
CSE 373 20au: Exam I Solutions
Note: This exam was originally offered via Gradescope. Free response fields are omitted in this PDF reproduction.

1. Instructions

• This exam is written to be completed in 1-2 hours. To maximize flexibility, it will be available for 48 hours.
It is due strictly a 8:30 am PDT on Wednesday, October 28. You may not use late days on this exam.

• You may work in multiple sessions, and submit as many times as you’d like (we only grade your last one).

• You may work alone, or in groups of up to 6 (and submit a single exam). Group submission instructions:

– First, have one person click “Save Answer” on any question. Then, scroll to the very bottom and click
“Submit & View Submission”.

– You can now add your group members in the upper right corner, just like a programming assignment.

– Then, you can click “Resubmit” to edit your answers as many times as you want, with the same group.

– Be careful not to have two people edit answers at the same time (Gradescope may lose something). We
recommend coordinating through a different platform and having one person submit for the group.

• This test is open-note and open-internet. However, you are not permitted to share these questions or get help
from anybody not enrolled in 373 20au, such as former students.

• During the exam, you may ask clarification questions on Ed or in office hours. Course staff will not answer
questions about course concepts or give hints on specific exam questions.

• Sentence estimates are just to clarify our expectations. You will not be penalized for writing more or less.

• Each question is annotated with approximate corresponding learning objectives from lecture. This is purely
extra information and only intended to make the link between what you’ve learned and what we’re testing
clearer: don’t read too much into them or worry whether you’ve adequately demonstrated the skill! :)

• Any significant exam clarifications will be posted on Ed.

This problem asks you to affirm you and your group have read all of these policies and those on the website. Failure
to fill this question out may result in your exam not being marked for credit.

2. ADTs and Design Decisions

Learning Objectives: Compare the runtime of ArrayList and LinkedList (LEC02), Distinguish the List ADT from its
implementations (LEC02), Describe the Stack, Queue, and Map ADTs (LEC03), Compare the runtime of Stack, Queue,
and Map operations on a resizable array vs. linked nodes (LEC03).

Scenario: Congrats! You just got hired as an intern to be the fourth developer at InnerSloth, the company that
made the popular game, ‘Among Us’. Don’t worry, you don’t need to know much about the game to work on this
problem, we will explain anything you need.

The game is normally played with at most 10 players, where some of them are imposters amongst the crewmates.
One of the game’s central mechanics is calling a meeting where you discuss and decide which player to vote out
because they are “sus” (short for “suspicious”, since no one can spell that). The player that receives the most votes is
voted off and ejected from the spaceship. There may be multiple meetings called in the game, but for this problem
we are only considering modeling a single meeting.

Normally, the game of ‘Among Us’ is played with at most 10 players in a lobby. Your first job as intern is to lift
that cap and allow a boundless number of n players play the game at once. We don’t know in advance how many
players will be in the game and players will be allowed to join mid-game. We will define a MeetingVotes ADT that
keeps track of the votes cast during a single meeting to track who should get voted off. The ADT is designed to only
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store votes for a single meeting, so once another meeting starts, we will use a new instance of an implementation
of the ADT. In other words, you don’t need to worry about votes carrying over between meetings.

The MeetingVotes ADT defines the following operations. For each operation, you can assume that the player names
are unique and that any player is only allowed to cast a vote at most once:

• castVote(String player1, String player2) – Casts a vote that player1 thinks player2 is “sus”. This will
count as one more vote towards player2’s votes received.

• int numVotes(String player) – Returns the number of votes the given player has received the meeting.

In the following problems, we will describe various implementations of this ADT and you will describe the runtimes
of the operations in the implementation. When doing analysis for these problems, let the variable n refer to the
total number of votes cast. You should be able to express all of your bounds in terms of n. For analyzing any arrays
in the worst case, you may not assume that resizing doesn’t happen.

2.1. Linked Nodes Implementation

Suppose we implement this ADT with a singly-Linked List of contributions, where each contribution is represented
by a Pair object containing the player who cast the vote and who they cast it for. This singly linked list only has a
pointer to the front of the list and each node only has a pointer to the next node in the list. Casting a vote is done by
inserting a new Pair at the END of the list (i.e. index n). For each method, give a simplified worst-case Big-Theta
bound in terms of n (the number of total votes) for how the method would need to be implemented, or write “N/A”
if one doesn’t exist. You don’t need to justify your answers.

