
CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

CSE 373
L E C 1 5

Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino Iannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu
Elena Spasova
Alex Teng
Blarry Wang
Aileen Zeng

Hunter SchaferInstructor

TAs

BFS, DFS, Shortest
Paths

BEFORE WE START

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Learning Objectives

1. Review Compare various graph implementations (Adjacency
List/Adjacency Matrix) and choose appropriately for a specific graph

2. Implement iterative BFS and DFS, and synthesize solutions to graph
problems by modifying those algorithms

3. Describe the s-t Connectivity Problem, write code to solve it, and
explain why we mark nodes as visited

4. Describe the Shortest Paths Problem, write code to solve it, and
explain how we could use a shortest path tree to come up with the
result

After this lecture, you should be able to...

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Lecture Outline
• Review Graph Implementations

• s-t Connectivity Problem

• BFS and DFS

• Shortest Paths Problem

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Review Graph Glossary
• Graph: a category of data structures consisting of a set of vertices and a set

of edges (pairs of vertices)
- Labels: additional data on vertices, edges, or both

- Weighted: a graph where edges have numeric labels
- Directed: the order of edge pairs matters (edges are arrows) [otherwise undirected]

- Origin is first in pair, Destination is second in pair
- In-neighbors of vertex are vertices that point to it, out-neighbors are vertices it points to
- In-degree: number of edges pointing to vertex, out-degree: number of edges from vertex

- Cyclic: contains at least one cycle [otherwise acyclic]
- Simple graph: No self-loops or parallel edges

• Path: sequence of vertices reachable by edges
- Simple path: no repeated vertices
- Cycle: a path that starts and ends at the same vertex

• Self-loop: edge from vertex to itself
• Parallel edges: two edges between same vertices in directed graph, going

opposite directions

(,)

a

b

c

V: Set of vertices

E: Set of edges

a b

(,)a c

(,)c d

…

…

a

b

c

e

d

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get in-neighbors of v

(Space Complexity)

Review Adjacency Matrix

A B C D E

A 0 1 1 0 0

B 0 0 0 0 0

C 0 1 0 1 0

D 0 1 0 0 0

E 0 0 0 0 0

𝚯(𝟏)
𝚯(𝟏)
𝚯(𝒏)
𝚯(𝒏)
𝚯(𝒏𝟐)

A

B

C

E

D

𝚯(𝟏)

(|V| = n, |E| = m)

destination

or
ig

in

We want
to look up
(u, v)

Find row
corresponding
to u (origin)

Find column
corresponding to
v (destination)

Θ(1) Θ(1)

• A 2D array of with a cell for every possible edge
• A row for each vertex (representing origins)
• A column for each vertex (representing destinations)
• The edges that exist in the graph have 1’s in their cell

Checking if an edge exists:

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Review Adjacency List: Linked Lists

We want
to look up
(u, v)

Lookup u in
outer
hashmap

Iterate through
inner list to find
if v exists

Θ(1) Θ(deg(𝑢))

Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get in-neighbors of v

(Space Complexity)

𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏 +𝒎)
𝚯(𝒏 +𝒎)

𝚯(𝟏)

(|V| = n, |E| = m)

A

B

C

E

D

Checking if an edge exists:

• Outer hash map, containing inner linked lists
• Each key in the hash map is a vertex (representing origins)
• Each value in the hash map is a linked list of vertices

(representing destinations of edges from that origin)

Abstraction of the Hash Map! Buckets not shown.

A

C

D

B C

B D

B

Keys (origins) Values (lists of destinations)

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Review Adjacency List: Hashing
Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get in-neighbors of v

(Space Complexity)

𝚯(𝟏)
𝚯(𝟏)

𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏)

𝚯(𝒏 +𝒎)

𝚯(𝟏)

(|V| = n, |E| = m)

We want
to look up
(u, v)

Lookup u in
outer
hashmap

Lookup v in
inner
hashmap

Θ(1) Θ(1)

A

B

C

E

D

Checking if an edge exists:

Abstraction of the Hash Maps! Buckets not shown.

A

C

D

Keys (origins) Values (hashmaps w/ destinations as keys)

B

C

1

1

• Reminder the hashing solution is sort of an “in between” but more
closely resembles the Adjacency List so we will call it that.

