
CSE 373 Autumn 2020LEC 17: Topological Sort

CSE 373
L E C 1 7

Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino Iannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu
Elena Spasova
Alex Teng
Blarry Wang
Aileen Zeng

Hunter SchaferInstructor

TAs

Topo Sort &
Reductions

BEFORE WE START

CSE 373 Autumn 2020LEC 17: Topological Sort

Learning Objectives

1. Describe the runtime for Dijkstra’s algorithm and explain where it
comes from

2. Define a topological sort and determine whether a given problem
could be solved with a topological sort

3. Write code to produce a topological sort and identify valid and
invalid topological sorts for a given graph

4. Explain the makeup of a reduction, identify whether algorithms are
considered reductions, and solve a problem using a reduction to a
known problem

After this lecture, you should be able to...

CSE 373 Autumn 2020LEC 17: Topological Sort

Lecture Outline
• Dijkstra’s Algorithm

- Review Definition & Examples
- Implementing Dijkstra’s

• Topological Sort

• Reductions
- Definitions
- Examples

CSE 373 Autumn 2020LEC 17: Topological Sort

Review Our Graph Problem Collection

s-t Connectivity Problem

Given source vertex s and a target
vertex t, does there exist a path

from s to t?

Unweighted Shortest Path
Problem

Given source vertex s and target
vertex t, what path from s to t

minimizes the number of edges?
How long is that path, and what

edges make it up?

Weighted Shortest Path Problem

Given source vertex s and target
vertex t, what path from s to t

minimizes the total weight of its
edges? How long is that path, and

what edges make it up?

WED

SOLUTION
Base Traversal: BFS or DFS
Modification: Check if each vertex == t

SOLUTION
Base Traversal: BFS
Modification: Generate shortest path tree
as we go

SOLUTION
Base Traversal: Dijkstra’s Algorithm
Modification: Generate shortest path tree
as we go

WED FRI

CSE 373 Autumn 2020LEC 17: Topological Sort

Review Dijkstra’s Algorithm: Key Properties

• Once a vertex is marked known,
its shortest path is known

- Can reconstruct path by following
back-pointers (in edgeTo map)

• While a vertex is not known,
another shorter path might be
found

- We call this update relaxing the
distance because it only ever
shortens the current best path

• Going through closest vertices
first lets us confidently say no
shorter path will be found once
known

- Because not possible to find a
shorter path that uses a farther
vertex we’ll consider later

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)

CSE 373 Autumn 2020LEC 17: Topological Sort

Review Why Does Dijkstra’s Work?

X

KNOWN

8??

3

1

A

1

5

6??

Example:
• We’re about to add X to the known set
• But how can we be sure we won’t later find a

path through some node A that is shorter to X?
• Because if we could, Dijkstra’s would explore A

first

• Similar “First Try Phenomenon” to BFS

• How can we be sure we won’t find a shorter
path to X later?

- Key Intuition: Dijkstra’s works because:
- IF we always add the closest vertices to “known” first,
- THEN by the time a vertex is added, any possible

relaxing has happened and the path we know is always
the shortest!

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the correct
shortest pathIN

VA
R
IA

N
T

CSE 373 Autumn 2020LEC 17: Topological Sort

Review Why Does Dijkstra’s Work?

• Similar “First Try Phenomenon” to BFS

• How can we be sure we won’t find a shorter
path to X later?

- Key Intuition: Dijkstra’s works because:
- IF we always add the closest vertices to “known” first,
- THEN by the time a vertex is added, any possible

relaxing has happened and the path we know is always
the shortest!

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the correct
shortest pathIN

VA
R
IA

N
T

X

KNOWN

7??

3

1

A

1

5

6

Example:
• We’re about to add X to the known set
• But how can we be sure we won’t later find a

path through some node A that is shorter to X?
• Because if we could, Dijkstra’s would explore A

first

CSE 373 Autumn 2020LEC 17: Topological Sort

Lecture Outline
• Dijkstra’s Algorithm

- Review Definition & Examples
- Implementing Dijkstra’s

• Topological Sort

• Reductions
- Definitions
- Examples

CSE 373 Autumn 2020LEC 17: Topological Sort

Implementing Dijkstra’s
• How do we implement “let u be the closest unknown vertex”?

