
CSE 373 Autumn 2020LEC 10: AVL Trees

CSE 373
L E C 1 0

Ken Aragon
Khushi Chaudhari
Joyce Elauria
Santino Iannone
Leona Kazi
Nathan Lipiarski
Sam Long
Amanda Park

Paul Pham
Mitchell Szeto
Batina Shikhalieva
Ryan Siu
Elena Spasova
Alex Teng
Blarry Wang
Aileen Zeng

Hunter SchaferInstructor

TAs

AVL Trees

BEFORE WE START

Pause Video when Prompted

Warm Up
Which of the following properties does the BST
invariant create?

A) Prevents a degenerate tree

B) Worst-case log n containsKey

C) Only integers can be stored in the tree

D) Worst-case log n containsKey when balanced

E) Best-case log n containsKey

CSE 373 Autumn 2020LEC 10: AVL Trees

Learning Objectives

1. (Continued) Evaluate invariants based on their strength and
maintainability, and come up with invariants for data structure
implementations

2. Describe the AVL invariant, explain how it affects AVL tree runtimes,
and compare it with the BST invariant

3. Compare the runtimes of operations on AVL trees and BSTs

4. Trace AVL rotations and explain how they contribute to limiting the
height of the overall tree

After this lecture, you should be able to...

CSE 373 Autumn 2020LEC 10: AVL Trees

Lecture Outline
• Choosing a Good AVL Invariant

• Maintaining the AVL Invariant
- Rebalancing via AVL Rotations

CSE 373 Autumn 2020LEC 10: AVL Trees

Review BST Extremes
• Here are two different extremes our BST could end up in:

Perfectly balanced – for every node, its
descendants are split evenly between left
and right subtrees.

Degenerate – for every node, all of its
descendants are in the right subtree.

9

2

1 3

6

5 7

4

8

10

12

15

14

11 13

0

1

2

3

15

...

CSE 373 Autumn 2020LEC 10: AVL Trees

Review Can we do better?
• Key observation: what ended up being important was the height of

the tree!
- Height: the number of edges contained in the longest path from root node to

any leaf node
- In the worst case, this is the number of recursive calls we’ll have to make

• If we can limit the height of our tree, the BST invariant can take care
of quickly finding the target

- How do we limit?
- Let’s try to find an invariant that forces the height to be short

INVARIANT

INVA
RIAN

TIN
VA

RI
AN

T

IN
VA

RIA
NT

CSE 373 Autumn 2020LEC 10: AVL Trees

In Search of a “Short BST” Invariant: Take 1
• What about this?

BST Height Invariant
The height of the tree must not exceed Θ(logn)

IN
VA

R
IA

N
T

public void insertBST(node, key) {
...

}

INVARIANT

INVARIANT

• This is technically what we want (would be amazing if true on entry)
• But how do we implement it so it’s true on exit?

- Should the insertBST method rebuild the entire tree balanced every time?
This invariant is too broad to have a clear implementation

• Invariants are tools – more of an art than a science, but we want to
pick one that is specific enough to be maintainable

??

CSE 373 Autumn 2020LEC 10: AVL Trees

In Search of a “Short BST” Invariant: Take 2
• Our goal is the make containsKey worst case less than Θ(n).
• Here are some invariant ideas. For each invariant, consider:

- Is it strong enough to make containsKey efficient? Is it too strong to be
maintainable? If not, what can go wrong?

- Try to come up with example BSTs that show it’s too strong/not strong enough

Root Balanced
The root must have the same number of nodes
in its left and right subtreesIN

VA
R
IA

N
T

Recursively Balanced
Every node must have the same number of
nodes in its left and right subtreesIN

VA
R
IA

N
T

Root Height Balanced
The left and right subtrees of the root must
have the same heightIN

VA
R
IA

N
T

Pause Video when Prompted

Too Weak LRoot Balanced
The root must have the same number of nodes
in its left and right subtrees

IN
VA

R
IA

N
T

“Root Balanced” invariant: Is it strong enough to
make containsKey efficient? Is it too strong to be
maintainable? If not, what can go wrong?

