
Exam II Practice Problem Set ​Solutions
CSE 373 Summer 2020

The purpose of this problem set is to help you prepare for Exam II by giving you examples of the
types of skills you may be asked to use. Please note that it is not intended to be representative
of the length of the exam nor the exact types of questions you will be asked. For a more
thorough list of the topics that may be included, refer to the topics list and learning objectives list
published on the ​exams page​ on the course website.

1. ADTs & Data Structures
Below are five computational tasks. For each one, choose the data structure or ADT that is ​best
suited to the task from the following list:

Stack, Queue, Hash Map, AVL Tree, Priority Queue, Disjoint Sets, List

In addition, list the basic operations for the data structure or ADT that you chose and give
asymptotic worst-case running times for those operations.

a) While processing a list of objects, check if you have processed a particular object before.
Hash Map. Insert, Lookup, and Remove all have constant runtime in the
“In-Practice case” or linear runtime in the worst case.

b) Store a list of students and their grades. You must also provide an efficient way for a

client to see all students sorted in alphabetical order by name. Give the running time for
this operation as well.
AVL Tree. Insert, Lookup, and Remove all have logarithmic runtime. Getting all
students in sorted order takes linear time (doing an in-order traversal).

c) Process a digital image to divide the image up into groups of pixels of the same color.

DisjointSets. Find has a O(log* n) runtime (the iterated log, which is close to
constant), and Union has a O(1) runtime.

d) Compute a frequency analysis on a file. That is, count the number of times each

character occurs in the file, and store the results.
Hash Map. Insert, Lookup, and Remove all have constant runtime in the
“In-Practice case” or linear runtime in the worst case.

e) Store the activation records (i.e. objects containing the return address and local variable

associated with a function call) for nested function calls.

https://courses.cs.washington.edu/courses/cse373/20su/exams/

Stack. Pop has a O(1) runtime and push has a O(n) runtime (if array-based,
although it is O(1) when amortized “in practice”) or a O(1) runtime (if linked-list
based).

2. PriorityQueues & Heaps
2.1 Max of Min-Heap

a) Given a binary min-heap containing n elements and stored in an array, what is the
minimum number of items in the heap’s internal array you would need to inspect to find
the one with the largest priority?

Since the heap invariant ensures that a leaf node must be larger than its parent,
but gives no guarantee about the relative values of left and right children, to be
certain we had found the largest priority item we would need to search all leaf
nodes in the heap. As in any binary tree, the number of leaf nodes would be (n + 1)
/ 2.

b) What about the second-largest?

Finding the second-largest item would require searching the bottom-most layer
(leaf nodes) ​as well as​ any node that is a parent of a leaf node, because the
second-largest item could be the parent of the largest item or it could be a leaf
node itself and as in part (a) we’d need to search all candidate locations to be
certain. The number of leaf nodes would be (n + 1) / 2, and the number of nodes
that would be parents of those leaf nodes would be (n + 2) / 4, so the total number
of items to search would be (3n + 4) / 4 items.

1.2 Heaps & Sorts

Consider the following code:

List<Integer> reverseMinK(List<Integer> list, k) {

List<Integer> output = minK(list, k);
reverseSort(output);
return output;

}

List<Integer> minK(List<Integer> list, k) {

MinPQ pq = new ArrayHeapMinPQ();
for (int n : list) {

pq.add(n)

}
List<Integer> output = new ArrayList();
for (int i = 0; i < k; i++) {

int n = pq.removeMin();
output.add(n);

}
return output;

}

void reverseSort(List<Integer> list) {

for (int i = 0; i < list.size(); i++) {
int n = list.get(i);
for (int j = i; j > 0; j--) {

int b = list.get(j);
int a = list.get(j - 1);
if (a >= n) {

list.set(j, n);
break;

}
list.set(j, a);

}
}

}

In terms of n (the size of list) and k: (assume k <= n and that the list is always an ArrayList)
What are the orders of growth of:

a) The best/worst-case runtimes of minK?
Best: n. Worst: n log(n).

b) The best/worst-case runtimes of reverseSort?
Best: n. Worst: n^2.

c) The best/worst-case runtimes of reverseMinK?
Best: n. Worst: n log(n) + k^2.

d) The best/worst-case runtimes of reverseMinK, if all values in the list are guaranteed to

be unique?
Best: n + k log n + k^2. Worst: n log n + k^2.