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):
distTo.put(u, newDist)
edgeTo.put(u, v)

• Would sure be
convenient to store
vertices in a structure
that…

- Gives them each a
distance “priority” value

- Makes it fast to grab the
one with the smallest
distance

- Lets us update that
distance as we discover
new, better paths

MIN PRIORITY QUEUE ADT

CSE 373 Autumn 2020LEC 17: Topological Sort

Implementing Dijkstra’s: Pseudocode
• Use a MinPriorityQueue to

keep track of the
perimeter

- Don’t need to track entire
graph

- Don’t need separate
“known” set – implicit in
PQ (we’ll never try to
update a “known” vertex)

• This pseudocode is much
closer to what you’ll
implement in P4

- However, still some details
for you to figure out!

- e.g. how to initialize distTo
with all nodes mapped to ∞

- Spec will describe some
optimizations for you to
make J

dijkstraShortestPath(G graph, V start)
Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CSE 373 Autumn 2020LEC 17: Topological Sort

Dijkstra’s Runtime
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|

CSE 373 Autumn 2020LEC 17: Topological Sort

Dijkstra’s Runtime
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|
Θ 𝑉 log 𝑉 + |𝐸|log |𝑉|

Final result:

Why can’t we simplify further?
• We don’t know if |V| or |E| is

going to be larger, so we don’t
know which term will dominate.

• Sometimes we assume |E| is
larger than |V|, so |E|log|V|
dominates. But not always true!

CSE 373 Autumn 2020LEC 17: Topological Sort

Lecture Outline
• Dijkstra’s Algorithm

- Review Definition & Examples
- Implementing Dijkstra’s

• Topological Sort

• Reductions
- Definitions
- Examples

CSE 373 Autumn 2020LEC 17: Topological Sort

Sorting Dependencies
• Given a set of courses and their prerequisites, find an order to take

the courses in (assuming you can only take one course per quarter)

• Possible ordering:

MATH 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

MATH 126 CSE 142 CSE 143 CSE 373 CSE 417 CSE 374

CSE 373 Autumn 2020LEC 17: Topological Sort

Topological Sort
• A topological sort of a directed graph G is

an ordering of the nodes, where for every edge
in the graph, the origin appears before the
destination in the ordering

• Intuition: a “dependency graph”
- An edge (u, v) means u must happen before v
- A topological sort of a dependency graph gives an

ordering that respects dependencies

• Applications:
- Graduating
- Compiling multiple Java files
- Multi-job Workflows

A

B

C

A before C

B before C

A before B

A B C

Topological Sort:

With original edges for reference:

A B C

Input:

CSE 373 Autumn 2020LEC 17: Topological Sort

Can We Always Topo Sort a Graph?
• Can you topologically sort this graph?

• What’s the difference between this graph and our first
graph?

• A graph has a topological ordering iff it is a DAG
- But a DAG can have multiple orderings

CSE 143

CSE 373

CSE 417

🤔Where do I start? Where do I end?🤔

MATH 126

CSE 142
CSE 143

CSE 373

CSE 374

CSE 417

No 😭

DIRECTED ACYCLIC
GRAPH

• A directed graph
without any cycles

• Edges may or may
not be weighted

CSE 373 Autumn 2020LEC 17: Topological Sort

Doesn’t reach all vertices L

How To Perform Topo Sort?
• Topo sort is an ordering problem. Could

we use… BFS?

1

2

3

4

5

6

7

0

Input:

BFS starting at 0:

0 1 3 4 7

IDEA 1

Use BFS, starting from a vertex
with no incoming edges

Performing Topo Sort

CSE 373 Autumn 2020LEC 17: Topological Sort

How To Perform Topo Sort?
• Okay, there may be multiple “roots”. What

if we use BFS multiple times?

