
CSE 373 Autumn 2020LEC 14: Graphs

CSE 373
L E C 1 4

Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino Iannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu
Elena Spasova
Alex Teng
Blarry Wang
Aileen Zeng

Hunter SchaferInstructor

TAs

Graphs

BEFORE WE START

CSE 373 Autumn 2020LEC 14: Graphs

Announcements
• P2 late cutoff tonight at 11:59pm
• P3 due just under weeks on Friday, 11/13

- Start early!
- Remember that changePriority and contains aren’t

efficient on a heap alone – you should use an extra
data structure!

- Recommendation: just get it working first, then analyze
where inefficiencies are – what data structure could
help?

• EX3 published this Friday, 11/06
- Focusing on post-Exam I content, especially this week

L E C 1 2

L E C 1 3

L E C 1 4

L E C 1 5

L E C 1 6

PQs & Heaps

Heaps II, Interviews

Graphs

BFS, DFS, SP

Dijkstra’s

P 3

E X 3

Heap

BFS/DFS/Dijkstra’s

CSE 373 Autumn 2020LEC 14: Graphs

Learning Objectives

1. Categorize graph data structures based on which properties they
exhibit

2. Select which properties of a graph would be most appropriate to
model a scenario (e.g. Directed/Undirected, Cyclic/Acyclic, etc.)

3. Compare the runtimes of Adjacency Matrix and Adjacency List
graph implementations, and select the most appropriate one for a
particular problem

4. Describe the high-level algorithm for solving the s-t Connectivity
Problem, and be prepared to expand on it going forward

After this lecture, you should be able to...

CSE 373 Autumn 2020LEC 14: Graphs

Lecture Outline
• Graphs

- Definitions
- Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem

CSE 373 Autumn 2020LEC 14: Graphs

Review Trees

0

1 7

3 8

• A tree is a collection of nodes where
each node has at most 1 parent and at
least 0 children

- A binary tree is a tree where each node has
at most 2 children

• Root node: the single node with no
parent, “top” of the tree
• Leaf node: a node with no children
• Subtree: a node and all its descendants
• Edge: connection between parent and a

child

10

2

CSE 373 Autumn 2020LEC 14: Graphs

Review Trees We’ve Seen So Far

14

8 21

3 16 22

15

5

6 7

9 8 311 A

2 B

3 C

5 D

6 E

8 F

194 13

16

15 I

Binary Search Trees
• And variant: AVL Trees

B+ Trees Binary Min-Heaps

CSE 373 Autumn 2020LEC 14: Graphs

Inter-data Relationships

• Elements only store pure
data, no connection info

• Only relationship
between data is order

0 1 2

A B C

Arrays

• Elements store data and
connection info

• Directional relationships
between nodes; limited
connections

Trees Graphs

• Elements AND
connections can store
data

• Relationships dictate
structure; huge freedom
with connections

B

A C

B

A

C

CSE 373 Autumn 2020LEC 14: Graphs

Everything is Graphs
• Everything is graphs.
• Most things we’ve studied this quarter can be

represented by graphs.
- BSTs are graphs
- Linked lists? Graphs.
- Heaps? Also can be represented as graphs.
- Those trees we drew in the tree method? Graphs.

• But it’s not just data structures that we’ve discussed…
- Google Maps database? Graph.
- Facebook? They have a “graph search” team. Because it’s a graph
- Gitlab’s history of a repository? Graph.
- Those pictures of prerequisites in your program? Graphs.
- Family tree? That’s a graph

CSE 373 Autumn 2020LEC 14: Graphs

Applications
• Physical Maps

- Airline maps
- Vertices are airports, edges are flight paths

- Traffic
- Vertices are addresses, edges are streets

• Relationships
- Social media graphs

- Vertices are accounts, edges are follower relationships
- Code bases

- Vertices are classes, edges are usage

• Influence
- Biology

- Vertices are cancer cell destinations, edges are migration paths

• Related topics
- Web Page Ranking

- Vertices are web pages, edges are hyperlinks
- Wikipedia

- Vertices are articles, edges are links

So many more:
www.allthingsgraphed.com

http://www.allthingsgraphed.com/

CSE 373 Autumn 2020LEC 14: Graphs

(,)