• Outer hash map, containing inner hash maps
• Each key in the outer hash map is a vertex (representing origins)
• Each value is an inner hash map of vertices (representing

destinations of edges from that origin)
• Just presence of key in the inner hash map means that edge exists,

but if you wanted to store labels on edges, you would put them as
the values of the inner hash map

B

D

1

1

B 1

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Adapting for Undirected Graphs

A B C D E

A 0 1 1 0 0

B 1 0 1 1 0

C 1 1 0 1 0

D 0 1 1 0 0

E 0 0 0 0 0

destination

or
ig

in

Abstraction of the Hash Map! Buckets not shown.

A

C

B

Keys (origins) Values (hashmaps w/ destinations as keys)

B

C

1

1

B

D

1

1

B 1

A

B

C

E

D
Adjacency Matrix

Store each edge as both directions
(makes the matrix symmetrical)

Adjacency List

Store each edge as both directions
(doubles the number of entries)

A 1

C 1

A

C

1

1

D 1D

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Tradeoffs
• Adjacency Matrices take more space, not always faster, why would you

use them?
- Checking for an edge is Θ(1), but finding the neighbors takes Θ(n) time.
- For dense graphs (where 𝑚 is close to 𝑛)), the running times will be close
- And the constant factors can be much better for matrices than for lists.
- Sometimes the matrix itself is useful (“spectral graph theory”)

• What’s the tradeoff between using linked lists and hash tables for the list
of neighbors?

- A hash table still might hit a worst-case
- And the linked list might not

- Graph algorithms often just need to iterate over all the neighbors, so you might get a better guarantee
with the linked list.

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

373: Assumed Graph Implementations
• For this class, unless otherwise stated, assume we’re using an

adjacency list with hash maps.
- Also unless otherwise stated, assume all graph hash map operations are O(1).

This is a pretty reasonable assumption, because for most problems we
examine you know the set of vertices ahead of time and can prevent resizing.

Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get in-neighbors of v

(Space Complexity)

𝚯(𝟏)
𝚯(𝟏)

𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏)

𝚯(𝒏 +𝒎)

𝚯(𝟏)

(|V| = n, |E| = m)

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Pause Video when Prompted

Who’s that Graph?
AI2’s Semantic Scholar is a tool that lets researchers search through a
large archive of published papers.
Suppose we want to organize authors and papers in a graph such that it
is easy to figure out which authors have worked on papers with other
authors (e.g., who are all the authors who co-authored with person X).
Describe the graph structure you would use here.
• What are the vertices? What are the edges?
• Directed or undirected?
• Vertex labels and/or edge labels?
• Will it be a simple graph?

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Semantic Scholar
• What are the vertices? What are the edges?

- Vertices: Authors
- Edges: Authors A and B co-authored a paper

• Directed or undirected?
- Undirected

• Vertex labels and/or edge labels?
- Vertex labels seem useful (author name)
- Edge labels could go either way. Maybe include number of collaborations.

• Will it be a simple graph?
- Depends! We would need to decide if we want to count someone co-

authoring with themselves. Shouldn’t have any parallel edges.

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Lecture Outline
• Review Graph Implementations

• s-t Connectivity Problem

• BFS and DFS

• Shortest Paths Problem

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

s-t Connectivity Problem

• Try to come up with an algorithm
for connected(s, t)

- We can use recursion: if a neighbor of
s is connected to t, that means s is
also connected to t!

s-t Connectivity Problem

Given source vertex s and a target vertex t, does
there exist a path between s and t?

1

2

3

4

5

6

7

8

0s
t

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

s-t Connectivity Problem: Proposed Solution

connected(Vertex s, Vertex t) {
if (s == t) {
return true;

} else {
for (Vertex n : s.neighbors) {
if (connected(n, t)) {
return true;

}
}
return false;

}
}

1

2

3

4

5

6

7

8

0s
t

Pause Video when Prompted

Will this solution always work?
connected(Vertex s, Vertex t) {
if (s == t) {
return true;

} else {
for (Vertex n : s.neighbors) {
if (connected(n, t)) {
return true;

}
}
return false;

}
}

1

2

3

4

5

6

7

8

0s
t

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

What’s wrong with this proposal?

Does 0 == 7? No; if(connected(1, 7) return true;
Does 1 == 7? No; if(connected(0, 7) return true;
Does 0 == 7?

connected(Vertex s, Vertex t) {
if (s == t) {
return true;

} else {
for (Vertex n : s.neighbors) {
if (connected(n, t)) {
return true;

}
}
return false;

}
}

1

2

3

4

5

6

7

8

0s
t

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

s-t Connectivity Problem: Better Solution
• Solution: Mark each node as visited!