(a) castVote worst case Big-Theta. Solution:

Θ(n). Since the linked list specified only has a pointer to the front, we will have to traverse the whole list
to add at the end.

(b) numVotes worst case Big-Theta. Solution:

Θ(n). To count up the votes the given player has received, we will have to loop through all pairs to count
up the number they received.

2.2. Array Implementation

Now, suppose we implement this ADT with an ArrayList of contributions, again where each contribution is repre-
sented by a Pair object containing the user and text. As before, adding votes is done by inserting a new Pair at the
END of the list (i.e. index n). For each method, give a simplified worst-case Big-Theta bound in terms of n (the
number of total contributions) for how the method would need to be implemented, or write “N/A” if one doesn’t
exist. You don’t need to justify your answers.

(a) castVote worst case Big-Theta. Solution:

Θ(n). The worst case will be when the array is full and we are not able to insert at the end in constant
time. In that case, we will have to resize the array, which is an Θ(n) operation.

(b) numVotes worst case Big-Theta. Solution:

Θ(n). Just like wit the linked implementation, we will need to loop through all votes cast to count up the
number of votes a particular player received.

2



2.3. Custom Implementation

Come up with your own implementation of the ADT that optimizes for both the castVote and numVotes runtimes.
You may use any data structures implementing the List, Stack, Queue, Deque, and Map ADTs covered in the course,
and you may use any number of data structures (or combine them). Your only restriction is that you will want to
choose an implementation that makes the operations as (asymptotically) fast as possible. Describe your implemen-
tation below, then give a worst case Big-Theta bound for each method. There may be many correct answers to this
question.

(a) Describe your implementation. For full credit, we’ll look for: (1) you explicitly mention the names of any
data structures (and their corresponding ADTs) that you use, (2) your chosen implementation demonstrates
you’ve thought about how to do these tasks reasonably efficiently, and (3) you give a high-level description
of what happens in each method that is specific enough to come up with Big-Theta bounds. ( 2-3 sentences)
Solution:

There are many correct answers to this question. The following is one example:

We could use a Hash Map data structure (implementing the Map ADT) to map the player names to the
number of votes they received. When casting a vote, we just increase the value for player2 by 1. When
calculate the number of votes a player received, we can just do a map get call.

A common deduction was giving a description that was not unambiguous enough to verify the Big-Theta
bounds in parts (b) and (c) (for example, not mentioning both the map lookup and the stack operation
here).

(b) castVote worst case Big-Theta. Solution:

There are many correct answers to this question, as long as they match part (a). In our example part(a),
the answer would beΘ(1) in the “in practice” case orΘ(n) in the worst case. To reflect real-world decision
making, we awarded full credit for not mentioning the “in practice” case and simply assumingΘ(1) lookup
in a Hash Map or assuming an underlying array wouldn’t resize.

(c) numVotes worst case Big-Theta. Solution:

There are many correct answers to this question, as long as they match part (a). In our example part(a),
the answer would beΘ(1) in the “in practice” case orΘ(n) in the worst case. To reflect real-world decision
making, we awarded full credit for not mentioning the “in practice” case and simply assumingΘ(1) lookup
in a Hash Map or assuming an underlying array wouldn’t resize.

3. Oh/Omega/Theta Bounds

Learning Objectives: Identify whether Big-Oh (and Big-Omega, Big-Theta) statements about a function are accurate
(LEC04), Explain why we can throw away constants when we compute Big-Oh bounds (LEC04), Differentiate between
Big-Oh, Big-Omega, and Big-Theta (LEC05), Describe the difference between Case Analysis and Asymptotic Analysis
(LEC05).

3.1. Big-Omega

Suppose we know that f(n) is a function in Ω(n2). Given that that’s all we know about f(n), for each of the
following statements, indicate if it is ALWAYS true, NEVER true, or SOMETIMES true (more information about
f(n) would be needed to determine if it’s true). You do not need to justify your answers.

3.2) f(n) is in Ω(n3).

© ALWAYS © NEVER © SOMETIMES (Need more information)
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Solution:

SOMETIMES. For example f(n) = n2 is Ω(n2) but not Ω(n3) while f(n) = n3 is in both.

