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Announcements
• P2 late cutoff tonight at 11:59pm
• P3 due just under weeks on Friday, 11/13

- Start early!
- Remember that changePriority and contains aren’t 

efficient on a heap alone – you should use an extra 
data structure!

- Recommendation: just get it working first, then analyze 
where inefficiencies are – what data structure could 
help?

• EX3 published this Friday, 11/06
- Focusing on post-Exam I content, especially this week
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PQs & Heaps

Heaps II, Interviews

Graphs

BFS, DFS, SP

Dijkstra’s

P 3

E X 3

Heap

BFS/DFS/Dijkstra’s
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Learning Objectives

1. Categorize graph data structures based on which properties they 
exhibit

2. Select which properties of a graph would be most appropriate to 
model a scenario (e.g. Directed/Undirected, Cyclic/Acyclic, etc.)

3. Compare the runtimes of Adjacency Matrix and Adjacency List 
graph implementations, and select the most appropriate one for a 
particular problem

4. Describe the high-level algorithm for solving the s-t Connectivity 
Problem, and be prepared to expand on it going forward

After this lecture, you should be able to...
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Lecture Outline
• Graphs

- Definitions
- Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem
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Review Trees

0
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3 8

• A tree is a collection of nodes where 
each node has at most 1 parent and at 
least 0 children

- A binary tree is a tree where each node has 
at most 2 children

• Root node: the single node with no 
parent, “top” of the tree
• Leaf node: a node with no children
• Subtree: a node and all its descendants
• Edge: connection between parent and a 

child
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2
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Review Trees We’ve Seen So Far
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Binary Search Trees
• And variant: AVL Trees

B+ Trees Binary Min-Heaps
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Inter-data Relationships

• Elements only store pure 
data, no connection info

• Only relationship 
between data is order

0 1 2

A B C

Arrays

• Elements store data and 
connection info

• Directional relationships 
between nodes; limited 
connections

Trees Graphs

• Elements AND 
connections can store 
data

• Relationships dictate 
structure; huge freedom 
with connections
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A
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Everything is Graphs
• Everything is graphs.
• Most things we’ve studied this quarter can be 

represented by graphs.
- BSTs are graphs
- Linked lists? Graphs.
- Heaps? Also can be represented as graphs.
- Those trees we drew in the tree method? Graphs. 

• But it’s not just data structures that we’ve discussed…
- Google Maps database? Graph.
- Facebook? They have a “graph search” team. Because it’s a graph
- Gitlab’s history of a repository? Graph.
- Those pictures of prerequisites in your program? Graphs.
- Family tree? That’s a graph
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Applications
• Physical Maps

- Airline maps
- Vertices are airports, edges are flight paths

- Traffic
- Vertices are addresses, edges are streets

• Relationships
- Social media graphs

- Vertices are accounts, edges are follower relationships
- Code bases

- Vertices are classes, edges are usage

• Influence
- Biology

- Vertices are cancer cell destinations, edges are migration paths 

• Related topics
- Web Page Ranking

- Vertices are web pages, edges are hyperlinks
- Wikipedia

- Vertices are articles, edges are links

So many more:
www.allthingsgraphed.com

http://www.allthingsgraphed.com/
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(          ,         )

Graphs
• A Graph consists of two sets, V and E:

- V: Set of vertices (aka nodes)
- E: Set of edges (pairs of vertices)
- |V|: Size of V (also called n)
- |E|: Size of E (also called m)
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V: Set of vertices E: Set of edges
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Directed vs Undirected; Acyclic vs Cyclic
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Vertex & Edge 
Labels

Labeled and Weighted Graphs
Edge Labels
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More Graph Terminology
• A Simple Graph has no self-loops

or parallel edges
- In a simple graph, |E| is O(|V|2)
- Unless otherwise stated, all graphs

in this course are simple

• Vertices with an edge between them are 
adjacent

- Vertices or edges may have optional labels
- Numeric edge labels are sometimes called weights
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f

parallel edges

self-loop
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More More Graph Terminology
• Two vertices are connected if there is a path 

between them
- If all the vertices are connected, we say the graph 

is connected
- The number of edges leaving a vertex is its degree

• A path is a sequence of vertices connected by 
edges

- A simple path is a path without repeated vertices
- A cycle is a path whose first and last vertices are 

the same
- A graph with a cycle is cyclic
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Lecture Outline
• Graphs

- Definitions
- Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem



Pause Video when Prompted

Some examples
• For each of the following: what should you choose for vertices and edges? 

Directed?
• Webpages on the Internet

• Ways to walk between UW buildings

• Course Prerequisites
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Some examples
• For each of the following: what should you choose for vertices and edges? 

