 nodes from the

graph repeatedly to order by
dependencies.

Modified DFS
Run a simple DFS and add nodes to a
visited list with two key details:
• Add the node to the beginning of

the list
• Only add a node in a post-order

fashion (after you have explore all
of it’s children)

Run this multiple times until the
whole graph has been visited, and
you will magically have a topological
sort!

We don’t care for you to know these algorithms or why they work. We wanted to
provide them since our last lecture taught you an incorrect algorithm!

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Lecture Outline
• Review Dijkstra’s Algorithm, Topo Sort, Reductions

- Correction to Topological Sort algorithm

• Minimum Spanning Trees

• Prim’s Algorithm

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Watt Would You Do? (sorry, I know it hertz to read these puns)

• Your friend at the electric company needs to connect all these cities to the
power plant
• She knows the cost to lay wires between any pair of cities and wants the

cheapest way to ensure electricity gets to every city

• Assume:
- All edge weights are positive
- The graph is undirected
- Electricity can “travel through” cities

A

B

D

E
C

3 6
111

4
5

8

9
107

2

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Finding a Solution
• We need a set of edges such that:

- Every vertex touches at least one edge (“the edges span the graph”)
- The graph using just those edges is connected
- The total weight of these edges is minimized

• Claim: The set of edges we pick never forms a cycle. Why?
- V-1 edges is the exact minimum number of edges

to connect all vertices
- Taking away 1 edge breaks

connectiveness
- Adding 1 edge makes a cycle A

B

D

E
C

3 6

1

4

2

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Review Definition of a Tree
• So far, we’ve thought of trees as nodes

with “parent” & “child” relationships
- LEC 09: “A binary tree is a collection of nodes

where each node has at most 1 parent and
anywhere from 0 to 2 children”

• We can express the definition of a tree
another way:

- A tree is a collection of nodes connected by
edges where there is exactly one path
between any pair of nodes

- So all trees are connected, acyclic graphs!

Not Trees:

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Our Solution: The MST Problem
• We need a set of edges such that Minimum Spanning Tree:

- Every vertex touches at least one edges (“the edges span the graph”)
- The graph using just those edges is connected
- The total weight of these edges is minimized

A

B

D

E
C

3 6

1

4

2

A

B

D

E
C

3

4

9
107

A Spanning Tree (cost 33): A Minimum Spanning Tree (cost 16):

Pause Video when Prompted

You Try It!

B C

A

2

4

3
1D

What is the MST for the graph below? Enter its cost into ItemPool.

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

B C

A

2

4

3
1D

Cycle Property
• Given any cycle, the heaviest edge along it must NOT be in the MST

- Why not? A tree has no cycles, so we must discard at least one edge
- Discarding exactly one edge will always leave all vertices connected
- If we discard the heaviest edge, we minimize the edges still in use!

B C

A 4

3
1D

B C

A

2

4
1D

B C

A

2 3
1D

Cost: 6Cost: 7Cost: 8

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

B
C

A

2

4

3
1

D

Cut Property
• Given any cut, the minimum-weight crossing edge must be IN the MST

- A cut is a partitioning of the vertices into two sets
- (other crossing edges can also be in the MST)
- Why? Some edge must connect the two, always best to use the smallest

🤔 If only we knew of an algorithm that maintained a set of
“known” and “unknown” vertices and repeatedly chose the

minimum edge between the two sets …

B
C

A D

2

4

3
1

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Lecture Outline
• Dijkstra’s Algorithm

- Review Definition & Examples
- Implementing Dijkstra’s

• Minimum Spanning Trees

• Prim’s Algorithm

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Adapting Dijkstra’s: Prim’s Algorithm
• MSTs don’t have a “source vertex”

- Replace “vertices for which we know the shortest path from s” with “vertices
in the MST-under-construction”

- Visit vertices in order of distance from MST-under-construction
- Relax an edge based on its distance from source

• Note:
- Prim’s algorithm was developed in 1930 by Votěch Jarník, then independently

rediscovered by Robert Prim in 1957 and Dijkstra in 1959. It’s sometimes
called Jarník’s, Prim-Jarník, or DJP

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Adapting Dijkstra’s: Prim’s Algorithm
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0
PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v) // previous smallest edge to v
newDist = distTo.get(u) + w // is this a smaller edge to v?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

distTo.get(u) +

prims• Normally, Dijkstra’s checks for a
shorter path from the start.

• But MSTs don’t care about
individual paths, only the overall
weight!

• New condition: “would this be a
smaller edge to connect the
current known set to the rest of
the graph?”

X

KNOWN

3??

3

1

A

1

C
1??

B

4

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Let’s Try It!

Node known? distTo edgeTo
A

B

C

D

E

F

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Let’s Try It!

Node known? distTo edgeTo
A ∞

B ∞

C ∞

D ∞

E ∞

F 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose F as the
start

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Let’s Try It!

Node known? distTo edgeTo
A ∞

B 6?? F

C 10?? F

D 8?? F

E 9?? F

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Pull F into the known
set, updating its
neighbors

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Let’s Try It!

Node known? distTo edgeTo
A 3?? B

B Y 6 F

C 10?? F

D 8?? F

E 2?? B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose B and
update its
neighbors. Note
that E is updated
to 2, NOT 8 –
only the cost to
add it to the
growing tree!

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Let’s Try It!

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A 3?? B

B Y 6 F

C 10?? F

D 7?? E

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose E and
update its
neighbors. We
found a smaller
way to get to D!

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Let’s Try It!

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A Y 3 B

B Y 6 F

C 1?? A

D 4?? A

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose A and
update its
neighbors. We
found much
smaller options
to add C and D!

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Let’s Try It!

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A Y 3 B

B Y 6 F

C Y 1 A

D 4?? A

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose C and
update its
neighbors.
Nothing
changes.

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Let’s Try It!

primMST(G graph, V start)
Map edgeTo, distTo;
initialize distTo to all ∞, except start to 0
PriorityQueue<V> perimeter; add start;

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Node known? distTo edgeTo
A Y 3 B

B Y 6 F

C Y 1 A

D Y 4 A

E Y 2 B

F Y 0 /

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Choose D and
finish the
algorithm! We
have our MST:
an undirected
graph with all
edgeTo edges!

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Prim’s Runtime
primMST(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v)
newDist = w
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|
Θ 𝑉 log 𝑉 + |𝐸|log |𝑉|

Final result:

Unsurprisingly, runtime is just like
Dijkstra’s algorithm.

CSE 373 Autumn 2020LEC 18: Minimum Spanning Trees

Prim’s Demos and Visualizations
Dijkstra’s Algorithm
Dijkstra’s proceeds radially from its source, because
it chooses edges by path length from source

Prim’s Algorithm
Prim’s jumps around the graph (the perimeter),
because it chooses edges by edge weight (there’s
no source)