3.3) f(n) is in Ω(n).

© ALWAYS © NEVER © SOMETIMES (Need more information)

Solution:

ALWAYS. Any function lower-bounded by n2 will also be lower-bounded by n.

3.4) There exists some constant n0, such that for all n ≥ n0, f(n) ≥ n2.

© ALWAYS © NEVER © SOMETIMES (Need more information)

Solution:

SOMETIMES. This statement is close to the definition of Big-Omega, but recall that the definition of Big-
Oh has two components: the starting value n0, and the constant factor c. This statement doesn’t take
c into account, so it does not always have to be true for a function to be in Ω(n2), which might only be
upper-bounded by c× n2.

3.5) f(n) is in O(n3).

© ALWAYS © NEVER © SOMETIMES (Need more information)

Solution:

SOMETIMES. For example f(n) = n2 is Ω(n2) and O(n3), but f(n) = n4 is a function that is Ω(n2) but
not O(n3).

3.6) f(n) is in O(n).

© ALWAYS © NEVER © SOMETIMES (Need more information)

Solution:

NEVER. A function that is lower-bounded by n2 can’t also be upper-bounded by n.

3.7) f(n) has a Big-Theta bound.

© ALWAYS © NEVER © SOMETIMES (Need more information)

Solution:

SOMETIMES. If f(n) is also inO(n2), then it will have a Big-Theta bound, but we’d need more information
to know. There are functions that have different Big-Oh and Big-Omega bounds and therefore do not have
a Big-Theta (for example, the isPrime function from lecture).
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3.8) f(n) is Θ(n3)

© ALWAYS © NEVER © SOMETIMES (Need more information)

Solution:

Sometimes. For example, consider f(n) = n3. This function is Θ(n3) and Ω(n2). But many functions exist
that are Ω(n2) that aren’t Θ(n3), for example f(n) = n2.

3.9) f(n) describes a runtime of a best-case of case analysis

© ALWAYS © NEVER © SOMETIMES (Need more information)

Solution:

SOMETIMES. Recall, that Big-Oh, Big-Omega, and Big-Theta are asymptotic analysis tools that the choice
of which you use, is independent of which case you are analyzing. You could find the Big-Omega bound
on the worst-case runtime while also finding the Big-O bound on the best-case runtime.

3.10. Big-Theta

Suppose we know that g(n) is a function in Θ(n3). Given that that’s all we know about g(n), for each of the
following statements, indicate if it is ALWAYS true, NEVER true, or SOMETIMES true (more information about g(n)
would be needed to determine if it’s true). You do not need to justify your answers.

3.11) g(n) is in O(n3).

© ALWAYS © NEVER © SOMETIMES (Need more information)

Solution:

ALWAYS. By the definition of Big-Theta, a function in Θ(n3) must also be in O(n3) and Ω(n3).

3.12) g(n) is in Θ(n).

© ALWAYS © NEVER © SOMETIMES (Need more information)

Solution:

NEVER. Since Big-Theta describes a tight bound, a function cannot belong to more than one Big-Theta of
a different class because it cannot have more than one tight bound.

3.13) g(n) is in Ω(n)

© ALWAYS © NEVER © SOMETIMES (Need more information)

Solution:

ALWAYS. Since we have a tight-bound on g(n) of Θ(n3), we know it must be lower-bounded by n.

3.14 Big-Oh

This problem will ask you to think about the relationships of functions and their complexity classes. Suppose we
had three functions f(n), g(n), h(n) and that we know that f(n) is a function in O(g(n)) and g(n) is a function
in O(h(n)). Given that that’s all we know about the functions, select all of the following that are guaranteed to be
true. You do not need to justify your answer or give any proofs.
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Hint: Think carefully about the definition of Big-Oh. If you are able to find any specific examples of f(n), g(n), h(n)
that makes a statement below false, then it can’t possibly always be true.

� f(n) is O(h(n))

� h(n) is Ω(f(n))

� f(n) + g(n) is O(g(n))

� f(n) · g(n) is O(h(n))

� If we also know that f(n) is in Θ(h(n)), then it must be true that g(n) is also in Θ(h(n))

Solution:

For each option that is correct, we fill it in as black. We provide a brief argument for each one, but you could
also argue these by looking at the Big-Oh definition.

