Quickcheck 02: Solutions

Name:

Definition: Dominated by

A function $f(n)$ is dominated by $g(n)$ when...

- There exists two constants $c>0$ and $n_{0}>0$...
- Such that for all values of $n \geq n_{0}$..
- $f(n) \leq c \cdot g(n)$ is true.

Demonstrate that $2 n^{3}-3+9 n^{2}$ is dominated by n^{3} by finding a c and n_{0}. Show your work.

Solution:

We'll go term by term in the first function.
$2 n^{3} \leq 2 \cdot n^{3}$ for all n.
$-3 \leq 0 \cdot n^{3}$ for all n.
$9 n^{2} \leq 1 \cdot n^{3}$ for all $n \geq 9$
All inequalities are true as long as $n \geq \max \{0,0,9\}=9$. If all the inequalities are true we can sum them to get

$$
2 n^{3}-3+9 n^{2} \leq(2+0+1) n^{3}=3 n^{3}
$$

for all $n \geq 9$.
Thus we take $n_{0}=9$ and $c=3$. This is not the only solution; many others are possible.