3. Graphs
3.1 BFS & DFS

a) Draw a picture of a binary tree with N nodes where BFS takes Ө(N) auxiliary space.
Briefly explain why your tree requires BFS to use Ө(N) auxiliary space.

Since BFS uses a queue for the set of “pending” or “perimeter” nodes to explore,
it will store each level of the tree in the queue at some point. The largest level of
this tree is the last one, which is a constant factor of the total number of nodes N.

b) Draw a picture of a binary tree with N nodes where DFS uses Ө(1) auxiliary space.

Briefly explain why your tree only requires DFS to use Ө(1) auxiliary space.

As DFS proceeds through this tree, it will only have a single node stored in the
“pending” or “perimeter” stack at each point before immediately popping that
element off and proceeding with the algorithm.

3.2 Graph Properties
For each of the following statements, indicate whether it is ALWAYS true, SOMETIMES true
(more information would be needed about the situation to determine), or NEVER true.

a) Dijkstra’s algorithm computes an incorrect result when there is a negative weight edge in
a graph.
SOMETIMES -- It is still possible for Dijkstra’s algorithm to compute the correct
result if there is a negative edge weight. For a trivial example, consider a graph
with two vertices and a single edge with weight -1.

b) Dikstra’s algorithm computes an incorrect result when there is a positive self edge in a

graph.
NEVER -- Dijkstra’s algorithm can always handle a positive self edge because that
edge will never be a shorter path to the vertex than could already be found by
going straight to the vertex itself.

c) If a weighted undirected graph has all unique edge weights, Prim’s and Kruskal’s

algorithms will return the same result.
ALWAYS -- Prim’s and Kruskal’s both find a MST, and a graph with unique edge
weights always has exactly one valid MST.

d) BFS will visit every vertex in a graph.

SOMETIMES -- Only in a connected graph is BFS guaranteed to visit every vertex.
Otherwise, it’s possible that BFS will not be able to reach an isolated “island” of
vertices.

4. MSTs & Disjoint Sets
You’re performing Kruskal’s algorithm for finding an MST on the following undirected weighted
graph. After consider 2 edges and adding them to your MST, you have the following up-trees to
represent the disjoint sets:

a) Give the array representation of the up-trees as specified for the WeightedQuickUnion

data structure in lecture. Let each element with value x be stored in index x - 1 in the
array.

[-2, -1, -2, 0, 2]

b) Suppose you have access to a variable ​arr​ that stores the up-trees as used in your part

(a), and access to a variable ​map​ that stores a mapping from elements (of type T) to
their corresponding indices in arr. Fill in the start of the following find method with
pseudocode to perform the find operation without the path compression optimization, for
the WeightedQuickUnion structure.

int find(T element) {

int index = map.get(element);

while (arr[index] >= 0) {

index = arr[index];

}

return index;

}

c) Now, fill in the start of the following union method using your implementation of find in

the previous problem, again for WeightedQuickUnion. You may assume that you still
have access to ​arr​ and ​map​.

void union(T x, T y) {

int xRoot = find(x);

int yRoot = find(y);

if (xRoot != yRoot) {

if (arr[xRoot] < arr[yRoot]) {

arr[xRoot] += arr[yRoot];

arr[yRoot] = xRoot;

} else {

arr[yRoot] += arr[xRoot];

arr[xRoot] = yRoot;

}

}

}

d) What is the next edge in the graph that will be added to the MST by Kruskal’s algorithm?

The next edge will be the edge between 4 and 5, with weight 1.