� f(n) is O(h(n)). If f(n) is upper-bounded by g(n) and g(n) is upper-bounded by h(n), then f(n) would
also have to be upper-bounded by h(n).

� h(n) is Ω(f(n)). Similarly to the last problem, you can think of the fact that if f(n) is O(g(n)), that g(n)
will have to be Ω(f(n)).

� f(n) + g(n) is O(g(n)). Since f(n) is upper-bounded by g(n) and when thinking about Big-O we can drop
lower-order constants, we can drop the f(n) to show this is true.

� f(n)·g(n) isO(h(n)). This example has a counter-example so it can’t always be true. For example, consider
f(n) = n, g(n) = n2, h(n) = n2.

� If we also know that f(n) is in Θ(h(n)), then it must be true that g(n) is also in Θ(h(n)). This will always
be true. Abusing notation for simplicity, the original problem assumptions stated f(n) ≤ g(n) ≤ h(n).
This added assumption can be read as f(n) = h(n) which would have to mean g(n) = h(n). Please note,
this notation here is not correct since the Big-Oh has a very formal definition, but it helps when we think
about “less than” for our upper-bound and “equal to” for our tight bound.

4. Algorithmic Analysis

Learning Objectives: Come up with Big-Oh, Big-Omega, and Big-Theta bounds for a given function (LEC05), Perform
Case Analysis to identify the Best Case and Worst Case for a given piece of code (LEC05).

Scenario: The following methods are implementations of an algorithm that looks at the difference between any two
numbers in an array of numbers, and reports whether or not all pairwise differences are less than some parameter
maxDiff. For this problem, we will assume the given array is non-empty.

For example, if we called constrainedDiffs([1, 2, 3, 4], 2), it would return false because there is a pair of
numbers (1 and 4) whose difference exceeds the target value 2.

The following are two different implementations of this method. Each problem will ask you to analyze one imple-
mentation. When asked to analyze the runtime, do so in terms of n, the length of the array of numbers.

4.1. Implementation A

01 public static boolean constrainedDiffs(int[] nums, int maxDiff) {

02 for (int i = 0; i < nums.length; i++) {

03 for (int j = 0; j < nums.length; j++) {

04 int diff = nums[i] - nums[j];

05 if (diff >= maxDiff) {

06 return false;

07 }

08 }

09 }
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10 return true;

11 }

(a) What is the simplified Big-Theta runtime in terms of n for this method in the worst case? Solution:

Θ(n2). The worst case for this method is if all numbers are below maxDiff (or if the last pair of numbers
is the first one to exceed the max). In this case, these nested loops that run n times each will result in an
Θ(n2) runtime.

(b) What is the simplified Big-Theta runtime in terms of n for this method in the best case? Solution:

Θ(1). The best case for this method is if it finds a pair of numbers that exceed the max at the beginning
of the array. For example, if maxDiff = -2, then this loop would return on its first iteration.

(c) Describe the inputs that would lead to the best and worst case for this method (consider giving example inputs
if it would make your description more clear). If there is no difference between the two cases, note that instead
(no explanation needed). ( 1-3 sentences) Solution:

Our solutions to the earlier problems explained what cases they would happen in and how they differ.

4.2. Implementation B

01 public static boolean constrainedDiffs(int[] nums, int maxDiff) {

02 int min = nums[0];

03 int max = nums[0];

04

05 for (int i = 0; i < nums.length; i++) {

06 if (nums[i] < min) {

07 min = nums[i];

08 }

09 }

10

11 for (int i = 0; i < nums.length; i++) {

12 if (max < nums[i]) {

13 max = nums[i];

14 }

15 }

16

17 return (max - min) < maxDiff;

18 }

(a) What is the simplified Big-Theta runtime in terms of n for this method in the worst case? Solution:

Θ(n).

(b) What is the simplified Big-Theta runtime in terms of n for this method in the best case? Solution:

Θ(n).

(c) Describe the inputs that would lead to the best and worst case for this method (consider giving example inputs
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if it would make your description more clear). If there is no difference between the two cases, note that instead
(no explanation needed). ( 1-3 sentences) Solution:

The worst case and best case are the same here since the only thing that affects this runtime is the input
size.