1

2

3

4

5

6

7

0

Input:

BFS starting at 0:

0 1 3 4 7

IDEA 2

Use BFS, starting from ALL vertices
with no incoming edges

Performing Topo Sort

+ BFS starting at 2:

2 5 6

Pause Video when Prompted

Does this idea work? Why or why not?
• Okay, there may be multiple “roots”. What

if we use BFS multiple times?

1

2

3

4

5

6

7

0

Input:

BFS starting at 0:

0 1 3 4 7

IDEA 2

Use BFS, starting from ALL vertices
with no incoming edges

Performing Topo Sort

+ BFS starting at 2:

2 5 6

CSE 373 Autumn 2020LEC 17: Topological Sort

Doesn’t respect all edges L

How To Perform Topo Sort?
• Okay, there may be multiple “roots”. What

if we use BFS multiple times?

1

2

3

4

5

6

7

0

Input:

BFS starting at 0:

0 1 3 4 7

IDEA 2

Use BFS, starting from ALL vertices
with no incoming edges

Performing Topo Sort

+ BFS starting at 2:

2 5 6

CSE 373 Autumn 2020LEC 17: Topological Sort

CSE 373 Autumn 2020LEC 17: Topological Sort

Lecture Outline
• Dijkstra’s Algorithm

- Review Definition & Examples
- Implementing Dijkstra’s

• Topological Sort

• Reductions
- Definitions
- Examples

CSE 373 Autumn 2020LEC 17: Topological Sort

Reductions
• A reduction is a problem-solving strategy

that involves using an algorithm for problem
Q to solve a different problem P

- Rather than modifying the algorithm for Q, we
modify the inputs/outputs to make them
compatible with Q!

- “P reduces to Q”

1. Convert input for P into input for Q

2. Solve using algorithm for Q

3. Convert output from Q into output from P

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM QPROBLEM P

CSE 373 Autumn 2020LEC 17: Topological Sort

Reductions
• Example: I want to get a note to my friend

in Chicago, but walking all the way there is a
difficult problem to solve L

- Instead, reduce the “get a note to Chicago”
problem to the “mail a letter” problem!

1. Place note inside of envelope

2. Mail using US Postal Service

3. Take note out of envelope

Q INPUT

Q OUTPUT

Mail a
letter

Get a note
to Chicago

Chicago

Chicago

Seattle

Seattle

CSE 373 Autumn 2020LEC 17: Topological Sort

0 1 3 4 72 5 6👻 0 1 3 4 72 5 6👻0 1 3 4 72 5 6

1

2

3

4

5

6

7

0

How To Perform Topo Sort?
• If we add a phantom “start” vertex

pointing to other starts, we could use BFS!

👻

BFS

Sweet sweet victory 😎

IDEA 3

Reduce topo sort to BFS by
modifying graph, running BFS,
then modifying output back

Performing Topo Sort

Pause Video when Prompted

Reductions
• A reduction is a problem-solving strategy that

involves using an algorithm for problem Q to solve
a different problem P

- Rather than modifying the algorithm for Q, we modify
the inputs/outputs to make them compatible with Q!

- “P reduces to Q”

1. Convert input for P into input for Q

2. Solve using algorithm for Q

3. Convert output from Q into output from P

Did we reduce Unweighted
Shortest Paths (USP) to BFS?

a) Yes.
USP reduces to BFS.

b) Yes.
BFS reduces to USP.

c) No.
This is not a reduction.

In a reduction, we modify inputs/outputs, not the algorithm itself!

CSE 373 Autumn 2020LEC 17: Topological Sort

Lecture Outline
• Comparison Sorts

- Review Sorting Overview
- In-Place Quick Sort

• Topological Sort

• Reductions
- Definitions
- Examples

CSE 373 Autumn 2020LEC 17: Topological Sort

Checking for Duplicates
• Problem: We want to determine whether an array contains duplicate

elements.