Pause Video when Prompted

Recursively Balanced
Every node must have the same number of
nodes in its left and right subtreesIN

VA
R
IA

N
T

Too Strong L

“Recursively Balanced” invariant: Is it strong enough
to make containsKey efficient? Is it too strong to be
maintainable? If not, what can go wrong?

Pause Video when Prompted

Root Height Balanced
The left and right subtrees of the root must
have the same heightIN

VA
R
IA

N
T

Too Weak L

“Root Height Balanced” invariant: Is it strong enough
to make containsKey efficient? Is it too strong to be
maintainable? If not, what can go wrong?

CSE 373 Autumn 2020LEC 10: AVL Trees

Invariant Takeaways

In some ways, this makes sense: only
restricting a constant number of nodes
won’t help us with the asymptotic
runtime L

Forcing things to be exactly equal is
too difficult to maintain

Need requirements everywhere,
not just at root

Fortunately, it’s a two-way street: from
the same intuition, it makes sense that a
constant “amount of imbalance” wouldn’t
affect the runtime J

AVL Invariant
For every node, the height of its left and right
subtrees may only differ by at most 1IN

VA
R
IA

N
T

CSE 373 Autumn 2020LEC 10: AVL Trees

The AVL Invariant
• Will this have the effect we

want?
- If maintained, our tree will

have height 𝜣(𝒍𝒐𝒈𝒏)
- Fantastic! Limiting the height

avoids the Θ(𝑛) worst case

• Can we maintain this?
- We’ll need a way to fix this

property when violated in
insert and delete

AVL Invariant
For every node, the height of its left and right
subtrees may only differ by at most 1IN

VA
R
IA

N
T

AVL Tree: A Binary Search Tree that also
maintains the AVL Invariant
• Named after Adelson-Velsky and Landis
• But also A Very Lovable Tree!

Pause Video when Prompted

AVL Invariant Practice AVL Invariant
For every node, the height of its left and right
subtrees must differ by at most 1IN

VA
R
IA

N
T

Is this a valid AVL Tree?

5

2 7

1 3 9

8 10

4

Remember: AVL Trees are BSTs that also satisfy the AVL Invariant!

Binary Tree?

BST Invariant?

AVL Invariant?

Yes

No

BST Invariant violated by node 5

Pause Video when Prompted

AVL Invariant Practice AVL Invariant
For every node, the height of its left and right
subtrees must differ by at most 1IN

VA
R
IA

N
T

Is this a valid AVL Tree?

4

3 7

1 5 9

2 8 106

Binary Tree?

BST Invariant?

AVL Invariant?

Yes

Yes

No

AVL Invariant violated by node 3

HEIGHT HEIGHT

1 -1

CO R R ECT ED
A FT ER LECT UR E

Pause Video when Prompted

AVL Invariant Practice AVL Invariant
For every node, the height of its left and right
subtrees must differ by at most 1IN

VA
R
IA

N
T

Is this a valid AVL Tree?

6

3 8

2 4 10

9 1151

7

Binary Tree?

BST Invariant?

AVL Invariant?

Yes

Yes

Yes

CSE 373 Autumn 2020LEC 10: AVL Trees

Lecture Outline
• Choosing a Good AVL Invariant

• Maintaining the AVL Invariant
- Rebalancing via AVL Rotations

CSE 373 Autumn 2020LEC 10: AVL Trees

Maintaining the Invariant

• containsKey benefits from
invariant: at worst
θ log 𝑛 time
• containsKey doesn’t modify

anything, so invariant holds
after

public boolean containsKey(node, key) {
// find key

}

INVARIANT

INVARIANT

public boolean insert(node, key) {
// find where key would go
// insert

}

INVARIANT

INVARIANT??

