## Quickcheck 03: Analysis

Your friend used summations to make a model for the running time of one of their functions. Simplify their summations into a final (exact) closed form. Then determine what the big- $\mathcal{O}$ of the function is.

$$
\sum_{i=0}^{n-1}\left(6 i^{2}-3\right)+\sum_{i=0}^{n-1} \frac{2^{i}}{n}+\sum_{i=0}^{n / 2-1} \sum_{j=0}^{i-1} 1
$$

Here is a list of identities that may be useful:
Manipulating Sums:

$$
\sum_{i=a}^{b}(x+y)=\sum_{i=a}^{b} x+\sum_{i=a}^{b} y \quad \sum_{i=a}^{b} f(i)=\sum_{i=0}^{b} f(i)-\sum_{i=0}^{a-1} f(i) \quad \sum_{i=a}^{b} c \cdot f(i)=c \sum_{i=a}^{b} f(i)
$$

Geometric Series Identities:

$$
\sum_{i=0}^{n-1} x^{i}=\frac{x^{n}-1}{x-1} \quad \sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x} \text { if }-1<x<1
$$

Other Common Summations:

$$
\sum_{i=0}^{n-1} i=\frac{n(n-1)}{2} \quad \sum_{i=0}^{n-1} i^{2}=\frac{n(n-1)(2 n-1)}{6} \quad \sum_{i=0}^{n-1} c=c n
$$

## Another question

Do you have any questions about this course? It could be about policy, content, instructors, TAs, etc.

