
Section 03: Asymptotic Analysis

Review Problems

1. Code Analysis

For each of the following code blocks, what is the worst-case runtime? Give a big-Θ bound.

(a) public IList<String> repeat(DoubleLinkedList<String> list, int n) {

IList<String> result = new DoubleLinkedList<String>();

for(String str : list) {

for(int i = 0; i < n; i++) {

result.add(str);

}

}

return result;

}

(b) public void foo(int n) {

for (int i = 0; i < n; i++) {

for (int j = 5; j < i; j++) {

System.out.println(”Hello!”);

}

for (int j = i; j >= 0; j -= 2) {

System.out.println(”Hello!”);

}

}

}

(c) public int num(int n){

if (n < 10) {

return n;

} else if (n < 1000) {

return num(n - 2);

} else {

return num(n / 2);

}

}

(d) public int foo(int n) {

if (n <= 0) {

return 3;

}

int x = foo(n - 1);

System.out.println(”hello”);

x += foo(n - 1);

return x;

}

1



2. Binary Search Trees

(a) Write a method validate to validate a BST. Although the basic algorithm can be converted to any data struc-
ture and work in any format, if it helps, you may write this method for the IntTree class:

public class IntTree {

private IntTreeNode overallRoot;

// constructors and other methods omitted for clarity

private class IntTreeNode {

public int data;

public IntTreeNode left;

public IntTreeNode right;

// constructors omitted for clarity

}

}

Section Problems

3. Unfolding recurrences

For each of the following recurrences, use the unfolding method to first convert the recurrence into a summation.
Then, find a big-Θ bound on the function in terms of n. Assume all division operations are integer division.

(a) T (n) =

{
1 if n = 1

T (n/2) + 3 otherwise

(b) T (n) =

{
1 if n = 0

T (n− 1) + 2 otherwise

(c) T (n) =

{
1 if n = 1

2T (n/2) + n otherwise

(d) T (n) =

{
1 if n = 0

T (n/3) + 4 otherwise

(e) T (n) =

{
1 if n = 1

2T (n− 1) + 1 otherwise

(f) T (n) =

{
1 if n = 1

2T (n/2) + 100 otherwise

(g) T (n) =

{
3 if n ≤ 1

2T (n/4) + n2 otherwise

2



4. Tree method walk-through

Consider the following recurrence: A(n) =

{
1 if n ≤ 1

3A(n/6) + n otherwise

We want to find an exact closed form of this equation by using the tree method. Suppose we draw out the total
work done by this method as a tree, as discussed in lecture. Let n be the initial input to A.

(a) What is the size of the input at level i (as in class, call the root level 0)?

(b) What is the number of nodes at level i?

Note: let i = 0 indicate the level corresponding to the root node. So, when i = 0, your expression should be
equal to 1.

(c) What is the total work at the ith recursive level?

(d) What is the last level of the tree?

(e) What is the work done in the base case?

(f) Combine your answers from previous parts to get an expression for the total work.

(g) Simplify to a closed form.

Note: you do not need to simplify your answer, once you found the closed form. Hint: You should use the
finite geometric series identity somewhere while finding a closed form.

(h) Use the master theorem to find a big-Θ bound of A(n).

5. More tree method recurrences

For each of the following recurrences, find their closed form using the tree method. Then, check your answer using
the master method (if applicable). It may be a useful guide to use the steps from section 4 of this handout to help
you with all the parts of solving a recurrence problem fully.

(a) T (n) =

{
1 if n = 1

T (n/2) + 3 otherwise

(b) S(q) =

{
1 if q = 1

2S(q − 1) + 1 otherwise

(c) T (n) =

{
1 if n = 1

8T (n/2) + 4n2 otherwise

3



6. Master Theorem

For each of the recurrences below, use the Master Theorem to find the big-Θ of the closed form or explain why
Master Theorem doesn’t apply.

Master Theorem:
Given a recurrence of the following form,

T (n) =

{
d if n ≤ some constant
aT (n/b) + nc otherwise

with a, b, c as constants:

If logb(a) < c, then T (n) is Θ(nc)
If logb(a) = c, then T (n) is Θ(nc logn)
If logb(a) > c, then T (n) is Θ

(
nlogb(a)

)
(a) T (n) =

{
18 if n ≤ 5

3T (n/4) + n2 otherwise

(b) T (n) =

{
1 if n ≤ 1

9T (n/3) + n2 otherwise

(c) T (n) =

{
1 if n ≤ 1

log(n)T (n/2) + n otherwise

(d) T (n) =

{
1 if n ≤ 19

4T (n/3) + n otherwise

(e) T (n) =

{
5 if n ≤ 24

2T (n− 2) + 5n3 otherwise

4



7. Modeling recursive functions

(a) Consider the following method.

public static int f(int n) {

if (n == 0) {

return 0;

}

int result = 0;

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

result++;

}

}

return 5 * f(n / 2) + 3 * result + 2 * f(n / 2);

}

(i) Find a recurrence T (n) modeling the worst-case runtime of f(n).