Set<Vertex> visited; // assume global
connected(Vertex s, Vertex t) {
if (s == t) {

return true;
} else {
visited.add(s);
for (Vertex n : s.neighbors) {
if (!visited.contains(n)) {
if (connected(n, t)) {
return true;

}
}

}
return false;

}
}

1

2

3

4

5

6

7

8

0s
t

This general approach for
crawling through a graph
is going to be the basis for
a LOT of algorithms!

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Set<Vertex> visited; // assume global
connected(Vertex s, Vertex t) {
if (s == t) {
return true;

} else {
visited.add(s);
for (Vertex n : s.neighbors) {
if (!visited.contains(n)) {
if (connected(n, t)) {
return true;

}
}

}
return false;

}
}

Recursive Depth-First Search (DFS)
• What order does this algorithm use to visit nodes?

- Assume order of s.neighbors is arbitrary!
• It will explore one option “all the way down” before

coming back to try other options
- Many possible orderings: {0, 1, 2, 5, 6, 9, 7, 8, 4, 3} or

{0, 1, 4, 3, 2, 5, 8, 6, 7, 9} both possible

• We call this approach a depth-first search (DFS)

1

2

3

4

5
6

7

8

s

VISITED

9

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Set<Vertex> visited; // assume global
connected(Vertex s, Vertex t) {
if (s == t) {
return true;

} else {
visited.add(s);
for (Vertex n : s.neighbors) {
if (!visited.contains(n)) {
if (connected(n, t)) {
return true;

}
}

}
return false;

}
}

1

2 3

4

5 8

0s

• CSE 143 Review traversing a
binary tree depth-first has 3
options:

- Pre-order: visit node before its
children

- In-order: visit node between its
children

- Post-order: visit node after its
children

• The difference between these
orderings is when we
“process” the root – all are
DFS!

VISITED

Aside Tree Traversals
• We could also apply this code to a tree (recall: a type of graph) to do a

depth-first search on it

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Lecture Outline
• Review Graph Implementations

• s-t Connectivity Problem

• BFS and DFS

• Shortest Paths Problem

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Breadth-First Search (BFS)
• Suppose we want to visit closer nodes first, instead of following one

choice all the way to the end
- Just like level-order traversal of a tree, now generalized to any graph

1

2

3

4

5
6

7

8

s

VISITED

9

• We call this approach a breadth-first search (BFS)
• Explore “layer by layer”

• This is our goal, but how do we translate into
code?
• Key observation: recursive calls interrupted s.neighbors

loop to immediately process children
• For BFS, instead we want to complete that loop before

processing children
• Recursion isn’t the answer! Need a data structure to

”queue up” children…

for (Vertex n : s.neighbors) {

0

1

2

3

4

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

BFS Implementation
bfs(Graph graph, Vertex start) {
Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
}

Our extra data structure! Will
keep track of “outer edge” of

nodes still to explore

Let’s make this a bit more
realistic and add a Graph

Kick off the algorithm by
adding start to perimeter

1

2

3

4

5
6

7

8

9start

Grab one element at a time
from the perimeter

Look at all that
element’s children

Add new ones to
perimeter!

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

BFS Implementation: In Action
PERIMETER bfs(Graph graph, Vertex start) {

Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 5 3 6 8 9 7

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

0

1

2

3

4

BFS Intuition: Why Does it Work?
PERIMETER bfs(Graph graph, Vertex start) {

Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 5 3 6 8 9 7

• Properties of a queue exactly what gives us this
incredibly cool behavior

• As long as we explore an entire layer before
moving on (and we will, with a queue) the next
layer will be fully built up and waiting for us by
the time we finish!

• Keep going until perimeter is empty

Pause Video when Prompted

Change Data Structure?
bfs(Graph graph, Vertex start) {
Stack<Vertex> perimeter = new Stack<>();
Set<Vertex> visited = new Set<>();

perimeter.push(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.pop();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.push(to);
visited.add(to);

}
}

}
}

1

2

3

4

5
6

7

8

start 9

Try to think what would happen if we explored the graph
using a Stack for the perimeter instead of a queue.

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

BFS’s Evil Twin: DFS!
bfs(Graph graph, Vertex start) {
Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
}

Just change the Queue to a Stack and it becomes DFS!
Now we’ll immediately explore the most recent child

dfs(Graph graph, Vertex start) {
Stack<Vertex> perimeter = new Stack<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
}

I think this is Spiderman’s evil twin (?)
I’ve never seen the movies and… there’s

only so many Spiderman wikis I can
justify reading during lecture prep

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Recap: Graph Traversals
• We’ve seen two approaches for ordering a graph traversal
• BFS and DFS are just techniques for iterating! (think: for loop over an array)

- Need to add code that actually processes something to solve a problem
- A lot of interview problems on graphs can be solved with modifications on top of BFS

or DFS! Very worth being comfortable with the pseudocode J

BFS
(Iterative)

• Explore layer-by-layer: examine every node at a
certain distance from start, then examine nodes
that are one level farther

• Uses a queue!

