BEFORE WE START
Announcements

- P2 late cutoff tonight at 11:59pm
- P3 due just under weeks on Friday, 11/13
 - Start early!
 - Remember that changePriority and contains aren’t efficient on a heap alone – you should use an extra data structure!
 - Recommendation: just get it working first, then analyze where inefficiencies are – what data structure could help?
- EX3 published this Friday, 11/06
 - Focusing on post-Exam I content, especially this week
Learning Objectives

After this lecture, you should be able to...

1. Categorize graph data structures based on which properties they exhibit

2. Select which properties of a graph would be most appropriate to model a scenario (e.g. Directed/Undirected, Cyclic/Acyclic, etc.)

3. Compare the runtimes of Adjacency Matrix and Adjacency List graph implementations, and select the most appropriate one for a particular problem

4. Describe the high-level algorithm for solving the s-t Connectivity Problem, and be prepared to expand on it going forward
Lecture Outline

• **Graphs**
 - Definitions
 - Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem
Review Trees

- A **tree** is a collection of nodes where each node has at most 1 parent and at least 0 children
 - A **binary tree** is a tree where each node has at most 2 children

- **Root node**: the single node with no parent, “top” of the tree
- **Leaf node**: a node with no children
- **Subtree**: a node and all its descendants
- **Edge**: connection between parent and a child
Review Trees We’ve Seen So Far

Binary Search Trees
- And variant: AVL Trees

B+ Trees

Binary Min-Heaps
Inter-data Relationships

Arrays
- Elements only store pure data, no connection info
- Only relationship between data is order

Trees
- Elements store data and connection info
- Directional relationships between nodes; limited connections

Graphs
- Elements AND connections can store data
- Relationships dictate structure; huge freedom with connections
Everything is Graphs

• **Everything** is graphs.
• Most things we’ve studied this quarter can be represented by graphs.
 - BSTs are graphs
 - Linked lists? Graphs.
 - Heaps? Also can be represented as graphs.
 - Those trees we drew in the tree method? Graphs.
• But it’s not just data structures that we’ve discussed...
 - Google Maps database? Graph.
 - Facebook? They have a “graph search” team. Because it’s a graph
 - Gitlab’s history of a repository? Graph.
 - Those pictures of prerequisites in your program? Graphs.
 - Family tree? That’s a graph
Applications

• Physical Maps
 - Airline maps
 - Vertices are airports, edges are flight paths
 - Traffic
 - Vertices are addresses, edges are streets

• Relationships
 - Social media graphs
 - Vertices are accounts, edges are follower relationships
 - Code bases
 - Vertices are classes, edges are usage

• Influence
 - Biology
 - Vertices are cancer cell destinations, edges are migration paths

• Related topics
 - Web Page Ranking
 - Vertices are web pages, edges are hyperlinks
 - Wikipedia
 - Vertices are articles, edges are links

So many more:
www.allthingsgraphed.com
Graphs

- A **Graph** consists of two sets, V and E:
 - V: Set of **vertices** (aka **nodes**)
 - E: Set of **edges** (pairs of vertices)
 - |V|: Size of V (also called n)
 - |E|: Size of E (also called m)
Directed vs Undirected; Acyclic vs Cyclic

Directed:

Acyclic:

Cyclic:

Undirected:

Acyclic:

Cyclic:
Labeled and Weighted Graphs

Vertex Labels

Edge Labels

Vertex & Edge Labels

Numeric Edge Labels

(Edge Weights)
More Graph Terminology

• A **Simple Graph** has no **self-loops** or **parallel edges**
 - In a simple graph, $|E|$ is $O(|V|^2)$
 - Unless otherwise stated, all graphs in this course are simple

• Vertices with an edge between them are **adjacent**
 - Vertices or edges may have optional **labels**
 - Numeric edge labels are sometimes called **weights**
More More Graph Terminology

• Two vertices are **connected** if there is a path between them
 - If all the vertices are connected, we say the graph is **connected**
 - The number of edges leaving a vertex is its **degree**

• A **path** is a sequence of vertices connected by edges
 - A **simple path** is a path without repeated vertices
 - A **cycle** is a path whose first and last vertices are the same
 - A graph with a cycle is **cyclic**
Lecture Outline

• Graphs
 - Definitions
 - Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem
Some examples

• For each of the following: what should you choose for vertices and edges? Directed?
 • Webpages on the Internet
 • Ways to walk between UW buildings
 • Course Prerequisites
Some examples

• For each of the following: what should you choose for vertices and edges? Directed?

• Webpages on the Internet
 - Vertices: webpages. Edges from a to b if a has a hyperlink to b.
 - Directed, since hyperlinks go in one direction

• Ways to walk between UW buildings
 - Vertices: buildings. Edges: A street name or walkway that connects 2 buildings
 - Undirected, since each route can be walked both ways

• Course Prerequisites
 - Vertices: courses. Edge: from a to b if a is a prereq for b.
 - Directed, since one course comes before the other
This schematic map of the Paris Métro is a graph. Which of the following characteristics make sense here?

