
Committing, Pushing, and Pulling
git is the version control system (VCS) underlying gitlab. Most real projects are kept in a VCS to avoid losing
data and the ability to go back to older versions of code. Another major reason VCS’s are important is that they
allow you to effectively work together with other people. They allow you to combine (called “merge”) several
different versions of your codebase together.

Un-
committed

In Git

eclipse gitlab

Un-
committed

In Git

Partner’s Computer

Co
m

m
it

Com
m

it

Push

Pull Pull

Push

As shown in the diagram, there are several major actions you can do with respect to your git repository:

• Commit: A “commit” is a set of changes that go together. By “committing” a file, you are asking git
to “mark” that it has changed. git requires you give a message indicating the high-level idea behind the
changes. An example might be “Adds error handling for the empty queue case in dequeue”.

• Push: A “push” sends your commits to another version of the repository (in our case, this will almost
always be gitlab). If you do not push your commits, nobody else can see them!

• Pull: A “pull” gets non-local commits and updates your version of the repository with them. If you and
someone else both edited a file, the histories of the file diverged, and git asks you to explain how to merge
the changes together. (This is called resolving a “merge conflict”.)

Using Git in Eclipse
Eclipse provides GUIs for all of the git operations. We now explain how to handle a git workflow.

Open Git Staging View
Your main tool to use git in eclipse is called the “staging view”. This view allows you to see changed files,
make commits, and write commit messages. To open the Staging View, follow these steps:

(1) Go to Window > Show View > Other (2) Type “ git”; choose “Git Staging”

3

Instructions on using Git in Eclipse
Written by Adam Blank for CSE 332, applicable for CSE 373



How Staging/Committing Works

After Pushing
After you “Commit and Push”, you will get one of several dialog messages:

Success! Rejected!

If you get a “success” message, then your code has been pushed, and you’re good to go. If you get a “rejected”
message, it means your partner pushed code; so, you will need to pull before pushing will work. Note that when
you pull, you might have a merge conflict which you will have to fix before pushing.

4



Pulling
There are two reasons to pull: (1) you want to get the changes your partner made, and (2) you want to push
your changes, but they were rejected because of a conflict.
To pull in Eclipse, click the following menu option:

The result will either indicate that you pulled cleanly or that there is a conflict.
The best way to tell if you currently have a conflict is to look for the red diamond icon in the list of

files.

If you see a DIRTY_WORKTREE error when attempting to pull, then you have uncommitted local changes which
conflict with changes on GitLab.

To resolve this error, you should first commit (but do not push) all local changes, then pull, and then merge

any conflicts using the procedure described on the following page.

5



Merging a Conflict
If you have any items that have a conflict (red diamond icon), you can fix them using the merge tool :

The merge tool allows you to see your changes (on the left) and other peoples’ changes (on the right). Your
job is to make the file on the left the result you actually want. Once you’ve done this, drag it to the “staged
changes” panel like usual. You will notice that there is an auto-filled Commit Message about a “merge”. Go
ahead and “Commit and Push”. Now, you’ve pushed your commits and other people can see them!

Submitting Your Final Version
In some courses, you are asked to “tag” your final commit. We will not ask you to do this. The last commit you
make within the deadline will be the one we will grade.

Resetting SSH Issues
Sometimes Eclipse will get in a state where SSH cloning of projects does not work (even when you’ve created a
new key from scratch). A superset of the steps required to reset any Eclipse SSH issue is:

(a) Remove all previous keys in Preferences > General > Network Connections > SSH2 > Private
Keys.

(b) Move, rename, or delete the previous SSH2 home folder. For example, if my SSH2 home folder was in
⇠/.ssh, I could move it to ⇠/.ssh2.

(c) Generate a new SSH key and save it in a new location, then add it to GitLab.

(d) Restart Eclipse (This is important!)

(e) Clone the project in Eclipse using the instructions provided at the top of this document.

Completing these steps should resolve Eclipse SSH issues (which typically surface as a password prompt during
the project cloning process).

6


