Quickcheck 02: Solutions

Name:

Definition: Dominated by

A function f(n) is dominated by g(n) when...

- There exists two constants c > 0 and $n_0 > 0$...
- Such that for all values of $n \ge n_0$...
- $f(n) \leq c \cdot g(n)$ is true.

Demonstrate that $2n^3 - 3 + 9n^2$ is dominated by n^3 by finding a c and n_0 . Show your work.

Solution:

We'll go term by term in the first function. $2n^3 \le 2 \cdot n^3$ for all n. $-3 \le 0 \cdot n^3$ for all n. $9n^2 \le 1 \cdot n^3$ for all $n \ge 9$ All inequalities are true as long as $n \ge \max\{0, 0, 9\} = 9$. If all the inequalities are true we can sum them to get $2n^3 - 3 + 9n^2 \le (2 + 0 + 1)n^3 = 3n^3$ for all $n \ge 9$.

Thus we take $n_0 = 9$ and c = 3. This is not the only solution; many others are possible.