A. Undirected / Connected / Cyclic / Vertex-labeled
B. Directed / Connected / Cyclic / Vertex-labeled
C. Undirected / Connected / Cyclic / Edge-labeled
D. Directed / Connected / Cyclic / Edge-labeled
E. I’m not sure …
Lecture Outline

• Graphs
 - Definitions
 - Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem
Multi-Variable Analysis

- So far, we thought of everything as being in terms of some single argument “n” (sometimes its own parameter, other times a size)
 - But there’s no reason we can’t do reasoning in terms of multiple inputs!

- Why multi-variable?
 - Remember, algorithmic analysis is just a tool to help us understand code. Sometimes, it helps our understanding more to build a Oh/Omega/Theta bound for multiple factors, rather than handling those factors in case analysis.

- With graphs, we usually do our reasoning in terms of:
 - n (or |V|): total number of vertices (sometimes just call it V)
 - m (or |E|): total number of edges (sometimes just call it E)
 - deg(u): degree of node u (how many outgoing edges it has)
Multi-Variable Analysis

Asymptotic Analysis

1. BEST CASE FUNCTION
 \[f(n, m) = \ldots \]

2. WORST CASE FUNCTION
 \[f(n, m) = \ldots \]

3. OTHER CASE FUNCTION
 \[f(n, m) = \ldots \]

Sources of Variation:
- \(n \) (size of list 1)
- \(m \) (size of list 2)
- \(k \) (position of element)

TIGHT BIG-OH
\[O(n^*m) \]

BIG-THETA

TIGHT BIG-OMEGA
\[\Omega(1) \]

CODE

Case Analysis

Only difference: let multiple sources of variation be represented as variables in runtime functions, instead of wrapping them up into cases!
Adjacency Matrix

- Create a 2D matrix that is $|V| \times |V|$.
- In an adjacency matrix, $a[u][v]$ is 1 if there is an edge (u,v), and 0 otherwise.
- Symmetric for undirected graphs.

Space Complexity

- Add Edge: $\Theta(1)$
- Remove Edge: $\Theta(1)$
- Check if edge (u, v) exists: $\Theta(1)$
- Get out-neighbors of u: $\Theta(n)$
- Get in-neighbors of v: $\Theta(n)$
- (Space Complexity): $\Theta(n^2)$

Example Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$(|V| = n, |E| = m)$
Adjacency List

- Create a Map from V to some Collection of E
- In an adjacency list, if (u,v) ∈ E, then v is found in the collection under key u
- Since each node maps to a list of its neighbors, in undirected graph every edge will be included twice
 - In directed graph, every edge from u is in list associated with key u.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Edge</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>Remove Edge</td>
<td>(\Theta(\text{deg}(u)))</td>
</tr>
<tr>
<td>Check if edge (u, v) exists</td>
<td>(\Theta(\text{deg}(u)))</td>
</tr>
<tr>
<td>Get out-neighbors of u</td>
<td>(\Theta(\text{deg}(u)))</td>
</tr>
<tr>
<td>Get in-neighbors of v</td>
<td>(\Theta(n + m))</td>
</tr>
<tr>
<td>(Space Complexity)</td>
<td>(\Theta(n + m))</td>
</tr>
</tbody>
</table>

\(|V| = n, \ |E| = m\)
Best of Both Worlds?

• Can use Hashing as an in-between solution
• Represent the Adjacency Matrix as a Map<Node, Map<Node, EdgeLabel>>
• Not quite as much space as Adjacency Matrix but get the constant-time “in practice” lookup.

Add Edge \(\Theta(1) \)
Remove Edge \(\Theta(1) \)
Check if edge \((u, v)\) exists \(\Theta(1) \)
Get out-neighbors of \(u\) \(\Theta(\text{deg}(u)) \)
Get in-neighbors of \(v\) \(\Theta(n) \)
(Space Complexity) \(\Theta(n + m) \)

\(|V| = n, \ |E| = m\)

Hash Tables

Add Edge
Remove Edge
Check if edge \((u, v)\) exists
Get out-neighbors of \(u\)
Get in-neighbors of \(v\)
(Space Complexity)
Tradeoffs

• Adjacency Matrices take more space, why would you use them?
 - For dense graphs (where m is close to n^2), the running times will be close
 - And the constant factors can be much better for matrices than for lists.
 - Sometimes the matrix itself is useful ("spectral graph theory")

• What’s the tradeoff between using linked lists and hash tables for the list of neighbors?
 - A hash table still might hit a worst-case
 - And the linked list might not
 - Graph algorithms often just need to iterate over all the neighbors, so you might get a better guarantee with the linked list.
373: Graph Implementations

• For this class, unless we say otherwise, we’ll assume the hash tables operations on graphs are all $O(1)$.
 - Because you can probably control the keys.

• Unless we say otherwise, assume we’re using the hash table approach.