5. Recursive Code Analysis

Learning Objectives: Model recursive code using a recurrence relation (LEC06), Describe the 3 most common recursive
patterns and identify whether code belongs to one of them (LEC06), Use the Master Theorem to characterize a recurrence
relation (LEC06), Characterize a recurrence with the Tree Method (LEC07).

5.1. Recursive Code Modeling

Consider the following code. In this question, you will write a recurrence to model the runtime (not the result) of
this Java method in terms of n, the length of the given LinkedDeque. You should assume the LinkedDeque uses the
same implementation as described in Project 1.

01 public static void reverseDeque(LinkedDeque<Integer> deque) {

02 int size = deque.size();

03 for (int i = 0; i < size; i += 1) {

04 System.out.println(deque.get(i));

05 }

06

07 if (size > 1) {

08 int item = deque.removeFirst();

09 reverseDeque(deque);

10 deque.addLast(item);

11 }

12 }

Write a recurrence for the worst-case runtime of this code. If you need to use constants but their exact value isn’t
known or doesn’t matter to the overall runtime, use c1, c2, c3, etc.

Follow this recurrence template:

T (n) =

{
BASE_CASE, BASE_CONDITION
RECURSIVE_CASE, RECURSIVE_CONDITION

(a) Give BASE_CASE and BASE_CONDITION: Solution:

c1, n ≤ 1. This base case is a bit harder to track since it’s not explicit, but you can consider on the last
recursive call when the size of the LinkedDeque is 0. In this call, only constant work is done since the for
loop will run at most 1 time and we won’t enter the recursive case.

(b) Give RECURSIVE_CASE and RECURSIVE_CONDITION: Solution:

T (n− 1)+ c2n
2 + c3, otherwise. In the recursive case, we have to do a loop n times that calls get (lines

03-05). We have seen patterns like this before where the outer loop runs n times and the inner-loop runs
something like i times, that resulted in an overall O(n2) workload. We list this value in our recurrences
as c2n2 to add clarity that the exact number of steps in the loop don’t matter. There is also some constant
work that happens in the method in the recursive case (e.g., getting the size on line 02, or removing the
first value on line 08) so we add a constant c3 to count for that too. The important constants for the
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recurrence are that we only make one recursive call and we decrease the input size by 1 each time, hence
the T (n− 1).

5.2. Characterizing Recurrences

Give a Big-Theta bound for this recurrence. You may use any technique to do so; you do not have to show your
work.

T (n) =

{
17 if n < 25

9T (n2 ) + n3 otherwise

Solution:

Θ(nlog2 9) ≈ Θ(n3.17). Either the Master Theorem or Tree Method would work for this recurrence and give the
same result.

6. Hash Maps

Learning Objectives: Differentiate between the “worst” and “in practice” runtimes of a Separate Chaining Hash Map, and
describe what assumptions the latter involves (LEC08), Compare the relative pros/cons of various Map implementations
(LEC08), Describe the properties of a good hash function and the role of a hash function in making a Hash Map efficient
(LEC09), Trace operations in a Separate Chaining Hash Map on paper (such as insertion, getting an element, resizing)
(LEC08).

6.1. Hashing

Consider the following Java class. In this problem, we will use the short-hand syntax Numbers([1, 2, 3]) to rep-
resent a Numbers object initialized with the numbers [1, 2, 3].

01 public class Numbers {

02 private List<Integer> nums;

03

04 public Numbers(int[] nums) {

05 this.nums = new ArrayList<>();

06 for (int num : nums) {

07 this.nums.add(num);

08 }

09 }

10

11 public int hashCode() {

12 int hash = 0;

13 for (int num : nums) {

14 hash += num;

15 }

16 return hash;

17 }

18

19 // Other methods include an appropriate equals

20 }

6.2) Consider if we use a hash table with M = 3 buckets (assume no resizing for this problem). Which of the
following Numbers will collide with Numbers([4, 1, 6]). Select all that apply.

� Numbers([1])

� Numbers([5, 6])

� Numbers([2])

� Numbers([1, 2])

� Numbers([7, 3, 7])

� Numbers([])
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Solution:

To find the collisions in the hash table, we compute the hashCode for each entry and then determine the
index from that hashCode by modding it by the table size (3). The following entries would map to the
same index as Numbers([4, 1, 6]).