(ii) Find a recurrence W (n) modeling the returned integer output of f(n).

(b) Consider the following method.

public static int g(n) {

if (n <= 1) {

return 1000;

}

if (g(n / 3) > 5) {

for (int i = 0; i < n; i++) {

System.out.println(”Hello”);

}

return 5 * g(n / 3);

} else {

for (int i = 0; i < n * n; i++) {

System.out.println(”World”);

}

return 4 * g(n / 3);

}

}

(i) Find a recurrence S(n) modeling the worst-case runtime of g(n).

(ii) Find a recurrence X(n) modeling the returned integer output of g(n).

(iii) Find a recurrence P (n) modeling the printed output of g(n).

5



(c) Consider the following set of recursive methods.

public int test(int n) {

IDictionary<Integer, Integer> dict = new AvlDictionary<>();

populate(n, dict);

int counter = 0;

for (int i = 0; i < n; i++) {

counter += dict.get(i);

}

return counter;

}

private void populate(int k, IDictionary<Integer, Integer> dict) {

if (k == 0) {

dict.put(0, k);

} else {

for (int i = 0; i < k; i++) {

dict.put(i, i);

}

populate(k / 2, dict);

}

}

(i) Write a mathematical function representing the worst-case runtime of test.

You should write two functions, one for the runtime of test and one for the runtime of populate.

Food for Thought

8. TreeMap implemented as a Binary Search Tree

Consider the following method, which is a part of a Binary Search Tree implementation of a TreeMap class.

public V find(K key) {

return find(this.root, key);

}

private V find(Node<K, V> current, K key) {

if (current == null) {

return null;

}

if (current.key.equals(key)) {

return current.value;

}

if (current.key.compareTo(key) > 0) {

return find(current.left, key);

} else {

return find(current.right, key);

}

}

(a) We want to analyze the runtime of our find(x) method in the best possible case and the worst possible case.
What does our tree look like in the best possible case? In the worst possible case?

(b) Write a recurrence to represent the worst-case runtime for find(x) in terms of n, the number of elements
contained within our tree. Then, provide a Θ bound.

6



(c) Assuming we have an optimally structured tree, write a recurrence for the runtime of find(x) (again in terms
of n). Then, provide a Θ bound.

Challenge Problems

9. Recurrences

(a) For the following recurrence, use the unfolding method to first convert the recurrence into a summation.
Then, find a big-Θ bound on the function in terms of n. Assume all division operations are integer division.

T (n) =

{
1 if n = 0

2T (n/3) + n otherwise

10. Modeling recursive functions

Consider the following recursive function. You may assume that the input will be a multiple of 3.

public int test(int n) {

if (n <= 6) {

return 2;

} else {

int curr = 0;

for (int i = 0; i < n * n; i++) {

curr += 1;

}

return curr + test(n - 3);

}

}

(a) Write a recurrence modeling the worst-case runtime of test.

(b) Unfold the recurrence into a summation (for n ≥ 6).

(c) Simplify the summation into a closed form (for n ≥ 6).

7



Useful identities

Splitting a sum

b∑
i=a

(x+ y) =

b∑
i=a

x+

b∑
i=a

y

Adjusting summation bounds

b∑
i=a

f(x) =

b∑
i=0

f(x)−
a−1∑
i=0

f(x)

Factoring out a constant

b∑
i=a

cf(i) = c

b∑
i=a

f(i)

Summation of a constant
n−1∑
i=0

c = c+ c+ . . .+ c︸ ︷︷ ︸
n times

= cn

Note: this rule is a special case of the rule on the left

Gauss’s identity
n−1∑
i=0

i = 0 + 1 + . . .+ n− 1 =
n(n− 1)

2

Sum of squares
n−1∑
i=0

i2 =
n(n− 1)(2n− 1)

6

Finite geometric series
n−1∑
i=0

xi =
xn − 1

x− 1

Infinite geometric series
∞∑
i=0

xi =
1

1− x

Note: applicable only when −1 < x < 1

8


	1 Code Analysis
	2 Binary Search Trees
	3 Unfolding recurrences
	4 Tree method walk-through
	5 More tree method recurrences
	6 Master Theorem
	7 Modeling recursive functions
	8 TreeMap implemented as a Binary Search Tree
	9 Recurrences
	10 Modeling recursive functions