Graphs
• A Graph consists of two sets, V and E:

- V: Set of vertices (aka nodes)
- E: Set of edges (pairs of vertices)
- |V|: Size of V (also called n)
- |E|: Size of E (also called m)

a

b

d

c

f

e
g

a

b

d

c

e

h

a

b

c

V: Set of vertices E: Set of edges

a b

(,)a c

(,)c d

CSE 373 Autumn 2020LEC 14: Graphs

Directed vs Undirected; Acyclic vs Cyclic

a

b

d

c

a

b

d

c

e

a

b

d

c

a

b

d

c

Acyclic:

Cyclic:

Directed: Undirected:

CSE 373 Autumn 2020LEC 14: Graphs

Vertex & Edge
Labels

Labeled and Weighted Graphs
Edge Labels

a

b

c

d

Vertex Labels

b

d

c

e

a

Numeric Edge Labels
(Edge Weights)

1

2

3

1

2

3

4

5

1

a

b

c

d

CSE 373 Autumn 2020LEC 14: Graphs

More Graph Terminology
• A Simple Graph has no self-loops

or parallel edges
- In a simple graph, |E| is O(|V|2)
- Unless otherwise stated, all graphs

in this course are simple

• Vertices with an edge between them are
adjacent

- Vertices or edges may have optional labels
- Numeric edge labels are sometimes called weights

a

b

f

parallel edges

self-loop

CSE 373 Autumn 2020LEC 14: Graphs

More More Graph Terminology
• Two vertices are connected if there is a path

between them
- If all the vertices are connected, we say the graph

is connected
- The number of edges leaving a vertex is its degree

• A path is a sequence of vertices connected by
edges

- A simple path is a path without repeated vertices
- A cycle is a path whose first and last vertices are

the same
- A graph with a cycle is cyclic

a

b

c

f

e

g

d

j

p

m

n

i

o

p

m

n

i

o

CSE 373 Autumn 2020LEC 14: Graphs

Lecture Outline
• Graphs

- Definitions
- Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem

Pause Video when Prompted

Some examples
• For each of the following: what should you choose for vertices and edges?

Directed?
• Webpages on the Internet

• Ways to walk between UW buildings

• Course Prerequisites

CSE 373 Autumn 2020LEC 14: Graphs

Some examples
• For each of the following: what should you choose for vertices and edges?

Directed?
• Webpages on the Internet

- Vertices: webpages. Edges from a to b if a has a hyperlink to b.
- Directed, since hyperlinks go in one direction

• Ways to walk between UW buildings
- Vertices: buildings. Edges: A street name or walkway that connects 2 buildings
- Undirected, since each route can be walked both ways

• Course Prerequisites
- Vertices: courses. Edge: from a to b if a is a prereq for b.
- Directed, since one course comes before the other

Pause Video when Prompted

This schematic map of the Paris Métro is a
graph. Which of the following characteristics
make sense here?

A. Undirected / Connected / Cyclic / Vertex-labeled
B. Directed / Connected / Cyclic / Vertex-labeled
C. Undirected / Connected / Cyclic / Edge-labeled
D. Directed / Connected / Cyclic / Edge-labeled
E. I’m not sure …

CSE 373 Autumn 2020LEC 14: Graphs

Lecture Outline
• Graphs

- Definitions
- Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem

CSE 373 Autumn 2020LEC 14: Graphs

Multi-Variable Analysis
• So far, we thought of everything as being in terms of some single

argument “n” (sometimes its own parameter, other times a size)
- But there’s no reason we can’t do reasoning in terms of multiple inputs!

• Why multi-variable?
- Remember, algorithmic analysis is just a tool to help us understand code.