DFS
(Iterative)

• Follow a “choice” all the way to the end, then come
back to revisit other choices

• Uses a stack!

DFS
(Recursive)

Be careful using this – on huge graphs, might overflow the call stack

Let’s Practice
Now!

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Using BFS for the s-t Connectivity Problem

s-t Connectivity Problem

Given source vertex s and a target vertex t,
does there exist a path between s and t?

stCon(Graph graph, Vertex start, Vertex t) {
Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
if (from == t) { return true; }
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
return false;

}

• BFS is a great building block – all
we have to do is check each node
to see if we’ve reached t!

- Note: we’re not using any specific
properties of BFS here, we just
needed a traversal. DFS would also
work.

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Lecture Outline
• Review Graph Implementations

• s-t Connectivity Problem

• BFS and DFS

• Shortest Paths Problem

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

The Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t,
how long is the shortest path from s to t?

What edges make up that path?

• This is a little harder, but still totally
doable! We just need a way to
keep track of how far each node is
from the start.

- Sounds like a job for?

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Using BFS for the Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t,
how long is the shortest path from s to t?

What edges make up that path?

• This is a little harder, but still totally
doable! We just need a way to
keep track of how far each node is
from the start.

- Sounds like a job for?
- BFS!

...

Map<Vertex, Edge> edgeTo = ...
Map<Vertex, Double> distTo = ...

edgeTo.put(start, null);
distTo.put(start, 0.0);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
edgeTo.put(to, edge);
distTo.put(to, distTo.get(from) + 1);
perimeter.add(to);
visited.add(to);

}
}

}
return edgeTo;

}

Remember how we got to this
point, and what layer this vertex

is part of

The start required no edge to
arrive at, and is on level 0

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

BFS for Shortest Paths: Example

A

B

E

C

D

start
VISITED

PERIMETER
...

Map<Vertex, Edge> edgeTo = ...
Map<Vertex, Double> distTo = ...

edgeTo.put(start, null);
distTo.put(start, 0.0);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
edgeTo.put(to, edge);
distTo.put(to, distTo.get(from) + 1);
perimeter.add(to);
visited.add(to);

}
}

}
return edgeTo;

}

EDGETO

DISTTO

• The edgeTo map stores backpointers: each vertex
remembers what vertex was used to arrive at it!

• Note: this code stores visited, edgeTo, and distTo as
external maps (only drawn on graph for convenience).
Another implementation option: store them as fields of the
nodes themselves

0

1

1

2

2

A B C D E

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

What about the Target Vertex?
• This modification on BFS didn’t mention the target

vertex at all!
• Instead, it calculated the shortest path and distance

from start to every other vertex
- This is called the shortest path tree

- A general concept: in this implementation, made up of
distances and backpointers

• Shortest path tree has all the answers!
- Length of shortest path from A to D?

- Lookup in distTo map: 2
- What’s the shortest path from A to D?

- Build up backwards from edgeTo map: start at D, follow
backpointer to B, follow backpointer to A – our shortest path
is A à B à D

• All our shortest path algorithms will have this
property

- If you only care about t, you can sometimes stop early!

A

B

E

C

D

start

EDGETO

DISTTO
0

1

1

2

2

Shortest Path Tree:

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Recap: Graph Problems

EASY MEDIUM

s-t Connectivity Problem

Given source vertex s and a target
vertex t, does there exist a path

between s and t?

(Unweighted) Shortest Path
Problem

Given source vertex s and a target
vertex t, how long is the shortest

path from s to t? What edges
make up that path?

BFS or DFS + check if we’ve hit t BFS + generate shortest
path tree as we go

What about the Shortest Path
Problem on a weighted
graph?

• Just like everything is Graphs, every problem is a Graph Problem
• BFS and DFS are very useful tools to solve these! We’ll see plenty more.

CSE 373 Autumn 2020LEC 15: BFS, DFS, Shortest Paths

Next Stop Weighted Shortest Paths
HARDER (FOR NOW)

• Suppose we want to find shortest path
from A to C, using weight of each edge as
“distance”

• Is BFS going to give us the right result here?

A

B

C

D

14.0

12.0

9000.2

1.5

start
target