• insert benefits from invariant:
at worst θ log 𝑛 time to find
location for key

• But need to maintain: with great
power comes great responsibility

• How?
- Track heights of subtrees
- Detect any imbalance
- Restore balance

😤😤😤

CSE 373 Autumn 2020LEC 10: AVL Trees

Insertion
• To detect imbalance, we’ll need to know each subtree’s height

- If left and right differ by more than 1, invariant violation!
- Rather than recompute every check, let’s store height as an extra field in each node

- Only adds constant runtime: on insert, add 1 to every node as we walk down the tree

1

5

8

insert(1)
insert(5)
insert(8)

h:0 h:1 h:2

h:0 h:1

h:0

Imbalance!
left subtree has height -1,
right subtree has height 1

CSE 373 Autumn 2020LEC 10: AVL Trees

Fixing AVL Invariant

1

5

8

h:2

h:1

h:0h:0

CSE 373 Autumn 2020LEC 10: AVL Trees

Fixing AVL Invariant: Left Rotation
• In general, we can fix the AVL invariant by performing rotations wherever

an imbalance was created
• Left Rotation

- Find the node that is violating the invariant (here,)
- Let it “fall” left to become a left child

1

5

8

h:2

h:1

h:0 1

5

8

h:1

h:0h:0

1

• Apply a left rotation whenever the newly inserted node is located
under the right child of the right child

CSE 373 Autumn 2020LEC 10: AVL Trees

6

8

1 3

10

9

72

4

5

11

Left Rotation: Complex Example
h:3

h:1

h:0

h:2

h:1

h:0 h:0

h:0

h:1

h:0

h:0

h:4

h:3

h:2

h:1

4

7

9

Imbalance!
left subtree has height 1,
right subtree has height 3

CSE 373 Autumn 2020LEC 10: AVL Trees

Left Rotation: Complex Example

9

7

4

8

6

5

1 3

2

10

11

CSE 373 Autumn 2020LEC 10: AVL Trees

Left Rotation: More Precisely
• Subtrees are okay! They just come along for the ride.

- Only subtree 2 needs to hop – but notice that its relationship with nodes A
and B doesn’t change in the new position!

A

1

2

3 4

B

C

A < 2 2 < B

A

1 2 3 4

B

C

A < 2 2 < B

A

2

NODE

SUBTREE

...

...

CSE 373 Autumn 2020LEC 10: AVL Trees

3

Right Rotation
• Right Rotation

- Mirror image of Left Rotation!

A

1 2

4
B

C

B < 3 3 < A

A

1 2 3 4

B

C

A

2

NODE

SUBTREE

B < 3 3 < A

...

...

CSE 373 Autumn 2020LEC 10: AVL Trees

Not Quite as Straightforward
• What if there’s a “kink” in the tree where the insertion happened?
• Can we apply a Left Rotation?

- No, violates the BST invariant!

1

5

3

h:2

h:1

h:0 1

5

3

h:1

h:0h:0

CSE 373 Autumn 2020LEC 10: AVL Trees

Right/Left Rotation
• Solution: Right/Left Rotation

- First rotate the bottom to the right, then rotate the whole thing to the left
- Easiest to think of as two steps
- Preserves BST invariant!

1

5

3

h:2

h:1

h:0

1

3

5

h:1

h:0h:0

1

3

5

h:2

h:1

h:0

CSE 373 Autumn 2020LEC 10: AVL Trees

Right/Left Rotation: More Precisely
• Again, subtrees are invited to come with

- Now 2 and 3 both have to hop, but all BST ordering properties are still
preserved (see below)

A

1

2 3

4

B

C

A < 2 2 < C

A

1 2 3 4

C

B

A

2

NODE

SUBTREE

C < 3 3 < B A < 2 2 < C C < 3 3 < B

...

...

CSE 373 Autumn 2020LEC 10: AVL Trees

Left/Right Rotation
• Left/Right Rotation

- Mirror image of Right/Left Rotation!

A

1

2 3

4
B

C

B < 2 2 < C

A

1 2 3 4

C

B

A

2

NODE

SUBTREE

C < 3 3 < A B < 2 2 < C C < 3 3 < A

...

...

CSE 373 Autumn 2020LEC 10: AVL Trees

4 AVL Rotation Cases

1

5

8

6

4

1

1

5

3

9

2

5

Left Rotation Right Rotation Right/Left Rotation Left/Right Rotation

”Line” Cases
Solve with 1 rotation

”Kink” Cases
Solve with 2 rotations

CSE 373 Autumn 2020LEC 10: AVL Trees

AVL insert(): Approach
• Our overall algorithm:

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf:

- The insertion may (or may not) have changed the node’s height
- Detect height imbalance and perform a rotation to restore balance

• Facts that make this easier:
- Imbalances can only occur along the path from the new leaf

to the root
- We only have to address the lowest unbalanced node
- Applying a rotation (or double rotation), restores the height

of the subtree before the insertion -- when everything was
balanced!