• Numbers([5, 6])

• Numbers([2])

• Numbers([7, 3, 7])

6.3) Does there exist a Numbers that is guaranteed to collide with Numbers([4, 1, 6]) on any choice ofM buckets?

© Yes © No © Not enough information to tell

Solution:

Yes. A collision will happen with any object that has the same hashCode, regardless of the table size. So
Numbers whose numbers add up to 11 will collide with Numbers([4, 1, 6]).

6.4. Resizing

Recall our separate chaining hash map with linked lists for each bucket. Consider what would happen if we removed
the ability for this hash map to resize. In other words, we will initialize the hash table to be size 10 and then
never resize it once it becomes too full. Could this implementation of the chaining hash map be used as a valid
implementation of the Map ADT (e.g., it would be functionally correct)? Make sure your answer clearly states
whether or not this would be able to function without errors. Additionally, depending on your answer, also discuss
the following:

• If your answer is yes (it will work without errors), discuss whether or not the “in practice” runtime of the
structure differs from a hash table that resizes. Explain why that changed does or doesn’t happen.

• If your answer is no (this implementation won’t work due to some error), give an example sequence of opera-
tions that would cause this hash table to break and briefly justify what specifically causes this implementation
to malfunction.

Solution:

This is a usable implementation of the Map ADT! Even without the resize, we have the linked list buckets to
handle arbitrarily man collisions. In some sense, this hash map without resizing is a slightly fancier version of
the LinkedMap described in class. The “in practice” runtime would be closer to Θ(n) since we no longer have
any guarantees that the buckets will be short. The “in practice” runtime of the hash map being Θ(1) depended
on having a good hash function and having enough room in the hash table (with resizing). Without resizing,
we would expect each bucket to have approximately n/10 values in it, which a search through would take Θ(n)
time.

7. Trees

Learning Objectives: Apply the BST invariant and describe its implications (LEC10), Describe how AVL Rotations and
invariants lead to an efficient runtime (LEC10), Identify invariants for data structures (LEC03).

7.1. AVL Tree Invariants

Consider this AVL tree of integers, where an entire subtree is left out and is labeled T .
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7.2) What range of values can be found for the keys in the subtree T such that this whole tree is an AVL Tree?
Assume duplicates are not allowed.

• If there is only one possible value, state it.

• If there is a range of values min −max where min is the minimum possible value (inclusive) and max
is the maximum possible value (also inclusive), state that.

• If there are no constraints on the values, say any values.

• If there are no possible values to put here, say N/A

Solution:

17-33. Since AVL trees need to be BSTs as well, the values are constrained by the earlier nodes. Since we
went to the right of 16 and to the left of 34, we know those establish a minimum and maximum range.
Note, 16-34 is not an appropriate answer because we don’t allow duplicates.

7.3) What are the possible heights of the subtree T such that this entire tree is an AVL Tree.

• If there is only one possible height, state it.

• If there are multiple possible heights, list all of them (min and max should be inclusive).

• If this is not possible, write N/A.

Solution:

1-3. If you just consider the subtree rooted at 34, T would have to have height between 1 and 3 since its
sibling has height 2. We still have to consider the whole tree though, but any of those heights 1-3 will still
result in the whole tree being an AVL tree so there is no further restrictions. Since the tree to the left of
16 is height 4, the tree rooted at 34 needs to have height 3-5 which is satisfied by any of the heights for T
we specified above.

7.4. AVL Insertion

Consider this AVL tree. After inserting the value 3, what is the resulting tree after any AVL rotations? Upload a
drawing of your final tree.
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Solution:

7.5. AVL Rotations, but backwards?

Suppose we had the following AVL Tree. We are interested in figuring out what value would be necessary to
insert into the tree, such that after any AVL rotation(s), the node with the value 32 become the root of the whole
tree.
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7.6) What single value could we insert into this AVL tree
using an AVL insert operation that would cause the
root of the tree to become the node with the key
32? There may be multiple correct answers, but you
should pick one. Recall, we don’t allow duplicates
in these trees.
Solution:

Any value that gets added to the subtree rooted
at 32 will work. This means any value greater
than 20 and less than 41 works!

7.7) Draw the final tree after the insertion happens and
any rotations occur. Upload your answer as an im-
age of the final tree. Solution:

In this example, we chose the number 30 to
insert.
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