Sometimes, it helps our understanding more to build a Oh/Omega/Theta bound
for multiple factors, rather than handling those factors in case analysis.

• With graphs, we usually do our reasoning in terms of:
- n (or |V|): total number of vertices (sometimes just call it V)
- m (or |E|): total number of edges (sometimes just call it E)
- deg(u): degree of node u (how many outgoing edges it has)

CSE 373 Autumn 2020LEC 14: Graphs

Multi-Variable Analysis

CODE

BEST CASE
FUNCTION

f(n, m) = …

TIGHT
BIG-OH2

TIGHT
BIG-OMEGA

BIG-THETA

O(n*m)

Ω(1)

1 Asymptotic
Analysis

WORST CASE
FUNCTION

OTHER CASE
FUNCTION

Case
Analysis

f(n, m) = …

f(n, m) = …
Only difference: let multiple sources of variation
be represented as variables in runtime functions,
instead of wrapping them up into cases!

Sources of Variation:
n (size of list 1)
m (size of list 2)
k (position of element)

CSE 373 Autumn 2020LEC 14: Graphs

Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get in-neighbors of v

(Space Complexity)

Adjacency Matrix

0 1 2 3 4 5 6
0 0 1 1 0 0 0 0
1 1 0 0 1 0 0 0
2 1 0 0 1 0 0 0
3 0 1 1 0 0 1 0
4 0 0 0 0 0 1 0
5 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0

• Create a 2D matrix that is |V| x |V|
• In an adjacency matrix, a[u][v] is 1 if there

is an edge (u,v), and 0 otherwise.
• Symmetric for undirected graphs

𝚯(𝟏)
𝚯(𝟏)
𝚯(𝒏)
𝚯(𝒏)
𝚯(𝒏𝟐)

0
1

326
5

4

𝚯(𝟏)

(|V| = n, |E| = m)

CSE 373 Autumn 2020LEC 14: Graphs

Adjacency List

Linked Lists

0

1

2

3

A

B

C

D A

B C

B D

A
B

CD• Create a Map from V to some Collection of E
• In an adjacency list, if (u,v) ∈ E, then v is found in the

collection under key u
• Since each node maps to a list of its neighbors, in

undirected graph every edge will be included twice
• In directed graph, every edge from u is in list

associated with key u.

Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get in-neighbors of v

(Space Complexity)

𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏 +𝒎)
𝚯(𝒏 +𝒎)

𝚯(𝟏)

(|V| = n, |E| = m)

CSE 373 Autumn 2020LEC 14: Graphs

Best of Both Worlds?
A

B

CD• Can use Hashing as an in-between solution
• Represent the Adjacency Matrix as a

Map<Node, Map<Node, EdgeLabel>>
• Not quite as much space as Adjacency Matrix but get

the constant-time “in practice” lookup.

Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get in-neighbors of v

(Space Complexity)

𝚯(𝟏)
𝚯(𝟏)

𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏)

𝚯(𝒏 +𝒎)

𝚯(𝟏)

(|V| = n, |E| = m)

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4
Hash Tables

0

1

2

3

A

B

C

D

C

D

A

B

B

CSE 373 Autumn 2020LEC 14: Graphs

Tradeoffs
• Adjacency Matrices take more space, why would you use them?

- For dense graphs (where 𝑚 is close to 𝑛!), the running times will be close
- And the constant factors can be much better for matrices than for lists.
- Sometimes the matrix itself is useful (“spectral graph theory”)

• What’s the tradeoff between using linked lists and hash tables for the list
of neighbors?

- A hash table still might hit a worst-case
- And the linked list might not

- Graph algorithms often just need to iterate over all the neighbors, so you might get a better guarantee
with the linked list.

CSE 373 Autumn 2020LEC 14: Graphs

373: Graph Implementations
• For this class, unless we say otherwise, we’ll assume the hash tables

operations on graphs are all 𝑂 1 .
- Because you can probably control the keys.

• Unless we say otherwise, assume we’re using the hash table
approach.