- Therefore, we need at most one rebalancing operation

31

6

8

10

9 12

11

7

...

...

(1) Originally, whole tree
balanced, and this subtree
has height 2

(2) Insertion creates
imbalance(s), including
the subtree (8 is lowest
unbalanced node)

(3) Since the rotation on 8
will restore the subtree to
height 2, whole tree balanced
again!

2

CSE 373 Autumn 2020LEC 10: AVL Trees

AVL delete()
• Unfortunately, deletions in an AVL tree are more complicated
• There’s a similar set of rotations that let you rebalance an AVL tree

after deleting an element
- Beyond the scope of this class
- You can research on your own if you’re curious!

• In the worst case, takes Θ(log 𝑛) time to rebalance after a deletion
- But finding the node to delete is also Θ(log 𝑛), and Θ(2 log 𝑛) is just a

constant factor. Asymptotically the same time

• We won’t ask you to perform an AVL deletion

CSE 373 Autumn 2020LEC 10: AVL Trees

AVL Trees

• All operations on an AVL Tree
have a logarithmic worst case

- Because these trees are always
balanced!

• The act of rebalancing adds no
more than a constant factor to
insert and delete

ØAsymptotically, just better than
a normal BST!

• Relatively difficult to program and
debug (so many moving parts
during a rotation)
• Additional space for the height

field
• Though asymptotically faster,

rebalancing does take some time
- Depends how important every little

bit of performance is to you

PROS CONS

Operation Case Runtime

containsKey(key)
best Θ(1)

worst Θ(log n)

insert(key)
best Θ(log n)

worst Θ(log n)

delete(key)
best Θ(log n)

worst Θ(log n)

CSE 373 Autumn 2020LEC 10: AVL Trees

AVL Trees: How We Made Our Dreams Come True
• Because we embraced an excellent invariant:

- Simple constant-time fixes to maintain locally
- But has incredible implications globally!

• Case Analysis helped us discover what property led to our worst case
runtime: the height of the tree

AVL Invariant
For every node, the height of its left and right
subtrees may only differ by at most 1

IN
VA

R
IA

N
T

Just enough
structure to tell
us what to do
locally

Leads to an
impressive global
result!

CSE 373 Autumn 2020LEC 10: AVL Trees

Other Self-Balancing Trees
• AVL Trees are wonderful, but there’s a whole world of Self-Balancing

BSTs out there that use slightly different invariants to achieve a similar
effect

- Beyond the scope of this class, but we encourage you to research these if
you’re curious

• Splay tree
• 2-3 tree
• AA tree
• Red-black tree (Java’s TreeMap uses this under the hood!)
• Scapegoat tree
• Treap

https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/2-3_tree
https://en.wikipedia.org/wiki/AA_tree
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/Scapegoat_tree
https://en.wikipedia.org/wiki/Treap

CSE 373 Autumn 2020LEC 10: AVL Trees

Appendix AVL Insertion Extended
Example (shows multiple
insertions in succession)

CSE 373 Autumn 2020LEC 10: AVL Trees

AVL Example: 8,9,10,12,11

8

9

10

This is the line case

CSE 373 Autumn 2020LEC 10: AVL Trees

AVL Example: 8,9,10,12,11

8

9

10

Do a left rotation to correct

CSE 373 Autumn 2020LEC 10: AVL Trees

AVL Example: 8,9,10,12,11

8

11

9

10

12

This is the kink case

CSE 373 Autumn 2020LEC 10: AVL Trees

AVL Example: 8,9,10,12,11

8

11

9

10

12

Do a right rotation to get
into a line case (the first
step of a double rotation)

CSE 373 Autumn 2020LEC 10: AVL Trees

AVL Example: 8,9,10,12,11

8

9

10

11

12

Now finish the double
rotation with a left rotation
to re-balance the line!