5. Sorting
5.1 Sorting Design Decisions
At Third Street Elementary School, students can bring in boxes of tissues on the first day of
class to earn extra credit towards their first assignment. At the end of the day, Miss Grotkey
tallies up how many boxes each student had brought, and records the tallies next to each
student’s preferred name in the following order:

[

(Gretchen, 22),

(Spinelli, 18),

(Randall, 17),

(Vincent, 16),

(Ashley, 16),

.... 24 more students…

(Erwin, 9),

(Mikey, 4),

(Anne, 4),

(Bob, 3),

(Gus, 0),

(TJ, 0)

]

Assume that this ordering is rather peculiar; any trends that you notice will apply across the
entire class of students, with only a couple out-of-place in the middle of the list. For the following
questions, assume that you can represent the data as Objects that implement the Comparable
interface with an appropriate compareTo() method customized to each problem.

a) Miss Grotkey needs to send the attendance office a list of her students in alphabetical
order by preferred name; they want to make sure the roster they have matches up with
the current students. What’s a ​good​ sorting algorithm you can use to generate the roster
for the attendance office? Defend your selection in 1-2 sentences, including an
estimated runtime for the algorithm on this dataset.

Quicksort or Merge sort, estimated runtime of n log(n). The list isn’t already
alphabetized in any way, so a sorting algorithm with a good average time
complexity would be good.

b) Next, Miss Grotkey wants to order the class some snazzy name tags from NameBadge
Inc. They give customers a 30% discount if they send a list of names sorted by length
(e.g. shortest name at the beginning of the list, longest name at the end), since printing
the name tags in that order saves material. What’s the ​worst​ sorting algorithm you could
use to sort this list for Name Badge Inc? Explain your choice in 1-2 sentences, including
an estimated runtime for the algorithm on this data set.

Insertion sort or Selection sort, with an estimated runtime of n​2​. The list is in
reverse order with respect to the length of names.

c) Finally, Miss Grotkey wants to sort the list in descending order of tissue boxes (e.g.
students with the greatest number of boxes at the beginning of the list, students with
zero boxes at the end) to make her grading easier. What’s the ​best​ sorting algorithm you
could use to sort this list? Explain your choice in 1-2 sentences, including an estimated
runtime for the algorithm on this data set.

Insertion sort, estimated runtime of n. The list is already sorted in descending
order in terms of the amount of tissues each student brought.

5.2 Sorting Mechanics

a) Show the result of Selection Sort on the following array. When comparing elements,
compare by number only -- the letters are just there to distinguish between elements that
are considered equal to the sorting algorithm. Follow the pseudocode presented in
lecture for Selection Sort, and if there is a tie for the smallest element, choose the first
one found in the array.

[2a, 5, 8a, 3, 2b, 8b, 1]

Solution (shows each step, underlined element is the one that was just added to
the sorted partition):

[​1​, 5, 8a, 3, 2b, 8b, 2a]
[1, ​2b​, 8a, 3, 5, 8b, 2a]
[1, 2b, ​2a​, 3, 5, 8b, 8a]
[1, 2b, 2a, ​3​, 5, 8b, 8a]
[1, 2b, 2a, 3, ​5​, 8b, 8a]
[1, 2b, 2a, 3, 5, ​8b​, 8a]
[1, 2b, 2a, 3, 5, 8b, ​8a​]

b) Show the result of Insertion Sort on the same array as in part (a), using the same

comparison rules. Follow the pseudocode presented in lecture for Insertion Sort.

Solution (shows each step, underlined element is the one that was just added to
the sorted partition):

[​2a​, 5, 8a, 3, 2b, 8b, 1]
[2a, ​5​, 8a, 3, 2b, 8b, 1]
[2a, 5, ​8a​, 3, 2b, 8b, 1]
[2a, ​3​, 5, 8a, 2b, 8b, 1]
[2a, ​2b​, 3, 5, 8a, 8b, 1]
[2a, 2b, 3, 5, 8a, ​8b​, 1]
[​1​, 2a, 2b, 3, 5, 8a, 8b]

c) When performing Selection Sort, what is the maximum number of times that any

particular item could be moved in the array?

The maximum number of times a particular item could be moved is N times,
because the Selection Sort algorithm makes at most N swaps to sort an array of N
elements, and it’s possible for the same item to be swapped all N times.

d) When performing the merge algorithm as part of the Merge Sort combine step , what is

the maximum number of times that any particular item could be compared against
another item while building up an array of size k?

The maximum number of times a particular item could be compared against
another item is dictated by the size of the subarrays being merged to create the
array of size k. At worst, an item in an array could be compared against every
element in the array it is being merged with. Since the two subarrays combined to
form an array of size k would each have size k/2, the maximum number of times an
item could be compared would be k/2.