• Initial idea: Compare every element to every other element!
- Runtime: 𝜃(𝑛,)

• Could we do better?

containsDuplicates(array) {
for (int i = 0; i < array.length; i++):

for (int j = i; j < array.length; j++):
if (array[i] == array[j]):

return true
return false

}

0 1 2 3 4

2 4 8 3 8

CSE 373 Autumn 2020LEC 17: Topological Sort

Goal of a Reduction

0 1 2 3 4

2 4 8 3 8

Goal: Reduce the problem of “Contains Duplicates?” to another
problem we have an algorithm for.

Try to identify each of the following:

1. How will you convert the “Contains Duplicates?” input?

2. What algorithm will you apply?

3. How will you convert the algorithm’s output?

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM QPROBLEM P

CSE 373 Autumn 2020LEC 17: Topological Sort

Array

Array

Sorted Array

Boolean

SortingContains
Duplicates?

One Solution: Reduce “Contains Duplicates?” to the problem of
sorting an array
• We know several algorithms that solve this problem quickly!

• Totally okay to do work in input/output conversion! Even with
this pass, runtime is 𝜃 𝑛 log 𝑛 + 𝑛 , so just 𝜃 𝑛 log 𝑛 .
Reduction helped us avoid quadratic runtime!

1. Simply pass array input to “Sorting”

2. Use Heap Sort, Merge Sort, or Quick Sort to sort

3. Scan through sorted array: check for duplicates now
next to each other, a 𝜃 𝑛 operation!

One Solution: Sorting!

CSE 373 Autumn 2020LEC 17: Topological Sort

Content-Aware Image Resizing
Seam carving: A distortion-free technique for resizing an image by
removing “unimportant seams”

Seam carving for content-aware image resizing (Avidan, Shamir/ACM); Broadway Tower (Newton2, Yummifruitbat/Wikimedia)

Original Photo Horizontally-Scaled
(castle and person

are distorted)

Seam-Carved
(castle and person are undistorted;

“unimportant” sky removed instead)

CSE 373 Autumn 2020LEC 17: Topological Sort

32

Demo: https://www.youtube.com/watch?v=vIFCV2spKtg

https://www.youtube.com/watch?v=vIFCV2spKtg

CSE 373 Autumn 2020LEC 17: Topological Sort

Seam Carving Reduces to Dijkstra’s!
1. Transform the input so that it can be solved by the

standard algorithm
- Formulate the image as a graph

- Vertices: pixel in the image
- Edges: connects a pixel to its 3 downward neighbors
- Edge Weights: the “energy” (visual difference)

between adjacent pixels

2. Run the standard algorithm as-is on the
transformed input

- Run Dijkstra’s to find the shortest path (sum of weights)
from top row to bottom row

3. Transform the output of the algorithm to solve the
original problem

- Interpret the path as a removable “seam” of
unimportant pixels

Shortest Paths (Robert Sedgewick, Kevin Wayne/Princeton)

1.5

1.0

1.6

58.2

120.9

greater pixel difference = higher weight!

CSE 373 Autumn 2020LEC 17: Topological Sort

An Incomplete Reduction
• Complication:

- Dijkstra’s starts with a single vertex S
and ends with a single vertex T

- This problem specifies sets of vertices
for the start and end

• Question to think about: how would
you transform this graph into
something Dijkstra’s knows how to
operate on?

Shortest Paths (Robert Sedgewick, Kevin Wayne/Princeton)

S

T

CSE 373 Autumn 2020LEC 17: Topological Sort

In Conclusion
• Topo Sort is a widely applicable “sorting”

algorithm
• Reductions are an essential tool in your CS

toolbox -- you’re probably already doing them
without putting a name to it

• Many more reductions than we can cover!
- Shortest Path in DAG with Negative Edges reduces to

Topological Sort! (Link)
- 2-Color Graph Coloring reduces to 2-SAT (Link)
- …
- Staying on top of the end of the quarter in this course

reduces to starting early on P4 and EX4/5

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM QPROBLEM P

https://www.ics.uci.edu/~eppstein/161/960208.html
https://blog.asarkar.com/assets/docs/algorithms-curated/Solving%202-List%20Coloring%20-%20Gil.pdf