Directed?
• Webpages on the Internet

- Vertices: webpages. Edges from a to b if a has a hyperlink to b.
- Directed, since hyperlinks go in one direction

• Ways to walk between UW buildings
- Vertices: buildings. Edges: A street name or walkway that connects 2 buildings
- Undirected, since each route can be walked both ways

• Course Prerequisites
- Vertices: courses. Edge: from a to b if a is a prereq for b.
- Directed, since one course comes before the other



Pause Video when Prompted

This schematic map of the Paris Métro is a 
graph. Which of the following characteristics 
make sense here?

A. Undirected  / Connected / Cyclic / Vertex-labeled
B. Directed    / Connected / Cyclic / Vertex-labeled
C. Undirected  / Connected / Cyclic / Edge-labeled
D. Directed    / Connected / Cyclic / Edge-labeled
E. I’m not sure …
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Lecture Outline
• Graphs

- Definitions
- Choosing Graph Types

• Graph Implementations

• s-t Connectivity Problem
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Multi-Variable Analysis
• So far, we thought of everything as being in terms of some single 

argument “n” (sometimes its own parameter, other times a size)
- But there’s no reason we can’t do reasoning in terms of multiple inputs!

• Why multi-variable?
- Remember, algorithmic analysis is just a tool to help us understand code. 

Sometimes, it helps our understanding more to build a Oh/Omega/Theta bound 
for multiple factors, rather than handling those factors in case analysis.

• With graphs, we usually do our reasoning in terms of:
- n (or |V|): total number of vertices (sometimes just call it V)
- m (or |E|): total number of edges (sometimes just call it E)
- deg(u): degree of node u (how many outgoing edges it has)
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Multi-Variable Analysis

CODE

BEST CASE
FUNCTION

f(n, m) = …

TIGHT
BIG-OH2

TIGHT
BIG-OMEGA

BIG-THETA

O(n*m)

Ω(1)

1 Asymptotic
Analysis

WORST CASE
FUNCTION

OTHER CASE
FUNCTION

Case 
Analysis

f(n, m) = …

f(n, m) = …
Only difference: let multiple sources of variation 
be represented as variables in runtime functions, 
instead of wrapping them up into cases!

Sources of Variation:
n (size of list 1)
m (size of list 2)
k (position of element)
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Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get in-neighbors of v

(Space Complexity)

Adjacency Matrix

0 1 2 3 4 5 6
0 0 1 1 0 0 0 0
1 1 0 0 1 0 0 0
2 1 0 0 1 0 0 0
3 0 1 1 0 0 1 0
4 0 0 0 0 0 1 0
5 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0

• Create a 2D matrix that is |V| x |V|
• In an adjacency matrix, a[u][v] is 1 if there 

is an edge (u,v), and 0 otherwise.
• Symmetric for undirected graphs

𝚯(𝟏)
𝚯(𝟏)
𝚯(𝒏)
𝚯(𝒏)
𝚯(𝒏𝟐)

0
1

326
5

4

𝚯(𝟏)

(|V| = n, |E| = m)
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Adjacency List

Linked Lists
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CD• Create a Map from V to some Collection of E
• In an adjacency list, if (u,v) ∈ E, then v is found in the 

collection under key u
• Since each node maps to a list of its neighbors, in 

undirected graph every edge will be included twice
• In directed graph, every edge from u is in list 

associated with key u.

Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get in-neighbors of v

(Space Complexity)

𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏 +𝒎)
𝚯(𝒏 +𝒎)

𝚯(𝟏)

(|V| = n, |E| = m)
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Best of Both Worlds?
A

B

CD• Can use Hashing as an in-between solution
• Represent the Adjacency Matrix as a 

Map<Node, Map<Node, EdgeLabel>>
• Not quite as much space as Adjacency Matrix but get 

the constant-time “in practice” lookup. 

Add Edge

Remove Edge

Check if edge (u, v) exists

Get out-neighbors of u

Get in-neighbors of v

(Space Complexity)

𝚯(𝟏)
𝚯(𝟏)

𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏)

𝚯(𝒏 +𝒎)

𝚯(𝟏)

(|V| = n, |E| = m)
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Tradeoffs
• Adjacency Matrices take more space, why would you use them?

- For dense graphs (where 𝑚 is close to 𝑛!), the running times will be close
- And the constant factors can be much better for matrices than for lists. 
- Sometimes the matrix itself is useful (“spectral graph theory”)

• What’s the tradeoff between using linked lists and hash tables for the list 
of neighbors?

- A hash table still might hit a worst-case
- And the linked list might not

- Graph algorithms often just need to iterate over all the neighbors, so you might get a better guarantee 
with the linked list. 
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373: Graph Implementations
• For this class, unless we say otherwise, we’ll assume the hash tables 

operations on graphs are all 𝑂 1 .
- Because you can probably control the keys.

• Unless we say otherwise, assume we’re using the hash table 
approach.


